Skip to main content

Influence of Temperature on Supercapacitor Performance

  • Chapter
  • First Online:
Thermal Effects in Supercapacitors

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

The previous chapter considered the influence of temperature on different supercapacitor components, including electrolytes, electrodes and separators. The thermophysical properties of these components dictate the electrochemical performance of a supercapacitor at different temperatures, which is reflected by two crucial metrics-capacitance and ESR—and also others such as aging, self-discharge and leakage. For instance, the high ionic conductivity and high dissociation rate of the electrolytes at elevated temperatures facilitates ion migration towards the electric double layer [1], leading to a low ESR. Capacitance depends on the amount of ions aggregated at the interface between electrodes and electrolytes, which is determined by the effective specific surface area of the electrodes. Higher temperature promotes the migration of ions to the innermost pores of electrodes, leading to an increase in effective surface area, and thus a higher capacitance. Energy and power densities are directly related to capacitance and ESR. Aging and self-discharge are also important parameters to evaluate the performance of supercapacitors in practical applications. In this chapter, the influence of temperature on electrochemical performance including extreme-temperature performance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hastak RS, Sivaraman P, Potphode DD et al (2012) All solid supercapacitor based on activated carbon and poly [2,5-benzimidazole] for high temperature application. Electrochim Acta 59:296–303

    Google Scholar 

  2. Xiong G, Meng C, Reifenberger RG et al (2014) Graphitic petal micro-supercapacitor electrodes for ultra-high power density. Energy Technol 2:897–905

    Google Scholar 

  3. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27

    Google Scholar 

  4. Lewandowski A, Olejniczak A, Galinski M et al (2010) Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. J Power Sources 195:5814–5819

    Google Scholar 

  5. Liu P, Verbrugge M, Soukiazian S (2006) Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors. J Power Sources 156:712–718

    Google Scholar 

  6. Hung KS, Masarapu C, Ko TH et al (2009) Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric. J Power Sources 193:944–949

    Google Scholar 

  7. Gualous H, Bouquain D, Berthon A et al (2003) Experimental study of supercapacitor serial resistance and capacitance variations with temperature. J Power Sources 123:86–93

    Google Scholar 

  8. Rafik F, Gualous H, Gallay R et al (2007) Frequency, thermal and voltage supercapacitor characterization and modeling. J Power Sources 165:928–934

    Google Scholar 

  9. Michel H (2006) Temperature and dynamics problems of ultracapacitors in stationary and mobile applications. J Power Sources 154:556–560

    Google Scholar 

  10. Kotz R, Hahn M, Gallay R (2006) Temperature behavior and impedance fundamentals of supercapacitors. J Power Sources 154:550–555

    Google Scholar 

  11. Brandon EJ, West WC, Smart MC et al (2007) Extending the low temperature operational limit of double-layer capacitors. J Power Sources 170:225–232

    Google Scholar 

  12. Masarapu C, Zeng HF, Hung KH et al (2009) Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 3:2199–2206

    Google Scholar 

  13. Roberts AJ, de Namor AFD, Slade RCT (2013) Low temperature water based electrolytes for MnO2/carbon supercapacitors. Phys Chem Chem Phys 15:3518–3526

    Google Scholar 

  14. Liu XR, Pickup PG (2008) Performance and low temperature behaviour of hydrous ruthenium oxide supercapacitors with improved power densities. Energ Environ Sci 1:494–500

    Google Scholar 

  15. Zheng JP, Jow TR (1996) High energy and high power density electrochemical capacitors. J Power Sources 62:155–159

    Google Scholar 

  16. Mosqueda HA, Crosnier O, Athouel L et al (2010) Electrolytes for hybrid carbon-MnO2 electrochemical capacitors. Electrochim Acta 55:7479–7483

    Google Scholar 

  17. Wei D, Ng TW (2009) Application of novel room temperature ionic liquids in flexible supercapacitors. Electrochem Commun 11:1996–1999

    Google Scholar 

  18. Lu W, Qu LT, Henry K et al (2009) High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes. J Power Sources 189:1270–1277

    Google Scholar 

  19. Wang H, Xu ZW, Kohandehghan A et al (2013) Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7:5131–5141

    Google Scholar 

  20. Zhu YW, Murali S, Stoller MD et al (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    Google Scholar 

  21. Liu CG, Yu ZN, Neff D et al (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    Google Scholar 

  22. Vivekchand SRC, Rout CS, Subrahmanyam KS et al (2008) Graphene-based electrochemical supercapacitors. J Chem Sci 120:9–13

    Google Scholar 

  23. Fletcher SI, Sillars FB, Carter RC et al (2010) The effects of temperature on the performance of electrochemical double layer capacitors. J Power Sources 195:7484–7488

    Google Scholar 

  24. Sato T, Masuda G, Takagi K (2004) Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim Acta 49:3603–3611

    Google Scholar 

  25. Yuyama K, Masuda G, Yoshida H et al (2006) Ionic liquids containing the tetrafluoroborate anion have the best performance and stability for electric double layer capacitor applications. J Power Sources 162:1401–1408

    Google Scholar 

  26. McEwen AB, McDevitt SF, Koch VR (1997) Nonaqueous electrolytes for electrochemical capacitors: imidazolium cations and inorganic fluorides with organic carbonates. J Electrochem Soc 144:L84–L86

    Google Scholar 

  27. Ue M, Takeda M, Toriumi A et al (2003) Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors. J Electrochem Soc 150:A499–A502

    Google Scholar 

  28. Fung YS, Zhu DR (2002) Electrodeposited tin coating as negative electrode material for lithium-ion battery in room temperature molten salt. J Electrochem Soc 149:A319

    Google Scholar 

  29. Hayashi K, Nemoto Y, Akuto K et al (2005) Alkylated imidazolium salt electrolyte for lithium cells. J Power Sources 146:689–692

    Google Scholar 

  30. Ishikawa M, Sugimoto T, Kikuta M et al (2006) Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. J Power Sources 162:658–662

    Google Scholar 

  31. Lewandowski A, Swiderska-Mocek A (2009) Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies. J Power Sources 194:601–609

    Google Scholar 

  32. Arbizzani C, Biso M, Cericola D et al (2008) Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes. J Power Sources 185:1575–1579

    Google Scholar 

  33. Xu B, Wu F, Chen RJ et al (2006) Room temperature molten salt as electrolyte for carbon nanotube-based electric double layer capacitors. J Power Sources 158:773–778

    Google Scholar 

  34. Lin RY, Taberna PL, Fantini S et al (2011) Capacitive energy storage from −50 to 100 °C using an ionic liquid electrolyte. J Phys Chem Lett 2:2396–2401

    Google Scholar 

  35. Voice AM, Davies GR, Ward IM (1997) Structure of poly(vinylidene fluoride) gel electrolytes. Polym Gels Netw 5:123–144

    Google Scholar 

  36. Voice AM, Southall JP, Rogers V et al (1994) Thermoreversible polymer gel electrolytes. Polymer 35:3363–3372

    Google Scholar 

  37. Bohnke O, Rousselot C, Gillet PA et al (1992) Gel electrolyte for solid-state electrochromic cell. J Electrochem Soc 139:1862–1865

    Google Scholar 

  38. Osaka T, Liu XJ, Nojima M et al (1999) An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder. J Electrochem Soc 146:1724–1729

    Google Scholar 

  39. Lewandowski A, Skorupska K, Malinska J (2000) Novel poly(vinyl alcohol)-KOH-H2O alkaline polymer electrolyte. Solid State Ionics 133:265–271

    Google Scholar 

  40. Yuan CZ, Zhang XG, Wu QF et al (2006) Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon with alkaline polymer gel electrolyte. Solid State Ionics 177:1237–1242

    Google Scholar 

  41. Hastak RS, Sivaraman P, Potphode DD et al (2012) High temperature all solid state supercapacitor based on multi-walled carbon nanotubes and poly[2,5 benzimidazole]. J Solid State Electr 16:3215–3226

    Google Scholar 

  42. Liu XH, Wen ZB, Wu DB et al (2014) Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors. J Mater Chem A 2:11569–11573

    Google Scholar 

  43. Lu W, Henry K, Turchi C et al (2008) Incorporating ionic liquid electrolytes into polymer gels for solid-state ultracapacitors. J Electrochem Soc 155:A361–A367

    Google Scholar 

  44. Borges RS, Reddy ALM, Rodrigues MTF et al (2013) Supercapacitor operating at 200 °C. Sci Rep-Uk 3. doi:10.1038/srep02572

  45. Rosero JA, Ortega JA, Aldabas E et al (2007) Moving towards a more electric aircraft. Ieee Aero El Sys Mag 22:3–9

    Google Scholar 

  46. Plichta EJ, Hendrickson M, Thompson R et al (2001) Development of low temperature Li-ion electrolytes for NASA and DOD applications. J Power Sources 94:160–162

    Google Scholar 

  47. Nagasubramaniam G (2001) Electrical characteristics of 18650 Li-ion cells at low temperatures. J Appl Phys 31:99–104

    Google Scholar 

  48. Hp Lin, Chua D, Salomon M et al (2001) Low-temperature behavior of li-ion cells. Electrochem Solid-State Lett 4:A71

    Google Scholar 

  49. Ratnakumar BV, Smart MC, Huang CK et al (2000) Lithium ion batteries for Mars exploration missions. Electrochim Acta 45:1513–1517

    Google Scholar 

  50. Huang C-K, Sakamoto JS, Wolfenstine J et al (2000) The limits of low-temperature performance of li-ion cells. J Electrochem Soc 147:2893–2896

    Google Scholar 

  51. Smart MC, Ratnakumar BV, Whitcanack LD et al (2003) Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes. J Power Sources 119:349–358

    Google Scholar 

  52. Sides CR, Martin CR (2005) Nanostructured electrodes and the low-temperature performance of Li-ion batteries. Adv Mater 17:125–128

    Google Scholar 

  53. Zhang SS, Xu K, Jow TR (2004) Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim Acta 49:1057–1061

    Google Scholar 

  54. Aurbach D, Markovsky B, Rodkin A et al (2002) An analysis of rechargeable lithium-ion batteries after prolonged cycling. Electrochim Acta 47:1899–1911

    Google Scholar 

  55. Ue M, Mori S (1995) Mobility and Ionic Association of Lithium Salts in a propylene carbonate-ethyl methyl carbonate mixed solvent. J Electrochem Soc 142:2577–2581

    Google Scholar 

  56. EinEli Y, Thomas Stacey R, Koch V (1996) Ethylmethylcarbonate, a promising solvent for li-ion rechargable batteries. J Electrochem Soc 143:L273–L277

    Google Scholar 

  57. Tikhonov K, Koch VR (2006) Li-ion battery electrolytes designed for a wide temperature range. Covalent Associates Inc, Woburn

    Google Scholar 

  58. Xiong GP, Meng CZ, Reifenberger RG et al (2014) A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 26:30–51

    Google Scholar 

  59. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Google Scholar 

  60. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer-Plenum, New York

    Google Scholar 

  61. Lawrence JS, Ashley MCB, Hengst S et al (2009) The PLATO Dome A site-testing observatory: power generation and control systems. Rev Sci Instrum 80:064501

    Google Scholar 

  62. Matthews JP, Smith AJ, Smith ID (1979) A remote unmanned ELF VLF goniometer receiver in Antarctica. Planet Space Sci 27:1391–1401

    Google Scholar 

  63. Huang PH, Pech D, Lin RY et al (2013) On-chip micro-supercapacitors for operation in a wide temperature range. Electrochem Commun 36:53–56

    Google Scholar 

  64. Smart MC, Ratnakumar BV, Chin KB et al (2010) Lithium-ion electrolytes containing ester cosolvents for improved low temperature performance. J Electrochem Soc 157:A1361–A1374

    Google Scholar 

  65. Smart MC, Ratnakumar BV, Surampudi S (2002) Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance. J Electrochem Soc 149:A361–A370

    Google Scholar 

  66. Smart MC, Lucht BL, Dalavi S et al (2012) The effect of additives upon the performance of MCMB/LiNixCo1-xO2 Li-Ion cells containing methyl butyrate-based wide operating temperature range electrolytes. J Electrochem Soc 159:A739–A751

    Google Scholar 

  67. Ding MS (2004) Liquid-solid phase diagrams of ternary and quaternary organic carbonates. J Electrochem Soc 151:A731–A738

    Google Scholar 

  68. Jänes A, Lust E (2006) Use of organic esters as co-solvents for electrical double layer capacitors with low temperature performance. J Electroanal Chem 588:285–295

    Google Scholar 

  69. West WC, Smart MC, Brandon EJ et al (2008) Double-layer capacitor electrolytes using 1,3-dioxolane for low temperature operation. J Electrochem Soc 155:A716

    Google Scholar 

  70. Iwama E, Taberna PL, Azais P et al (2012) Characterization of commercial supercapacitors for low temperature applications. J Power Sources 219:235–239

    Google Scholar 

  71. Janes A, Lust E (2005) Organic carbonate-organic ester-based non-aqueous electrolytes for electrical double layer capacitors. Electrochem Commun 7:510–514

    Google Scholar 

  72. Chiba K, Ueda T, Yamamoto H (2007) Highly conductive electrolytic solution for electric double-layer capacitor using dimethylcarbonate and spiro-type quaternary ammonium salt. Electrochemistry 75:668–671

    Google Scholar 

  73. Chiba K, Ueda T, Yamamoto H (2007) Performance of electrolyte composed of spiro-type quaternary ammonium salt and electric double-layer capacitor using it. Electrochemistry 75:664–667

    Google Scholar 

  74. Korenblit Y, Kajdos A, West WC et al (2012) In situ studies of ion transport in microporous supercapacitor electrodes at ultralow temperatures. Adv Funct Mater 22:1655–1662

    Google Scholar 

  75. Angell CA, Xu W, Yoshizawa M et al (2005) Electrochemical aspects of ionicliquids (Chapter 2). Wiley-Interscience, Hoboken, New Jersey

    Google Scholar 

  76. Tsai W-Y, Lin R, Murali S et al (2013) Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80 °C. Nano Energy 2:403–411

    Google Scholar 

  77. Vellacheri R, Al-Haddad A, Zhao H et al (2014) High performance supercapacitor for efficient energy storage under extreme environmental temperatures. Nano Energy 8:231–237

    Google Scholar 

  78. Su LH, Gong LY, Zhao Y (2014) A new strategy to enhance low-temperature capacitance: combination of two charge-storage mechanisms. Phys Chem Chem Phys 16:681–684

    Google Scholar 

  79. Roldan S, Blanco C, Granda M et al (2011) Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. Angew Chem 50:1699–1701

    Google Scholar 

  80. Senthilkumar ST, Selvan RK, Lee YS et al (2013) Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. J Mater Chem A 1:1086

    Google Scholar 

  81. Roldán S, Granda M, Menéndez R et al (2011) Mechanisms of energy storage in carbon-based supercapacitors modified with a quinoid redox-active electrolyte. J Phys Chem C 115:17606–17611

    Google Scholar 

  82. Yu H, Wu J, Fan L et al (2011) Improvement of the performance for quasi-solid-state supercapacitor by using PVA–KOH–KI polymer gel electrolyte. Electrochim Acta 56:6881–6886

    Google Scholar 

  83. Lota G, Frackowiak E (2009) Striking capacitance of carbon/iodide interface. Electrochem Commun 11:87–90

    Google Scholar 

  84. Su LH, Gong LY, Lu HT et al (2014) Enhanced low-temperature capacitance of MnO2 nanorods in a redox-active electrolyte. J Power Sources 248:212–217

    Google Scholar 

  85. Armand M, Endres F, MacFarlane DR et al (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629

    Google Scholar 

  86. Steele BCH (1999) Fuel-cell technology: running on natural gas. Nature 400:619–621

    Google Scholar 

  87. Kreur KD (2003) Handbook of fuel cells: fundamentals, technology, and applications. Wiley, London

    Google Scholar 

  88. Fuller J, Breda AC, Carlin RT (1997) Ionic liquid-polymer gel electrolytes. J Electrochem Soc 144:L67–L70

    Google Scholar 

  89. Navarra MA, Panero S, Scrosati B (2005) Novel, Ionic-liquid-based, gel-type proton membranes. Electrochem Solid-State Lett 8:A324

    Google Scholar 

  90. Doughty D, Roth EP (2012) A general discussion of Li ion battery safety. Electrochem Soc Interface 21:37–44

    Google Scholar 

  91. Tobishima S-i, Yamaki J-i (1999) A consideration of lithium cell safety. J Power Sources 81–82:882–886

    Google Scholar 

  92. Sacken Uv, Nodwell E, Sundher A et al (1994) Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries. Solid State Ionics 69–70:284–290

    Google Scholar 

  93. Balakrishnan PG, Ramesh R, Kumar TP (2006) Safety mechanisms in lithium-ion batteries. J Power Sources 155:401–414

    Google Scholar 

  94. Henriksen GL, Vissers DR (1994) Lithium-aluminum/iron sulfide batteries. J Power Sources 51:115–128

    Google Scholar 

  95. Robertson AD, West AR, Ritchie AG (1997) Review of crystalline lithium-ion conductors suitable for high temperature batteries. Solid State Ionics 104:1–11

    Google Scholar 

  96. Bohlen O, Kowal J, Sauer DU (2007) Ageing behaviour of electrochemical double layer capacitors Part I. Experimental study and ageing model. J Power Sources 172:468–475

    Google Scholar 

  97. Kurzweil P, Chwistek M (2006) Capacitance determination and abusive aging studies of supercapacitors based on acetonitrile and ionic liquids. In: The 16th international seminar on double layer capacitors. Deerfield Beach, FL

    Google Scholar 

  98. Briat O, Vinassa JM, Bertrand N et al (2010) Contribution of calendar ageing modes in the performances degradation of supercapacitors during power cycling. Microelectron Reliab 50:1796–1803

    Google Scholar 

  99. Umemura T, Mmtani Y, Okamoto T et al (2003) Life expectancy and degradation behavior of electric double layer capacitor Part I. In: 71 h international conference on properties and applications of dielectric materials, Nagoya

    Google Scholar 

  100. Hassane E, Brouji E, Briat O et al (2009) Impact of calendar life and cycling ageing on supercapacitor performance. IEEE Trans Veh Technol 58:3917–3929

    Google Scholar 

  101. Marie-Francoise JN, Gualous H, Berthon A (2006) Supercapacitor thermal- and electrical-behaviour modelling using ANN. IEEE Proc Electr Power Appl 153:255

    Google Scholar 

  102. Oukaour A, Tala-Ighil B, AlSakka M et al (2013) Calendar ageing and health diagnosis of supercapacitor. Electr Power Syst Res 95:330–338

    Google Scholar 

  103. Kotz R, Ruch PW, Cericola D (2010) Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests. J Power Sources 195:923–928

    Google Scholar 

  104. Gualous H, Gallay R, Al Sakka M et al (2012) Calendar and cycling ageing of activated carbon supercapacitor for automotive application. Microelectron Reliab 52:2477–2481

    Google Scholar 

  105. Ayadi M, Briat O, Lallemand R et al (2014) Influence of thermal cycling on supercapacitor performance fading during ageing test at constant voltage. In: IEEE 23rd international symposium on industrial electronics. IEEE, Istanbul

    Google Scholar 

  106. Uno M, Tanaka K (2011) Accelerated ageing testing and cycle life prediction of supercapacitors for alternative battery applications. In: IEEE 33rd international telecommunications energy conference, pp 1–6

    Google Scholar 

  107. Briat O, Lajnef W, Vinassa JM et al (2006) Power cycling tests for accelerated ageing of ultracapacitors. Microelectron Reliab 46:1445–1450

    Google Scholar 

  108. Ruch PW, Cericola D, Foelske A et al (2010) A comparison of the aging of electrochemical double layer capacitors with acetonitrile and propylene carbonate-based electrolytes at elevated voltages. Electrochim Acta 55:2352–2357

    Google Scholar 

  109. Miller JR (2006) Electrochemical capacitor thermal management issues at high-rate cycling. Electrochim Acta 52:1703–1708

    Google Scholar 

  110. Weighall MJ (2003) Test requirements for 42 V battery systems. J Power Sources 116:151–159

    Google Scholar 

  111. Brost RD (2002) 42-V battery requirements from an automaker’s perspective. J Power Sources 107:217–225

    Google Scholar 

  112. Hardwick LJ, Hahn M, Ruch P et al (2006) An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite. Electrochim Acta 52:675–680

    Google Scholar 

  113. Hahn M, Barbieri O, Gallay R et al (2006) A dilatometric study of the voltage limitation of carbonaceous electrodes in aprotic EDLC type electrolytes by charge-induced strain. Carbon 44:2523–2533

    Google Scholar 

  114. Kreczanik P, Venet P, Hijazi A et al (2014) Study of supercapacitor aging and lifetime estimation according to voltage, temperature and RMS current. IEEE Trans Ind Electron 61:4895–4902

    Google Scholar 

  115. Zhong L, Xi X (2009) Recoverable ultracapacitor electrode. United States

    Google Scholar 

  116. Chaari R, Briat O, Vinassa J-M (2014) Capacitance recovery analysis and modelling of supercapacitors during cycling ageing tests. Energy Convers Manage 82:37–45

    Google Scholar 

  117. Paul K, Christian M, Pascal V et al (2009) Constant power cycling for accelerated ageing of supercapacitors. In: 13th European conference on power electronics and applications, pp 1–10

    Google Scholar 

  118. Hahn M, Koetz R, Gallay R et al (2006) Pressure evolution in propylene carbonate based electrochemical double layer capacitors. Electrochim Acta 52:1709–1712

    Google Scholar 

  119. Coquery G, Lallemand R, Kauv J et al (2004) First accelerated ageing cycling test on supercapacitors for transportation applications: methodology, first results. In: 1st European symposium on supercapacitors and applications. Belfort

    Google Scholar 

  120. Diab Y, Venet P, Rojat G (2006) Comparison of the different circuits used for balancing the voltage of supercapacitors: studying performance and lifetime of supercapacitors. In: 2nd European symposium on supercapacitors and applications. Lausanne, Switzerland

    Google Scholar 

  121. Hwang D-H, Park J-W, Jung J-H (2011) A study on the lifetime comparison for electric double layer capacitors using accelerated degradation test. In: International conference on quality, reliability, risk, maintenance and safety engineering, IEEE, pp 302–307

    Google Scholar 

  122. Alcicek G, Gualous H, Venet P et al (2007) Experimental study of temperature effect on ultracapacitor ageing. In: Power electronics and applications, 2007 European conference. aalborg, IEEE

    Google Scholar 

  123. Al Sakka M, Gualous H, Van Mierlo J et al (2009) Thermal modeling and heat management of supercapacitor modules for vehicle applications. J Power Sources 194:581–587

    Google Scholar 

  124. Hammar A, Venet P, Lallemand R et al (2010) Study of accelerated aging of supercapacitors for transport applications. IEEE Trans Ind Electron 57:3972–3979

    Google Scholar 

  125. Linzen D, Buller S, Karden E et al (2005) Analysis and evaluation of charge-balancing circuits on performace, reliability and lifetime of supercapacitor systems. IEEE Trans Ind Appl 41:1135–1141

    Google Scholar 

  126. Nakamura M, Nakanishi M, Yamamoto K (1996) Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors. J Power Sources 60:225–231

    Google Scholar 

  127. Brouji HE, Briat O, Vinassa JM et al (2009) Analysis of the dynamic behavior changes of supercapacitors during calendar life test under several voltages and temperatures conditions. Microelectron Reliab 49:1391–1397

    Google Scholar 

  128. Brousse T, Toupin M, Bélanger D (2004) A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte. J Electrochem Soc 151:A614

    Google Scholar 

  129. Bittner AM, Zhu M, Yang Y et al (2012) Ageing of electrochemical double layer capacitors. J Power Sources 203:262–273

    Google Scholar 

  130. Bohlen O, Kowal J, Dirk Uwe S (2007) Ageing behaviour of electrochemical double layer capacitors Part II. Lifetime simulation model for dynamic applications. J Power Sources 173:626–632

    Google Scholar 

  131. Ike IS, Sigalas I, Iyuke S et al (2015) An overview of mathematical modeling of electrochemical supercapacitors. J Power Sources 273:264–277

    Google Scholar 

  132. Hahn M, Barbieri O, Campana FP et al (2005) Carbon based double layer capacitors with aprotic electrolyte solutions: the possible role of intercalation/insertion processes. Appl Phys A 82:633–638

    Google Scholar 

  133. Dahn JR, Fong R, Spoon MJ (1990) Suppression of staging in lithium-intercalated carbon by disorder in host. Phys Rev B 42:6422–6432

    Google Scholar 

  134. Pietronero L, Strassler S (1981) Bond-length change as a tool to determine charge-transfer and electron-phonon coupling in graphite-intercalation compounds. Phys Rev Lett 47:593–596

    Google Scholar 

  135. Oren Y, Glatt I, Livnat A et al (1985) The electrical double layer charge and associated dimensional changes by high surface area electrodes as detected by moire deflectometry. J Electroanaytical Chem 187:59–71

    Google Scholar 

  136. Morimoto T, Hiratsuka K, Sanada Y et al (1995) Electric double-layer capacitor using organic electrolyte. J Power Sources 60:239–247

    Google Scholar 

  137. Azais P, Duclaux L, Florian P et al (2007) Causes of supercapacitors ageing in organic electrolyte. J Power Sources 171:1046–1053

    Google Scholar 

  138. Kurzweil P (2006) Electrochemical and spectroscopic studies on rated capacitance and aging mechanisms of supercapacitors. In: 2nd European symposium on super capacitors and applications (ESSCAP). Lausanne

    Google Scholar 

  139. Kurzweil P, Fischle HJ (2003) Double-layer capacitor development and manufacture by HYDRA/AEG. In: Proceedings of 13th international seminar on double-layer capacitors, Deerfield Beach, pp 1–11

    Google Scholar 

  140. Kurzweil P, Chwistek M (2008) Electrochemical stability of organic electrolytes in supercapacitors: spectroscopy and gas analysis of decomposition products. J Power Sources 176:555–567

    Google Scholar 

  141. Aurbach D, Zaban A (1994) Impedance spectroscopy of nonactive metal electrodes at low potentials in propylene carbonate solutions. J Electrochem Soc 141:1808–1819

    Google Scholar 

  142. Zhu M, Weber CJ, Yang Y et al (2008) Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes. Carbon 46:1829–1840

    Google Scholar 

  143. Cericola D, Kötz R, Wokaun A (2011) Effect of electrode mass ratio on aging of activated carbon based supercapacitors utilizing organic electrolytes. J Power Sources 196:3114–3118

    Google Scholar 

  144. Kötz R, Hahn M, Ruch P et al (2008) Comparison of pressure evolution in supercapacitor devices using different aprotic solvents. Electrochem Commun 10:359–362

    Google Scholar 

  145. Dixon JW, Ortuzar ME (2002) Ultracapacitors+ DC-DC converters in regenerative braking system. In: IEEE Aerospace and electronic systems magazine, IEEE, pp 16–21

    Google Scholar 

  146. Niu J, Conway BE, Pell WG (2004) Comparative studies of self-discharge by potential decay and float-current measurements at C double-layer capacitor and battery electrodes. J Power Sources 135:332–343

    Google Scholar 

  147. Conway BE, Pell WG, Liu T-C (1997) Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries. J Power Sources 65:53–59

    Google Scholar 

  148. Diab Y, Venet P, Gualous H et al (2009) Self-discharge characterization and modeling of electrochemical capacitor used for power electronics applications. IEEE Trans Power Electron 24:510–517

    Google Scholar 

  149. Kowal J, Avaroglu E, Chamekh F et al (2011) Detailed analysis of the self-discharge of supercapacitors. J Power Sources 196:573–579

    Google Scholar 

  150. Ayadi M, Eddahech A, Briat O et al (2013) Voltage and temperature impacts on leakage current in calendar ageing of supercapacitors. In: 4th international conference on power engineering Istanbul, Turkey, pp 1466–1470

    Google Scholar 

  151. Yao YY, Zhang DL, Xu DG (2006) A study of supercapacitor parameters and characteristics. In: International conference on power systems technology

    Google Scholar 

  152. Kaus M, Kowal J, Sauer DU (2010) Modelling the effects of charge redistribution during self-discharge of supercapacitors. Electrochim Acta 55:7516–7523

    Google Scholar 

  153. Black J, Andreas HA (2009) Effects of charge redistribution on self-discharge of electrochemical capacitors. Electrochim Acta 54:3568–3574

    Google Scholar 

  154. Zhang Y, Yang H (2011) Modeling and characterization of supercapacitors for wireless sensor network applications. J Power Sources 196:4128–4135

    Google Scholar 

  155. Zhang Q, Rong J, Ma D et al (2011) The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes. Energy Environ Sci 4:2152–2159

    Google Scholar 

  156. Ricketts BW, Ton-That C (2000) Self-discharge of carbon-based supercapacitors with organic electrolytes. J Power Sources 89:64–69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Xiong .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Xiong, G., Kundu, A., Fisher, T.S. (2015). Influence of Temperature on Supercapacitor Performance. In: Thermal Effects in Supercapacitors. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-20242-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20242-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20241-9

  • Online ISBN: 978-3-319-20242-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics