Skip to main content

Relationship Between Changes in Contents of Nitric Oxide and Amino Acids Particularly Proline in Plants Under Abiotic Stress

  • Chapter
Reactive Oxygen Species and Oxidative Damage in Plants Under Stress

Abstract

Studies on the physiological response of plants to abiotic stress have identified an array of changes including nitric oxide (NO) generation, accumulation of free proline, reactive oxygen species, antioxidants and oxidative damages. Little is known about the relationships between two of the concurrent changes, NO and proline metabolism. Here, the insights obtained so far and the important research gaps about this were explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad P, Sarwat M, Bhat NA, Wani MR, Kazi AG, Tran LSP (2015) Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PLoS One 10:e0114571

    Article  PubMed Central  PubMed  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak J, Kubis J (2009) Involvement of nitric oxide in water stress-induced responses in cucumber roots. Plant Sci 177:682–690

    Article  CAS  Google Scholar 

  • Boldizsar A, Simon-Sarkadi L, Szirtes K, Soltesz A, Szalai G, Keyster M et al (2013) Nitric oxide affects salt-induced changes in free amino acid levels in maize. J Plant Physiol 170:1020–1027

    Article  CAS  PubMed  Google Scholar 

  • Cantrel C, Vazquez T, Puyauberr J, Reze N, Lesch M, Kaiser WM, Dutilleul C, Guillas I, Zachowski A, Baudouin E (2011) Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol 189:415–427

    Article  CAS  PubMed  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JL (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Du ST, Liu Y, Zhang P, Liu HJ, Zhang XQ, Zhang RR (2015) Atmospheric application of trace amounts of nitric oxide enhances tolerance to salt stress and improves nutritional quality in Spinach (Spinacia oleracea L.). Food Chem 173:905–911

    Article  CAS  PubMed  Google Scholar 

  • Fan HF, Du CX, Guo SR (2012) Effect of nitric oxide on proline metabolism in cucumber seedlings under salinity stress. J Am Soc Hort Sci 137:127–133

    CAS  Google Scholar 

  • Farooq M, Hussain M, Wahid A, Siddique KHM (2012) Drought stress in plants: an overview. In: Aroca R (ed) Plant responses, From morphological to molecular features. Springer, New York, NY

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gould KS, Lamotte O, Klinguer A, Pugin A, Wendehenne D (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ 26:1851–1862

    Article  CAS  Google Scholar 

  • Hatzig S, Zaharia I, Abrams S, Hohmann M, Legoahec L, Bouchereau A, Nesi N, Snowdon RJ (2014) Early osmotic adjustment responses in drought-resistant and drought-sensitive oilseed rape. J Integr Plant Biol 56:797–809

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzamann M, Nahar K, Alam MM, Fujita M (2014) Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers to high temperature stress. Biol Trace Elem Res 161(Special Issue):297–307

    Article  Google Scholar 

  • He JY, Ren YF, Chen XL, Chen H (2014) Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotoxicol Environ Saf 108:114–119

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, You J, Liang X (2015) Nitrate reductase-mediated nitric oxide production is involved in copper tolerance in shoots of hulless barley. Plant Cell Rep 34:367–379

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Chen MH, Yang LT, Li YR, Wu JM (2015) Effects of exogenous abscisic acid on cell membrane and endogenous hormone contents in leaves of sugarcane seedlings under cold stress. Sugar Tech 17:59–64

    Article  CAS  Google Scholar 

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    Article  CAS  Google Scholar 

  • Kaul S, Sharma SS, Mehta IK (2008) Free radical scavenging potential of l-proline: evidence from in vitro assays. Amino Acids 34:315–320

    Article  CAS  PubMed  Google Scholar 

  • Leung DWM (2015) Regulatory role of nitric oxide (NO) in alterations of morphological features of plants under abiotic stress. In: Khan MN, Mobin M, Mohammad F, Corpas FJ (eds) Nitric oxide action in abiotic stress responses in plants. Springer, New York

    Google Scholar 

  • Li X, Gong B, Xu K (2014) Interaction of nitric oxide and polyamines involves antioxidants and physiological strategies against chilling-induced oxidative damage in Zingiber officinale Roscoe. Scientia Hort 170:237–248

    Article  CAS  Google Scholar 

  • Liu B, Rennenberg H, Kreuzwieser J (2015a) Hypoxia induces stem and leaf nitric oxide (NO) emission from poplar seedlings. Planta 241:579–589

    Article  CAS  PubMed  Google Scholar 

  • Liu SC, Yao MZ, Ma CL, Jin JQ, Ma JQ, Li CF, Chen L (2015b) Physiological changes and differential gene expression of tea plant under dehydration and rehydration conditions. Scientia Hort 184:129–141

    Article  CAS  Google Scholar 

  • Mahmood T, Gupta KJ, Kaiser WM (2009) Cadmium stress stimulates nitric oxide production. Pak J Bot 41:1285–1290

    CAS  Google Scholar 

  • Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance in wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Planchet E, Verdu I, Delahaie J, Cukier C, Girard C, Morere-Le Paven MC, Limami AM (2014) Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula. J Exp Bot 65:2161–2170

    Article  CAS  PubMed  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Jansen MAK (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32:158–169

    Article  PubMed  Google Scholar 

  • Puyaubert J, Baudouin E (2014) New clues for a cold case: nitric oxide response to low temperature. Plant Cell Environ 37:2623–2630

    Article  CAS  PubMed  Google Scholar 

  • Qiao X, Zheng Z, Zhang L, Wang J, Shi G, Xu X (2015) Lead tolerance mechanism in sterilized seedlings of Potamogeton crispus L.: subcellular distribution, polyamines and proline. Chemosphere 120:179–187

    Article  CAS  PubMed  Google Scholar 

  • Rejeb KB, Abdelly C, Savoure A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278–284

    Article  PubMed  Google Scholar 

  • Shin JH, Vaughn JN, Abdel-Haleem H, Chavarro C, Abernathy B, Do Kim K, Jackson SA, Li Z (2015) Transcriptome changes due to water deficit define a general soybean response and accession-specific pathways for drought avoidance. BMC Plant Biol 15:26

    Article  PubMed Central  PubMed  Google Scholar 

  • Sos-Hegedus A, Juhasz Z, Poor P, Kondrak M, Antal F, Tari I (2014) Soil drench treatment with beta-aminobutyric acid increases drought tolerance of potato. PLoS One 9:e114297

    Article  PubMed Central  PubMed  Google Scholar 

  • Signorelli S, Arellano JB, Melo TB, Borsani O, Monza J (2013a) Proline does not quench singlet oxygen: evidence to reconsider its protective role in plants. Plant Physiol Biochem 64:80–83

    Article  CAS  PubMed  Google Scholar 

  • Signorelli S, Corpas FJ, Borsani O, Barroso JB, Monza J (2013b) Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus. Plant Sci 201–202:137–146

    Article  PubMed  Google Scholar 

  • Signorelli S, Coitino EL, Borsani O, Monza J (2014) Molecular mechanisms for the reaction between •OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. J Phys Chem 118:37–47

    Article  CAS  Google Scholar 

  • Talbi S, Romero-Pueras MC, Hernandez A, Terron L, Ferchichi A, Sandalio LM (2015) Drought tolerance in a Saharian plant Oudneya africana: role of antioxidant defences. Environ Exp Bot 111:114–126

    Article  Google Scholar 

  • Yang F, Ding F, Duan XH, Zhang J, Li XN, Yang YL (2014) ROS generation and proline metabolism in calli of halophyte Nitraria tangutorum Bobr. to sodium nitroprusside treatment. Protoplasma 251:71–80

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. M. Leung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leung, D.W.M. (2015). Relationship Between Changes in Contents of Nitric Oxide and Amino Acids Particularly Proline in Plants Under Abiotic Stress. In: Gupta, D., Palma, J., Corpas, F. (eds) Reactive Oxygen Species and Oxidative Damage in Plants Under Stress. Springer, Cham. https://doi.org/10.1007/978-3-319-20421-5_14

Download citation

Publish with us

Policies and ethics