Skip to main content

ROS Signaling: Relevance with Site of Production and Metabolism of ROS

  • Chapter
Reactive Oxygen Species and Oxidative Damage in Plants Under Stress

Abstract

One of the inevitable consequences of aerobic metabolism is the production of ROS in biological organisms including plants. Accordingly, plants have evolved antioxidant system (antioxidant enzymes and antioxidant molecules) to protect the cell components from oxidative threat. Usually cells accumulate ROS to a fatal level due to imbalance between generation and scavenging under stress or pathogenic attack. Recent observations led to an idea of involvement of ROS in signaling for plant growth and development. Although common sites of ROS generation are chloroplasts, mitochondria, and other organelles, ROS produced by plasma membrane localized NADPH oxidase (Rboh) in extracellular space has been implicated to participate in signaling process. Calcium, being most important signal molecule, has a cross talk with Rboh through a positive feedback loop that forms the basis of ROS-driven signaling network. Such signaling most often works behind plant growth and developmental processes like seed germination, root growth, stomatal regulation, and stress tolerance. Recent researches establish a ROS wave with an integration of Ca2+ signal that may operate for long distance signaling in plants. This may help to explain the event of systemic signaling in case of systemic acquired resistance (SAR) during pathogen attack and systemic acquired acclimation (SAA), which is achieved by gradual exposure to stress. Establishment of the possibilities of intracellular ROS signaling through vesicular trafficking and involvement in regulation of nuclear activities are on the way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2013) ROS as key players in plant stress signaling. J Exp Bot 65:1229–1240

    Article  PubMed  Google Scholar 

  • Chaudhuri A, Singh KL, Kar RK (2013) Interaction of hormones with reactive oxygen species in regulating seed germination of Vigna radiata (L.) Wilczek. Plant Biochem Physiol 1:103

    Google Scholar 

  • Cheeseman JM (2007) Hydrogen peroxide and plant stress: a challenging relationship. Plant Stress 1:4–15

    Google Scholar 

  • Chen Q, Zhang M, Shen S (2010) Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem artichoke (Helianthus tuberosus L.). Acta Physiol Plant 33:273–278

    Article  Google Scholar 

  • Corpas FJ, Barroso JB, del Río LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    Article  PubMed Central  PubMed  Google Scholar 

  • Dietz KJ, Jacquot JP, Harris G (2010) Hubs and bottlenecks in plant molecular signalling networks. New Phytol 188:919–938

    Article  CAS  PubMed  Google Scholar 

  • Fedoroff N (2006) Redox regulatory mechanisms in cellular stress responses. Ann Bot 98:289–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  CAS  PubMed  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28:1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy A, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19:623–630

    Article  CAS  PubMed  Google Scholar 

  • Gunes A, Pilbeam D, Inal A, Coban S (2008) Influence of silicon on sunflower cultivars under drought stress, I: Growth, antioxidant mechanisms and lipid peroxidation. Commun Soil Sci Plant Anal 39:1885–1903

    Article  CAS  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2000) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Higuchi T (2006) Look back over the studies of lignin biochemistry. J Wood Sci 52:2–8

    Article  CAS  Google Scholar 

  • Kar RK (2011) Plant response to water stress: role of reactive oxygen species. Plant Signal Behav 6:1741–1745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kärkönen A, Kuchitsu K (2015) Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry 112:22–32

    Article  PubMed  Google Scholar 

  • Karuppanapandian T, Moon JC, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5:709–725

    CAS  Google Scholar 

  • Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255–266

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim C, Meskauskiene R, Apel K, Laloi C (2008) No single way to understand singlet oxygen signalling in plants. EMBO Rep 9:435–439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kranner I, Roach T, Beckett RP, Whitaker C, Minibayeva M (2010) Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum. J Plant Physiol 167:805–811

    Article  CAS  PubMed  Google Scholar 

  • Kwak JM, Mori IC, Pei Z-M, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638

    Article  CAS  PubMed  Google Scholar 

  • Leshem Y, Levine A (2007) Intracellular ROS. What does it do there? Plant Signal Behav 2:155–156

    Article  PubMed Central  PubMed  Google Scholar 

  • Leshem Y, Melamed-Book N, Cagnac O, Ronen G, Nishri Y, Solomon M, Cohen G, Levine A (2006) Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased slat tolerance. Proc Natl Acad Sci U S A 103:18008–18013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • López-Huertas E, Corpas FJ, Sandalio LM, del Río LA (1999) Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. Biochem J 337:531–536

    Article  PubMed Central  PubMed  Google Scholar 

  • Mazars C, Thuleau P, Lamotte O, Bourque S (2010) Cross-talk between ROS and calcium in regulation of nuclear activities. Mol Plant 3:706–718

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vnadepoele K, Gollery M, Shulaev V, Breusegem FV (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  PubMed  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  Google Scholar 

  • Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling and hypothetically mechanotransduction. Plant Physiol 135:702–708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Müller K, Linkies A, Vreeburg RAM, Fry SC, Krieger-Liszkay A, Leubner-Metzger G (2009) In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol 150:1855–1865

    Article  PubMed Central  PubMed  Google Scholar 

  • Müller K, Linkies A, Leubner-Metzger G, Kermode AR (2012) Role of a respiratory burst oxidase of Lepidium sativum (cress) seedlings in root development and auxin signaling. J Exp Bot 63:6325–6334

    Article  PubMed Central  PubMed  Google Scholar 

  • Navrot N, Roubier N, Gelbaye E, Jacquot JP (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Planta 129:185–195

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89:841–850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ogasawara Y, Kaya H, Hiraoka G, Yumoto F, Kimura S, Kadota Y, Hishinuma H, Senzaki E, Yamagoe S, Nagata K, Nara M, Suzuki K, Tanokura M, Kuchitsu K (2008) Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem 283:8885–8892

    Article  CAS  PubMed  Google Scholar 

  • Palma JM, Corpas FJ, del Río LA (2009) Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology. Proteomics 9:2301–2312

    Article  CAS  PubMed  Google Scholar 

  • Park KY, Jung JY, Park J, Hwang JU, Kim YW, Hwang I, Lee Y (2003) A role for phosphatidylinositol 3-phosphate in abscisic acid-induced reactive oxygen species generation in guard cells. Plant Physiol 132:92–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406:731–734

    Article  CAS  PubMed  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2–18

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG (2006) Cell signaling: H2O2, a necessary evil for cell signaling. Science 312:1882–1883

    Article  PubMed  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roach T, Kranner I (2011) Extracellular superoxide production associated with secondary root growth following desiccation of Pisum sativum seedlings. J Plant Physiol 168:1870–1873

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N (2011) Plant glutaredoxins: pivotal players in redox biology and iron-sulphur centre assembly. New Phytol 186:365–372

    Article  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh KL, Chaudhuri A, Kar RK (2014) Superoxide and its metabolism during germination and axis growth of Vigna radiata (L) Wilczek seeds. Plant Signal Behav 9:e29278

    Article  PubMed Central  Google Scholar 

  • Spiteller G (2003) The relationship between changes in the cell wall, lipid peroxidation, proliferation, senescence and cell death. Physiol Plant 119:5–18

    Article  CAS  Google Scholar 

  • Steinhorst L, Kudla J (2013) Calcium and reactive oxygen species rule the waves of signaling. Plant Physiol 163:471–485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  CAS  PubMed  Google Scholar 

  • Sweetlove LJ, Foyer CH (2004) Roles for reactive oxygen species and antioxidants in plant mitochondria. In: Day DA, Millar AH, Whelan J (eds) Plant mitochondria: from genome to function, vol 1, Advances in photosynthesis and respiration. Kluwer, Dordrecht

    Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7:1621–1633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vellosillo T, Vicente J, Kulasekaran S, Hamberg M, Castresana C (2010) Emerging complexity in reactive oxygen species production and signaling during the response of plants to pathogens. Plant Physiol 154:444–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wen F, Xing D, Zhang L (2008) Hydrogen peroxide is involved in high blue light-induced chloroplast avoidance movements in Arabidopsis. J Exp Bot 59:2891–2901

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Xu X, Yang F (2008) Adaptive responses to progressive drought stress in two Populus cathayana populations. Silva Fenn 42:705–719

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rup Kumar Kar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kar, R.K. (2015). ROS Signaling: Relevance with Site of Production and Metabolism of ROS. In: Gupta, D., Palma, J., Corpas, F. (eds) Reactive Oxygen Species and Oxidative Damage in Plants Under Stress. Springer, Cham. https://doi.org/10.1007/978-3-319-20421-5_5

Download citation

Publish with us

Policies and ethics