Skip to main content

Abstract

Plants may successfully limit or even kill pathogens at least in part by eliciting spatial patterns of ROS production in different parts of invaded plant cells, e.g., the cell wall and plasma membrane. Recent research also suggests a significant contribution to plant disease resistance by ROS-mediated processes in the plant cuticle and intracellular organelles. The role of temporal patterns (i.e., proper timing) of ROS accumulation in eliciting an effective plant disease resistance is also discussed. Essentially, defense against pathogens could be very effective if it is a rapid, symptomless process, eliminating the pathogen in due time and not overusing resources of the plant, a process likely mediated by ROS. On the other hand, a delayed and failed attempt by the host to elicit resistance may result in massively stressed plant tissues and a partial or almost complete loss of control over pathogen invasion. Thus, it seems that when plants encounter pathogens they need to defend themselves simultaneously against biotic and abiotic stresses (i.e., pathogen accumulation and excessive cell/tissue death) by turning on two different types of—partially overlapping—signaling pathways that may function in parallel. Very recent interesting data suggest a pivotal role of autopropagating ROS waves in these signaling processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbink TE, Peart JR, Mos TN, Baulcombe DC, Bol JF, Linthorst HJ (2002) Silencing of a gene encoding a protein component of the oxygen-evolving complex of photosystem II enhances virus replication in plants. Virology 295:307–319

    Article  CAS  PubMed  Google Scholar 

  • Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreńo MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390

    Article  CAS  PubMed  Google Scholar 

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    Article  CAS  PubMed  Google Scholar 

  • Allan AC, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in in tobacco epidermal cells. Plant Cell 9:1559–1572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amirsadeghi S, Robson CA, McDonald AE, Vanlerberghe GC (2006) Changes in plant mitochondrial electron transport alter cellular levels of reactive oxygen species and susceptibility to cell death signaling molecules. Plant Cell Physiol 47:1509–1519

    Article  CAS  PubMed  Google Scholar 

  • An Q, Ehlers K, Kogel KH, van Bel AJE, Hükelhoven R (2006) Multivesicular compartments proliferate in susceptible and resistant MLA12-barley leaves in response to infection by the biotrophic powdery mildew fungus. New Phytol 172:563–576

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Asai S, Ohta K, Yoshioka H (2008) MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20:1390–1406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Asai S, Yoshioka H (2009) Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthamiana. Mol Plant Microbe Interact 22:619–629

    Article  CAS  PubMed  Google Scholar 

  • Aver’yanov AA, Lapikova VP (1988) Fungi toxicity mediated by active oxygen species in rice leaf diffusates. Fiziologiya Rastenii 35:1142–1151

    Google Scholar 

  • Ádám AL, Farkas T, Somlyai G, Hevesi M, Király Z (1989) Consequence of O2 ·− generation during a bacterially induced hypersensitive reaction in tobacco: deterioration of membrane lipids. Physiol Mol Plant Pathol 34:13–26

    Article  Google Scholar 

  • Bacsó R, Hafez YM, Király Z, Király L (2011) Inhibition of virus replication and symptom expression by reactive oxygen species in tobacco infected with Tobacco mosaic virus. Acta Phytopathol Entomol Hung 46:1–10

    Article  CAS  Google Scholar 

  • Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33:299–321

    Article  CAS  PubMed  Google Scholar 

  • Balasubramaniam M, Kim BS, Hutchens-Williams HM, Loesch-Fries LS (2014) The photosystem II oxygen-evolving complex protein PsbP interacts with the coat protein of Alfalfa mosaic virus and inhibits virus replication. Mol Plant Microbe Interact 27:1107–1118

    Article  PubMed  CAS  Google Scholar 

  • Barba-Espin G, Diaz-Vivancos P, Clemente-Moreno MJ, Albacete A, Faize L, Faize M, Pérez-Alfocea F, Hernández JA (2010) Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant Cell Environ 33:981–994

    Article  CAS  PubMed  Google Scholar 

  • Barna B, Fodor J, Harrach B, Pogány M, Király Z (2012) The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens. Plant Physiol Biochem 59:37–43

    Article  CAS  PubMed  Google Scholar 

  • Barrios Perez I, Brown PJ (2014) The role of ROS signaling in cross-tolerance: from model to crop. Front Plant Sci 5:754

    Google Scholar 

  • Bechtold U, Albihlal WS, Lawson T, Fryer MJ, Sparrow PAC, Richard F, Mullineaux PM (2013) Arabidopsis HEAT SHOCK TRANSCRIPTION FACTOR A1b overexpression enhances water productivity, resistance to drought, and infection. J Exp Bot 64:3467–3481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bell JN, Ryder TB, Wingate VPM, Bailey JA, Lamb CJ (1986) Differential accumulation of plant defense gene transcripts in a compatible and an incompatible plant-pathogen interaction. Mol Cell Biol 6:1615–1623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11:781–791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bendahmane A, Querci M, Kanyuka K, Baulcombe DC (2000) Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J 21:73–81

    Article  CAS  PubMed  Google Scholar 

  • Berrocal-Lobo M, Stone S, Yang X, Antico J, Callis J, Ramonell KM, Somerville S (2010) ATL9, a RING zinc finger protein with E3 ubiquitin ligase activity implicated in chitin- and NADPH oxidase-mediated defense responses. PLoS One 5:e14426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM, Bolwell GP (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47:851–863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boller T, Felix GA (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367–1376

    Article  CAS  PubMed  Google Scholar 

  • Bolwell GP, Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defense: a broad perspective. Physiol Mol Plant Pathol 51:347–366

    Article  CAS  Google Scholar 

  • Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein – A novel, rapid defense response. Cell 70:21–30

    Article  CAS  PubMed  Google Scholar 

  • Brisson LF, Tenhaken R, Lamb C (1994) Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6:1703–1712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cessna SG, Sears VE, Dickman MB, Low PS (2000) Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12:2191–2200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chamnongpol S, Willekens H, Moeder W, Langebartels C, Sandermann H, Van Montagu M, Inzé D, Van Camp W (1998) Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc Natl Acad Sci USA 95:5818–5823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chassot C, Nawrath C, Métraux JP (2008) The cuticle: not only a barrier for defence. Plant Signal Behav 3:142–144

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen Z, Silva H, Klessig D (1993) Active oxygen species in the induction of plant acquired resistance by salicylic acid. Science 262:1883–1885

    Article  CAS  PubMed  Google Scholar 

  • Chester KS (1933) The problem of acquired physiological immunity in plants. Q Rev Biol 8:275–324

    Article  Google Scholar 

  • Chivasa S, Carr JP (1998) Cyanide restores N gene-mediated resistance to tobacco mosaic virus in transgenic tobacco expressing salicylic acid hydroxylase. Plant Cell 10:1489–1498

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chivasa S, Murphy AM, Naylor M, Carr JP (1997) Salicylic acid interferes with tobacco mosaic virus replication via a novel salicylhydroxamic acid-sensitive mechanism. Plant Cell 9:547–557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi HW, Kim YJ, Lee SC, Hong JK, Hwang BK (2007) Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol 145:890–904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cole AB, Király L, Ross K, Schoelz JE (2001) Uncoupling resistance from cell death in the hypersensitive response of Nicotiana species to Cauliflower mosaic virus infection. Mol Plant Microbe Interact 14:31–41

    Article  CAS  PubMed  Google Scholar 

  • Coll NS, Vercammen D, Smidler A, Clover C, van Breusegem F, Dangl JL, Epple P (2010) Arabidopsis Type I metacaspases control cell death. Science 330:1393–1397

    Article  CAS  PubMed  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Hückelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Thulke O, Katz V, Schwindling S, Kohler A (2001) Priming as mechanism in induced systemic resistance of plants. Eur J Plant Pathol 107:113–119

    Article  CAS  Google Scholar 

  • Cooley MB, Pathirana S, Wu HJ, Kachroo P, Klessig DF (2000) Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12:663–676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, van Montagu M, Inzé D, van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  CAS  PubMed  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/Leucine zipper transcription factor TGA1. Plant Cell 15:2181–2191

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Diaz-Vivancos P, Rubio M, Mesonero V, Periago PM, Ros Barceló A, Martínez-Gómez P, Hernández JA (2006) The apoplastic antioxidant system in Prunus: response to long-term plum pox virus infection. J Exp Bot 57:3813–3824

    Article  CAS  PubMed  Google Scholar 

  • Di Carli M, Villani ME, Bianco L, Lombardi R, Perrotta G, Benvenuto E, Donini M (2010) Proteomic analysis of the plant-virus interaction in Cucumber mosaic virus (CMV) resistant transgenic tomato. J Proteome Res 9:5684–5697

    Article  PubMed  CAS  Google Scholar 

  • Doke N (1983a) Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal cell wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiol Plant Pathol 23:359–367

    Article  CAS  Google Scholar 

  • Doke N (1983b) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol 23:345–357

    Article  CAS  Google Scholar 

  • Doke N (1995) NADPH-dependent O2 ·− generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans. Physiol Plant Pathol 27:311–322

    Article  Google Scholar 

  • Doke N, Miura Y (1995) In-vitro activation of NADPH-dependent O2 ·− generating system in a plasma membrane-rich fraction of potato tuber tissues by treatment with an elicitor from Phytophthora infestans or with digitonin. Physiol Mol Plant Pathol 46:17–28

    Article  CAS  Google Scholar 

  • Doke N, Ohashi Y (1988) Involvement of an O2 ·− generating system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus. Physiol Mol Plant Pathol 32:163–175

    Article  CAS  Google Scholar 

  • Dorey S, Baillieul F, Saindrenan P, Fritig B, Kaufmann S (1998) Tobacco class I and II catalases are differentially expressed during elicitor-induced hypersensitive cell death and localized acquired resistance. Mol Plant Microbe Interact 11:1102–1109

    Article  CAS  Google Scholar 

  • Dubiella U, Seybold H, Durian G, Komandera E, Lassiga R, Wittea CP, Schulzeb WX, Romeis T (2013) Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proc Natl Acad Sci USA 110:8744–8749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Dutilleul C, Garmier M, Noctor G, Mathieu C, Chétrit P, Foyer CH, de Paepe R (2003) Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. Plant Cell 15:1212–1226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • El-Zahaby HM, Hafez YM, Király Z (2004) Effect of reactive oxygen species on plant pathogens in planta and on disease symptoms. Acta Phytopathol Entomol Hung 39:325–345

    Article  CAS  Google Scholar 

  • Fodor J, Gullner G, Ádám AL, Barna B, Kőmíves T, Király Z (1997) Local and systemic responses of antioxidants to tobacco mosaic virus infection and to salicylic acid. Plant Physiol 114:1443–1451

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fodor J, Hideg É, Kecskés A, Király Z (2001) In vivo detection of tobacco mosaic virus-induced local and systemic oxidative burst by electron paramagnetic resonance spectroscopy. Plant Cell Physiol 42:775–779

    Article  CAS  PubMed  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863

    Article  CAS  PubMed  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessman H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    Article  CAS  PubMed  Google Scholar 

  • Gassmann W (2005) Natural variation in the Arabidopsis response to the avirulence gene hopPsyA uncouples the hypersensitive response from disease resistance. Mol Plant Microbe Interact 18:1054–1060

    Article  CAS  PubMed  Google Scholar 

  • Gechev T, Gadjev I, Van Breusegem F, Inzé D, Dukiandjiev S, Toneva V, Minkov I (2002) Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cell Mol Life Sci 59:708–714

    Article  CAS  PubMed  Google Scholar 

  • Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19:623–630

    Article  CAS  PubMed  Google Scholar 

  • Glazener JA, Orlandi EW, Baker CJ (1996) The active oxygen response of cell suspensions to incompatible bacteria is not sufficient to cause hypersensitive cell death. Plant Physiol 110:759–763

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gleason C, Huang SB, Thatcher LF, Foley RC, Anderson CR, Carroll AJ, Millar AH, Singh KB (2011) Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense. Proc Natl Acad Sci USA 108:10768–10773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goodman RN, Király Z, Wood KR (1986) The biochemistry and physiology of plant disease. University Missouri Press, Columbia, MO

    Google Scholar 

  • Goodman RN, Novacky AJ (1994) The hypersensitive reaction in plants to pathogens. APS Press, St. Paul, MN

    Google Scholar 

  • Grant M, Lamb C (2006) Systemic immunity. Curr Opin Plant Biol 9:414–420

    Article  CAS  PubMed  Google Scholar 

  • Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6:201–211

    Article  CAS  PubMed  Google Scholar 

  • Groom QJ, Torres MA, Fordham-Skelton AP, Hammond-Kossack KE, Robinson NJ, Jones JDG (1996) RbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J 10:515–522

    Article  CAS  PubMed  Google Scholar 

  • Gudesblat GE, Torres PS, Vojnov AA (2009) Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor. Plant Physiol 149:1017–1027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hafez YM, Bacsó R, Király Z, Künstler A, Király L (2012) Up-regulation of antioxidants in tobacco by low concentrations of H2O2 suppresses necrotic disease symptoms. Phytopathology 102:848–856

    Article  CAS  PubMed  Google Scholar 

  • Hafez YM, Király Z (2003) Role of hydrogen peroxide in symptom expression of barley susceptible and resistant to powdery mildew. Acta Phytopathol Entomol Hung 38:227–236

    Article  Google Scholar 

  • Hajimorad MR, Hill JH (2001) Rsv1-mediated resistance against Soybean mosaic virus-N is hypersensitive response-independent at inoculation site, but has the potential to initiate a hypersensitive response-like mechanism. Mol Plant-Microbe Interact 14:587–598

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Hanquing F, Kun S, Mingquan L, Hongyu L, Xin L, Yan L, Yifeng W (2010) The expression, function and regulation of mitochondrial alternative oxidase under biotic stresses. Mol Plant Pathol 11:429–440

    Article  Google Scholar 

  • Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara-Nishimura I (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855–858

    Article  CAS  PubMed  Google Scholar 

  • Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G (2012) The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog 8:e1002684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hernández JA, Díaz-Vivancos P, Rubio M, Olmos E, Ros Barceló A, Martínez-Gómez P (2006) Long-term plum pox virus infection produces an oxidative stress in a susceptible apricot, Prunus armeniaca, cultivar but not in a resistant cultivar. Physiol Plant 126:140–152

    Article  CAS  Google Scholar 

  • Hückelhoven R (2007) Cell wall–associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45:101–127

    Article  PubMed  CAS  Google Scholar 

  • Hückelhoven R, Fodor J, Preis C, Kogel KH (1999) Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with H2O2 but not with salicylic acid accumulation. Plant Physiol 119:1251–1260

    Article  PubMed Central  PubMed  Google Scholar 

  • Hückelhoven R, Fodor J, Trujillo M, Kogel KH (2000) Barley Mla and Rar mutants compromised in the hypersensitive death response against Blumeria graminis fsp. hordei are modified in their ability to accumulate reactive oxygen intermediates at sites of fungal invasion. Planta 212:16–24

    Article  PubMed  Google Scholar 

  • Hückelhoven R, Kogel KH (2003) Reactive oxygen intermediates in plant-microbe interactions: who is who in powdery mildew resistance? Planta 216:891–902

    PubMed  Google Scholar 

  • Jabs T, Tschöpe M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor-stimulated ion fluxes and O2 ·− from the oxidative burst are essential components in triggering defense gene activation and phytoalexin biosynthesis in parsley. Proc Natl Acad Sci USA 94:4800–4805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jimenez I, Lopez L, Alamillo JM, Valli A, Garcia JA (2006) Identification of a Plum pox virus CI-interacting protein from chloroplast that has a negative effect in virus infection. Mol Plant Microbe Interact 19:350–358

    Article  CAS  PubMed  Google Scholar 

  • Jones AM, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jordan CM, Wakeman RJ, DeVay JE (1992) Toxicity of free riboflavine and methionine riboflavin solutions to Phytophthora infestans and the reduction of potato late blight disease. Can J Microbiol 38:1108–1111

    Article  CAS  Google Scholar 

  • Karpinski S, Reynold H, Karpinska B, Wingsle G, Mullineaux PM (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    Article  CAS  PubMed  Google Scholar 

  • Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homologue of the neutrophyl NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255–266

    PubMed Central  CAS  PubMed  Google Scholar 

  • Király L, Hafez YM, Fodor J, Király Z (2008) Suppression of tobacco mosaic virus-induced hypersensitive-type necrotisation in tobacco at high temperature is associated with down-regulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. J Gen Virol 89:799–808

    Article  PubMed  CAS  Google Scholar 

  • Király L, Király Z (2006) To die or not to die – is cell death dispensable for resistance during the plant hypersensitive response? Acta Phytopathol Entomol Hung 41:11–21

    Article  CAS  Google Scholar 

  • Király L, Künstler A, Bacsó R, Hafez YM, Király Z (2013) Similarities and differences in plant and animal immune systems – What is inhibiting pathogens? Acta Phytopathol Entomol Hung 48:187–205

    Article  CAS  Google Scholar 

  • Király Z, Barna B, Érsek T (1972) Hypersensitivity as a consequence, not the cause of plant resistance to infection. Nature 239:456–458

    Article  Google Scholar 

  • Király Z, Barna B, Kecskés A, Fodor J (2002) Down-regulation of antioxidative capacity in a transgenic tobacco which fails to develop acquired resistance to necrotization caused by tobacco mosaic virus. Free Radic Res 36:981–991

    Article  PubMed  CAS  Google Scholar 

  • Király Z, El-Zahaby H, Galal A, Abdou S, Ádám A, Barna B, Klement Z (1993) Effect of oxy free radicals on plant pathogenic bacteria and fungi and on some plant diseases. In: Mózsik GY, Emerit I, Fehér J, Matkovics B, Vincze Á (eds) Oxygen free radicals and scavengers in the natural sciences. Akad Kiadó Budapest, Hungary

    Google Scholar 

  • Klement Z (1982) Hypersensitivity. In: Mount MS, Lacy GH (eds) Phytopathogenic prokaryotes II. Academic, New York

    Google Scholar 

  • Knecht K, Seyffarth M, Desel C, Thurau T, Sherameti I, Lou B, Oelmuller R, Cai D (2010) Expression of BvGLP-1 encoding a germin-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phytopathogenic fungi. Mol Plant Microbe Interact 23:446–457

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Wu J, Lu L, Xu Y, Zhou X (2014) Interaction between Rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Mol Plant 7:691–708

    Article  CAS  PubMed  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krause M, Durner J (2004) Harpin inactivates mitochondria in Arabidopsis suspension cells. Mol Plant Microbe Interact 17:131–139

    Article  CAS  PubMed  Google Scholar 

  • Künstler A, Hafez YM, Király L (2007) Transient suppression of a catalase and an alternative oxidase gene during virus-induced local lesion formation (hypersensitive response) is independent of the extent of leaf necrotization. Acta Phytopathol Entomol Hung 42:185–196

    Article  CAS  Google Scholar 

  • Lacomme C, Roby D (1999) Identification of new early markers of the hypersensitive response in Arabidopsis thaliana. FEBS Lett 459:149–153

    Article  CAS  PubMed  Google Scholar 

  • Lagrimini LM, Burkhart W, Moyer M, Rothstein S (1987) Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: molecular analysis and tissue-specific expression. Proc Natl Acad Sci USA 84:7542–7546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lehto K, Tikkanen M, Hiriart JB, Paakkarinen V, Aro EM (2003) Depletion of the photosystem II core complex in mature tobacco leaves infected by the Flavum strain of Tobacco mosaic virus. Mol Plant Microbe Interact 16:1135–1144

    Article  CAS  PubMed  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • Lee YH, Yoon IS, Suh SC, Kim HI (2002) Enhanced disease resistance in transgenic cabbage and tobacco expressing a glucose oxidase gene from Aspergillus niger. Plant Cell Rep 20:857–863

    Article  CAS  Google Scholar 

  • Lennon AM, Neuenschwander UH, Ribas-Carbo M, Giles L, Ryals JA, Siedow JN (1997) The effects of salicylic acid and tobacco mosaic virus infection on the alternative oxidase of tobacco. Plant Physiol 115:783–791

    PubMed Central  CAS  PubMed  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  CAS  PubMed  Google Scholar 

  • L’Haridon F, Besson-Bard A, Binda M, Serrano M, Abou-Mansour E, Balet F, Schoonbeek HJ, Hess S, Mir R, Léon J, Lamotte O, Métraux JP (2011) A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PLoS Pathog 7:e1002148

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liao Y, Tian M, Zhang H, Li X, Wang Y, Xia X, Zhou J, Zhou Y, Yu J, Shi K, Klessig DF (2015) Salicylic acid binding of mitochondrial alpha-ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense against tobacco mosaic virus in tomato. New Phytol 205:1296–1307

    Article  CAS  PubMed  Google Scholar 

  • Liao YWK, Shi K, Fu LJ, Zhang S, Li X, Dong DK, Jiang YP, Zhou YH, Xia XJ, Liang WS, Yu JQ (2012) The reduction of reactive oxygen species formation by mitochondrial alternative respiration in tomato basal defense against TMV infection. Planta 235:225–238

    Article  CAS  PubMed  Google Scholar 

  • Liu PP, Bhattacharjee S, Klessig DF, Moffett P (2010a) Systemic acquired resistance is induced by R gene-mediated responses independent of cell death. Mol Plant Pathol 11:155–160

    Article  CAS  PubMed  Google Scholar 

  • Liu YK, Liu YB, Zhang MY, Li DQ (2010b) Stomatal development and movement: the roles of MAPK signaling. Plant Signal Behav 5:1176–1180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lohar DP, Haridas S, Gantt JS, VandenBosch KA (2007) A transient decrease in reactive oxygen species in roots leads to root hair deformation in the legume-rhizobia symbiosis. New Phytol 173:39–49

    Article  CAS  PubMed  Google Scholar 

  • Macho AP, Boutrot F, Rathjen JP, Zipfel C (2012) ASPARTATE OXIDASE plays an important role in Arabidopsis stomatal immunity. Plant Physiol 159:1845–1856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15

    Article  CAS  PubMed  Google Scholar 

  • Mathioudakis MM, Veiga RS, Canto T, Medina V, Mossialos D, Makris AM, Livieratos I (2013) Pepino mosaic virus triple gene block protein 1 (TGBp1) interacts with and increases tomato catalase 1 activity to enhance virus accumulation. Mol Plant Pathol 14:589–601

    Article  CAS  PubMed  Google Scholar 

  • Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 96:8271–8276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101–122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  CAS  PubMed  Google Scholar 

  • Mellersh DG, Foulds IV, Higgins VJ, Heath MC (2002) H2O2 plays different roles in determining penetration failure in three diverse plant-fungal interactions. Plant J 29:257–268

    Article  CAS  PubMed  Google Scholar 

  • Mersmann S, Bourdais G, Rietz S, Robatzek S (2010) Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. Plant Physiol 154:391–400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller G, Mittler R (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 98:279–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl J, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2:ra45

    PubMed  Google Scholar 

  • Mittal D, Madhyastha DA, Grover A (2012) Genome-wide transcriptional profiles during temperature and oxidative stress reveal coordinated expression patterns and overlapping regulons in rice. PLoS One 7:e40899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Feng X, Cohen M (1998) Post-transcriptional suppression of cytosolic ascorbate peroxidase expression during pathogen-induced programmed cell death in tobacco. Plant Cell 10:461–473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mittler R, Shulaev V, Seskar M, Lam E (1996) Inhibition of programmed cell death in tobacco plants during a pathogen-induced hypersensitive response at low oxygen pressure. Plant Cell 8:1991–2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Mizuno M, Tada Y, Uchii K, Kawakami S, Mayama S (2005) Catalase and alternative oxidase cooperatively regulate programmed cell death induced by b-glucan elicitor in potato suspension cultures. Planta 220:849–853

    Article  CAS  PubMed  Google Scholar 

  • Montillet JL, Leonhardt N, Mondy S, Tranchimand S, Rumeau D, Boudsocq M, Garcia AV, Douki T, Bigeard J, Laurière C, Chevalier A, Castresana C, Hirt H (2013) An abscisic acid independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLoS Biol 11:e1001513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morel F, Doussiere J, Vignais PV (1991) The superoxide-generating oxidase of phagocytic cells. Physiological, molecular and pathological aspects. Eur J Biochem 201:523–546

    Article  CAS  PubMed  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    Article  CAS  PubMed  Google Scholar 

  • Mur LAJ, Carver TLW, Prats E (2006) NO way to live; the various roles of nitric oxide in plant–pathogen interactions. J Exp Bot 57:489–505

    Article  CAS  PubMed  Google Scholar 

  • Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Norman C, Howell KA, Millar AH, Whelan JM, Day DA (2004) Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiol 134:492–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Brien JA, Daudi A, Butt VS, Bolwell GP (2012) Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236:765–779

    Article  PubMed  CAS  Google Scholar 

  • Ouf MF, Gazar AA, Shehata ZA, Abdou E-S, Király Z, Barna B (1993) The effect of superoxide anion on germination and infectivity of wheat stem rust (Puccinia graminis Pers. f. sp. tritici Eriks. and Henn.) uredospores. Cereal Res Commun 21:31–37

    CAS  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2013) Primed plants do not forget. Environ Exp Bot 94:46–56

    Article  CAS  Google Scholar 

  • Park H, Miura Y, Kawakita K, Yoshioka H, Doke N (1998) Physiological mechanisms of a sub-systemic oxidative burst triggered by elicitor-induced local oxidative burst in potato tuber slices. Plant Physiol 126:1281–1290

    Google Scholar 

  • Peng M, Kuć J (1992) Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology 82:696–699

    Article  CAS  Google Scholar 

  • Peleg-Grossman S, Melamed-Book N, Levine A (2012) ROS production during symbiotic infection suppresses pathogenesis-related gene expression. Plant Signal Behav 7:409–415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perez-Bueno ML, Rahoutei J, Sajnani C, Garcia-Luque I, Baron M (2004) Proteomic analysis of the oxygen-evolving complex of photosystem II under biotec stress: studies on Nicotiana benthamiana infected with tobamoviruses. Proteomics 4:418–425

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, van Wees SCM, Hoffland E, van Pelt JA, van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pogány M, von Rad U, Grün S, Dongó A, Pintye A, Simoneau P, Bahnweg G, Kiss L, Barna B, Durner J (2009) Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem. Plant Physiol 151:1459–1475

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Proels RK, Oberhollenzer K, Pathuri IP, Hensel G, Kumlehn J, Hückelhoven R (2010) RBOHF2 of barley is required for normal development of penetration resistance to the parasitic fungus Blumeria graminis f. sp. hordei. Mol Plant Microbe Interact 23:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Rahoutei J, García-Luque I, Barón M (2000) Inhibition of photosynthesis by viral infection: effect on PSII structure and function. Physiol Plant 110:286–292

    Article  CAS  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S, Inzé D, Mittler R (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J 32:329–342

    Article  CAS  PubMed  Google Scholar 

  • Robson CA, Vanlerberghe GC (2002) Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochndria-dependent and -independent pathways of programmed cell death. Plant Physiol 129:1908–1920

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez-Herva JJ, Gonzalez-Melendi P, Cuartas-Lanza R, Antunez-Lamas M, Rio-Alvarez I, Li Z, Lopez-Torrejon G, Diaz I, Del Pozo JC, Chakravarthy S, Collmer A, Rodriguez-Palenzuela P, Lopez-Solanilla E (2012) A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses. Cell Microbiol 14:669–681

    Article  CAS  PubMed  Google Scholar 

  • Ross AF (1961a) Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14:329–339

    Article  CAS  PubMed  Google Scholar 

  • Ross AF (1961b) Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340–358

    Article  CAS  PubMed  Google Scholar 

  • Sawinski K, Mersmann S, Robatzek S, Böhmer M (2013) Guarding the green: pathways to stomatal immunity. Mol Plant Microbe Interact 26:626–632

    Article  CAS  PubMed  Google Scholar 

  • Scarpeci T, Zanor M, Bernd Mueller R, Valle E (2013) Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana. Plant Mol Biol 83:265–277

    Article  CAS  PubMed  Google Scholar 

  • Schäfer P, Hückelhoven R, Kogel KH (2004) The white barley mutant Albostrians shows a supersusceptible but symptomless interaction phenotype with the hemibiotrophic fungus Bipolaris sorokiniana. Mol Plant Microbe Interact 17:366–373

    Article  PubMed  Google Scholar 

  • Schiffer R, Görg R, Jarosch B, Beckhove U, Bahrenberg G, Kogel KH, Schulze-Lefert P (1997) Tissue dependence and differential cordycepin sensitivity of race-specific resistance responses in the barley-powdery mildew interaction. Mol Plant Microbe Interact 10:830–839

    Article  CAS  Google Scholar 

  • Schulze-Lefert P (2004) Knocking on the heaven’s wall: pathogenesis of and resistance to biotrophic fungi at the cell wall. Curr Opin Plant Biol 7:377–383

    Article  CAS  PubMed  Google Scholar 

  • Schweizer P, Pokorny J, Abderhalden O, Dudler R (1999) A transient assay system for the functional assessment of defense-related genes in wheat. Mol Plant Microbe Interact 12:647–654

    Article  CAS  Google Scholar 

  • Segal AW (2008) The function of the NADPH oxidase of phagocytes and its relationship to other NOXs in plants, invertebrates, and mammals. Int J Biochem Cell Biol 40:604–618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sels J, Mathys J, De Coninck BMA, Cammue BPA, De Bolle MFC (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Coluccia F, Torres M, L’Haridon F, Métraux JP (2014) The cuticle and plant defense to pathogens. Front Plant Sci 5:274

    Article  PubMed Central  PubMed  Google Scholar 

  • Shang J, Xi DH, Yuan S, Xu F, Xu MY, Qi HL, Wang SD, Huang QR, Wen L, Lin HH (2010) Difference of physiological characters in dark green islands and yellow leaf tissue of Cucumber mosaic virus (CMV)-infected Nicotiana tabacum leaves. Z Naturforsch 65c:73–78

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  CAS  Google Scholar 

  • Shaw SL, Long SR (2003) Nod factor inhibition of reactive oxygen efflux in a host legume. Plant Physiol 132:2196–2204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shetty NP, Kristensen BK, Newman MA, Møller K, Gregersen PL, Jørgensen HJL (2003) Association of hydrogen peroxide with restriction of Septoria tritici in resistant wheat. Physiol Mol Plant Pathol 62:333–346

    Article  CAS  Google Scholar 

  • Shetty NP, Mehrabi R, Lütken H, Haldrup A, Kema GHJ, Collinge DB, Jørgensen HJL (2007) Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. New Phytol 174:637–647

    Article  CAS  PubMed  Google Scholar 

  • Shetty NP, Jørgensen HJL, Jensen JD, Collinge DB, Shetty HS (2008) Roles of reactive oxygen species in interactions between plants and pathogens. Eur J Plant Pathol 121:267–280

    Article  CAS  Google Scholar 

  • Shi H, Wang X, Ye T, Cheng F, Deng J, Yang P et al (2014) The Cysteine2/Histidine2-type transcription factor ZINC FINGER OFARABIDOPSIS THALIANA 6 modulates biotic and abiotic stress responses by activating salicylic acid-related genes and C-REPEAT-BINDING FACTOR genes in Arabidopsis. Plant Physiol 165:1367–1379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simons BH, Millenaar FF, Mulder L, Van Loon LC, Lambers H (1999) Enhanced expression and activation of the alternative oxidase during infection of Arabidopsis with Pseudomonas syringae pv. tomato. Plant Physiol 120:529–538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100

    Article  CAS  PubMed  Google Scholar 

  • Sticher L, Mauch-Mani B, Métraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  CAS  PubMed  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Chen Z, Du H, Liu Y, Klessig D (1997) Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels. Plant J 11:995–1005

    Article  Google Scholar 

  • Talarczyk A, Krzymowska M, Borucki W, Hennig J (2002) Effect of yeast CTA1gene expression on response of tobacco plants to tobacco mosaic virus infection. Plant Physiol 129:1032–1044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tenhaken R, Levine A, Brisson LF, Dixon RA, Lamb C (1995) Function of the oxidative burst in hypersensitive disease resistance. Proc Natl Acad Sci USA 92:4158–4163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Planta 138:414–429

    Article  CAS  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Jones JD, Dangl JL (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress cell death in Arabidopsis thaliana. Nat Genet 37:1130–1134

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JDG (1998) Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91 phox). Plant J 14:365–370

    Article  CAS  PubMed  Google Scholar 

  • Thoma I, Loeffler C, Sinha AK, Gupta M, Krischke M, Steffan B, Roitsch T, Mueller MJ (2003) Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants. Plant J 34:363–375

    Article  CAS  PubMed  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Tsugama D, Liu S, Takano T (2012) Drought-induced activation and rehydration-induced inactivation of MPK6 in Arabidopsis. Biochem Biophys Res Commun 426:626–629

    Article  CAS  PubMed  Google Scholar 

  • Tzeng DD, Lee MH, Chung KR, DeVay JE (1990) Products in light-mediated reactions of free methionine–riboflavin mixtures that are biocidal to microorganisms. Can J Microbiol 36:500–506

    Article  CAS  Google Scholar 

  • Vandenabeele S, Van Der Kelen K, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers P, Slooten L, Van Montagu M, Zabeau M, Inzé D, Van Breusegem F (2003) A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci USA 100:16113–16118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC, Van Strien E (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • Walz A, Zingen-Sell I, Loeffler M, Sauer M (2008) Expression of an oxalate oxidase gene in tomato and severity of disease caused by Botrytis cinerea and Sclerotinia sclerotiorum. Plant Pathol 57:453–458

    Article  CAS  Google Scholar 

  • Wei Y, Zhang Z, Andersen CH, Schmelzer E, Gregersen PL, Collinge DB, Smedegaard-Pedersen V, Thordal-Christensen H (1998) An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus. Plant Mol Biol 36:101–112

    Article  CAS  PubMed  Google Scholar 

  • Willekens H, Inzé D, Van Montagu M, Van Camp W (1995) Catalases in plants. Mol Breeding 1:207–228

    Article  CAS  Google Scholar 

  • Williams B, Kabbage M, Kim HJ, Britt R, Dickman MB (2011) Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog 7:e1002107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G, Shortt BJ, Lawrence EB, Levine EB, Fitzsimmons KC, Shah DM (1995) Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell 7:1357–1368

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G, Shortt BJ, Lawrence EB, León J, Fitzsimmons KC, Levine EB, Raskin I, Shah DM (1997) Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants. Plant Physiol 115:427–435

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yi SY, Yu SH, Choi D (1999) Molecular cloning of a catalase cDNA from Nicotiana glutinosa L. and its repression by tobacco mosaic virus infection. Mol Cells 9:320–325

    CAS  PubMed  Google Scholar 

  • Yi SY, Yu SH, Choi D (2003) Involvement of hydrogen peroxide in repression of catalase in TMV-infected resistant tobacco. Mol Cells 15:364–369

    CAS  PubMed  Google Scholar 

  • Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JD, Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706–718

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu IC, Parker J, Bent AF (1998) Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc Natl Acad Sci USA 95:7819–7824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng W, He SY (2010) A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. Plant Physiol 153:1188–1198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Z, Henderson C, Gurr SJ (2004) Blumeria graminis secretes an extracellular catalase during infection of barley: potential role in suppression of host defence. Mol Plant Pathol 5:537–547

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Xing D (2008) Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant Cell Physiol 49:1092–1111

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Collinge DB, Thordal-Christensen H (1995) Germin-like oxalate oxidase, a H2O2-producing enzyme, accumulates in barley attacked by the powdery mildew fungus. Plant J 8:139–145

    Article  CAS  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the laboratory of the authors is supported by grants of the Hungarian Scientific Research Fund (OTKA K111995 and PD108455).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lóránt Király .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Künstler, A., Bacsó, R., Hafez, Y.M., Király, L. (2015). Reactive Oxygen Species and Plant Disease Resistance. In: Gupta, D., Palma, J., Corpas, F. (eds) Reactive Oxygen Species and Oxidative Damage in Plants Under Stress. Springer, Cham. https://doi.org/10.1007/978-3-319-20421-5_11

Download citation

Publish with us

Policies and ethics