Skip to main content

Influence of Temperature on Supercapacitor Components

  • Chapter
  • First Online:
Thermal Effects in Supercapacitors

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

  • 1689 Accesses

Abstract

Thermophysical properties of supercapacitor components determine the thermal behavior of supercapacitors at different application temperatures. A fundamental understanding of the influence of temperature on these properties is necessary to design supercapacitors with high performance for practical applications. Major supercapacitor elements include electrolytes, electrodes (active electrode materials, current collectors, and binders) and separators. As discussed in Chap. 2, supercapacitor electrolytes can be broadly classified into two types: liquid electrolytes and solid-state/polymer gel electrolytes (Xiong et al. in Electroanalysis 26:30–51, 2014 [24]). Conventional liquid electrolytes include: (i) aqueous electrolytes, (ii) organic electrolytes and (iii) ionic liquid electrolytes. The commonly used solid-state polymer gel electrolytes are water-containing (proton-conducting/alkaline), organic solvent-containing, and ionic liquid-containing polymer electrolytes. Active electrode materials for supercapacitors are broadly classified into three categories (Xiong et al. in Electroanalysis 26:30–51, 2014 [24]): (1) carbon materials, (2) conducting polymers, and (3) transition metal oxides. The importance of these electrolytes, electrode materials and separators has been addressed in prior reviews (Xiong et al. in Electroanalysis 26:30–51, 2014 [24], Simon and Gogotsi in Nat Mater 7:845–854, 2008 [39], Ye et al. in J Mater Chem A 1:2719–2743, 2013 [84], Zhang in J Power Sources 164:351–364, 2007 [193], Huang in J Solid State Electr 15:649–662, 2011 [194]). This chapter discusses the effects of temperature on the thermophysical properties of these components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham KM, Jiang Z, Carroll B (1997) Highly conductive PEO-like polymer electrolytes. Chem Mater 9:1978–1988

    Google Scholar 

  2. Chen H, Choi J-H, Salas-de la Cruz D et al (2009) Polymerized ionic liquids: the effect of random copolymer composition on ion conduction. Macromolecules 42:4809–4816

    Google Scholar 

  3. Cohen MH, Turnbull D (1959) Molecular transport in liquids and glasses. J Chem Phys 31:1164

    Google Scholar 

  4. Mayrand-Provencher L, Rochefort D (2009) Influence of the conductivity and viscosity of protic ionic liquids electrolytes on the pseudocapacitance of RuO2 electrodes. J Phys Chem C 113:1632–1639

    Google Scholar 

  5. Zhu Q, Song Y, Zhu X et al (2007) Ionic liquid-based electrolytes for capacitor applications. J Electroanal Chem 601:229–236

    Google Scholar 

  6. Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146

    Google Scholar 

  7. Ohno H, Yoshizawa M (2002) Ion conductive characteristics of ionic liquids prepared by neutralization of alkylimidazoles. Solid State Ionics 154–155:303–309

    Google Scholar 

  8. McEwen AB, Ngo HL, LeCompte K et al (1999) Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications. J Electrochem Soc 146:1687–1695

    Google Scholar 

  9. Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580

    Google Scholar 

  10. Smedley SI (1980) The interpretation of conductivity in liquids. Plenum Press, New York

    Google Scholar 

  11. Walden P (1906) Organic solutions- and ionisation means III. Chapter: internal friction and its connection with conductivity. Z Phys Chem-Stoch Ve 55:207–246

    Google Scholar 

  12. Adams WA, Laidler KJ (1968) Electrical conductivities of quaternary ammonium salts in acetone I. Pressure and temperature effects. Can J Chemistry 46:1977–1988

    Google Scholar 

  13. Xu W, Angell CA (2003) Solvent-free electrolytes with aqueous solution—like conductivities. Science 302:422–425

    Google Scholar 

  14. MacFarlane DR, Forsyth M, Izgorodina EI et al (2009) On the concept of ionicity in ionic liquids. Phys Chem Chem Phys 11:4962–4967

    Google Scholar 

  15. Yoshizawa M, Xu W, Angell CA (2003) Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of delta pK(a) from aqueous solutions. J Am Chem Soc 125:15411–15419

    Google Scholar 

  16. Wu T-Y, Hao L, Chen P-R et al (2013) Ionic conductivity and transporting properties in LiTFSI-doped bis(trifluoromethanesulfonyl)imide-based ionic liquid electrolyte. Int J Electrochem Sci 8:2606–2624

    Google Scholar 

  17. Timperman L, Skowron P, Boisset A et al (2012) Triethylammonium bis(tetrafluoromethylsulfonyl)amide protic ionic liquid as an electrolyte for electrical double-layer capacitors. Phys Chem Chem Phys 14:8199

    Google Scholar 

  18. Vila J, Ginés P, Pico JM et al (2006) Temperature dependence of the electrical conductivity in EMIM-based ionic liquids. Fluid Phase Equilib 242:141–146

    Google Scholar 

  19. Berthier C, Gorecki W, Minier M et al (1983) Microscopic investigation of ionic-conductivity in alkali-metal salts poly(ethylene oxide) adducts. Solid State Ionics 11:91–95

    Google Scholar 

  20. Druger SD, Ratner MA, Nitzan A (1983) Polymeric solid electrolytes—dynamic bond percolation and free-volume models for diffusion. Solid State Ionics 9–10:1115–1120

    Google Scholar 

  21. Gadjourova Z, Andreev YG, Tunstall DP et al (2001) Ionic conductivity in crystalline polymer electrolytes. Nature 412:520–523

    Google Scholar 

  22. Ohno H, Nakai Y, Ito K (1998) Ionic conductivity of molten salts formed by polyethersalt hybrids. Chem Lett 27:15

    Google Scholar 

  23. Yoshizawa M, Ohno H (2001) Synthesis of molten salt-type polymer brush and effect of brush structure on the ionic conductivity. Electrochim Acta 46:1723–1728

    Google Scholar 

  24. Xiong GP, Meng CZ, Reifenberger RG et al (2014) A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 26:30–51

    Google Scholar 

  25. Kurzweil P, Chwistek M (2008) Electrochemical stability of organic electrolytes in supercapacitors: spectroscopy and gas analysis of decomposition products. J Power Sources 176:555–567

    Google Scholar 

  26. Kurzweil P, Chwistek M, Gallay R (2006) Capacitance determination and abusive aging studies of supercapacitors based on acetonitrile and ionic liquids. In: The 16th international seminar on double layer capacitors. Deerfield Beach, FL., USA

    Google Scholar 

  27. Jänes A, Lust E (2006) Use of organic esters as co-solvents for electrical double layer capacitors with low temperature performance. J Electroanal Chem 588:285–295

    Google Scholar 

  28. Kotz R, Hahn M, Gallay R (2006) Temperature behavior and impedance fundamentals of supercapacitors. J Power Sources 154:550–555

    Google Scholar 

  29. Chu A, Braatz P (2002) Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles I. Initial characterization. J Power Sources 112:236–246

    Google Scholar 

  30. Du Pasquier A, Plitz I, Menocal S et al (2003) A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J Power Sources 115:171–178

    Google Scholar 

  31. Perricone E, Chamas M, Lepretre JC et al (2013) Safe and performant electrolytes for supercapacitor. Investigation of esters/carbonate mixtures. J Power Sources 239:217–224

    Google Scholar 

  32. Lu W, Henry K, Turchi C et al (2008) Incorporating ionic liquid electrolytes into polymer gels for solid-state ultracapacitors. J Electrochem Soc 155:A361–A367

    Google Scholar 

  33. Harrop P, Gonzalez F, Zhitomirsky V (2014) Electrochemical double layer supercapacitors: supercapacitors 2014–2024. IdTechEx

    Google Scholar 

  34. McEwen AB, McDevitt SF, Koch VR (1997) Nonaqueous electrolytes for electrochemical capacitors: imidazolium cations and inorganic fluorides with organic carbonates. J Electrochem Soc 144:L84–L86

    Google Scholar 

  35. Hung KS, Masarapu C, Ko TH et al (2009) Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric. J Power Sources 193:944–949

    Google Scholar 

  36. Liu P, Verbrugge M, Soukiazian S (2006) Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors. J Power Sources 156:712–718

    Google Scholar 

  37. Masarapu C, Zeng HF, Hung KH et al (2009) Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 3:2199–2206

    Google Scholar 

  38. Hastak RS, Sivaraman P, Potphode DD et al (2012) All solid supercapacitor based on activated carbon and poly [2,5-benzimidazole] for high temperature application. Electrochim Acta 59:296–303

    Google Scholar 

  39. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Google Scholar 

  40. Azais P, Duclaux L, Florian P et al (2007) Causes of supercapacitors ageing in organic electrolyte. J Power Sources 171:1046–1053

    Google Scholar 

  41. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27

    Google Scholar 

  42. Aurbach D, Gottlieb H (1989) The electrochemical-behavior of selected polar arotic systems. Electrochim Acta 34:141–156

    Google Scholar 

  43. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Google Scholar 

  44. Gu GY, Laura R, Abraham KM (1999) Conductivity-temperature behavior of organic electrolytes. Electrochem Solid St 2:486–489

    Google Scholar 

  45. David RL, Frederisce HPR (1995) CRC handbook of chemistry and physics. CRC Press, New York

    Google Scholar 

  46. Ue M, Ida K, Mori S (1994) Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors. J Electrochem Soc 141:2989–2996

    Google Scholar 

  47. Xia H, Huo C (2011) Electrochemical properties of MnO2/CNT nanocomposite in neutral aqueous electrolyte as cathode material for asymmetric supercapacitors. Int J Smart Nano Mater 1–9. doi:10.1080/19475411.2011.623728

  48. Long JW, Belanger D, Brousse T et al (2011) Asymmetric electrochemical capacitors-stretching the limits of aqueous electrolytes. MRS Bull 36:513–522

    Google Scholar 

  49. Zheng JP, Jow TR (1996) High energy and high power density electrochemical capacitors. J Power Sources 62:155–159

    Google Scholar 

  50. Kay RL, Evans DF (1966) The effect of solvent structure on the mobility of symmetrical ions in aqueous solutions. J Phys Chem 70:2325–2335

    Google Scholar 

  51. Gilliam RJ, Graydon JW, Kirk DW et al (2007) A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. Int J Hydrogen Energ 32:359–364

    Google Scholar 

  52. See DM, White RE (1997) Temperature and concentration dependence of the specific conductivity of concentrated solutions of potassium hydroxide. J Chem Eng Data 42:1266–1268

    Google Scholar 

  53. Kraus CA (1938) The present status of the theory of electrolytes. Bull Am Math Soc 44:361–383

    MathSciNet  Google Scholar 

  54. Anderko A, Lencka MM (1997) Computation of electrical conductivity of multicomponent aqueous systems in wide concentration and temperature ranges. Ind Eng Chem Res 36:1932–1943

    Google Scholar 

  55. Klochko MA, Godneva MM (1959) Electrical conductivity and viscosity of aqueous solutions of NaOH and KOH. J Inorg Chem 4:964–968

    Google Scholar 

  56. Armand M, Endres F, MacFarlane DR et al (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629

    Google Scholar 

  57. Maton C, De Vos N, Stevens CV (2013) Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev 42:5963–5977

    Google Scholar 

  58. Earle MJ, Esperanca JMSS, Gilea MA et al (2006) The distillation and volatility of ionic liquids. Nature 439:831–834

    Google Scholar 

  59. Fernicola A, Scrosati B, Ohno H (2006) Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices. Ionics 12:95–102

    Google Scholar 

  60. Awad WH, Gilman JW, Nyden M et al (2004) Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites. Thermochim Acta 409:3–11

    Google Scholar 

  61. Ngo HL, LeCompte K, Hargens L et al (2000) Thermal properties of imidazolium ionic liquids. Thermochim Acta 357:97–102

    Google Scholar 

  62. Van Valkenburg ME, Vaughn RL, Williams M et al (2005) Thermochemistry of ionic liquid heat-transfer fluids. Thermochim Acta 425:181–188

    Google Scholar 

  63. Kamavaram V, Reddy RG (2008) Thermal stabilities of di-alkylimidazolium chloride ionic liquids. Int J Therm Sci 47:773–777

    Google Scholar 

  64. Wendler F, Todi LN, Meister F (2012) Thermostability of imidazolium ionic liquids as direct solvents for cellulose. Thermochim Acta 528:76–84

    Google Scholar 

  65. Huddleston JG, Visser AE, Reichert WM et al (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164

    Google Scholar 

  66. Lazzari M, Mastragostino M, Soavi F (2007) Capacitance response of carbons in solvent-free ionic liquid electrolytes. Electrochem Commun 9:1567–1572

    Google Scholar 

  67. Arbizzani C, Biso M, Cericola D et al (2008) Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes. J Power Sources 185:1575–1579

    Google Scholar 

  68. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Google Scholar 

  69. Vila J, Varela LM, Cabeza O (2007) Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids. Electrochim Acta 52:7413–7417

    Google Scholar 

  70. Lu XH, Wang GM, Zhai T et al (2012) Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett 12:5376–5381

    Google Scholar 

  71. Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183–197

    Google Scholar 

  72. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42

    Google Scholar 

  73. Chatterjee J, Liu T, Wang B et al (2010) Highly conductive PVA organogel electrolytes for applications of lithium batteries and electrochemical capacitors. Solid State Ionics 181:531–535

    Google Scholar 

  74. Yoo JJ, Balakrishnan K, Huang JS et al (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11:1423–1427

    Google Scholar 

  75. Kaempgen M, Chan CK, Ma J et al (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9:1872–1876

    Google Scholar 

  76. Xiong GP, Meng CZ, Reifenberger RG et al (2014) Graphitic petal electrodes for all-solid-state flexible supercapacitors. Adv Energy Mater 4:1300515(1-9)

    Google Scholar 

  77. El-Kady MF, Kaner RB (2013) Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 4:1475

    Google Scholar 

  78. Lewandowski A, Skorupska K, Malinska J (2000) Novel poly(vinyl alcohol)-KOH-H2O alkaline polymer electrolyte. Solid State Ionics 133:265–271

    Google Scholar 

  79. Mohamad AA, Arof AK (2006) Effect of storage time on the properties of PVA-KOH alkaline solid polymer electrolyte system. Ionics 12:57–61

    Google Scholar 

  80. Kang YJ, Chung H, Kim W (2013) 1.8-V flexible supercapacitors with asymmetric configuration based on manganese oxide, carbon nanotubes, and a gel electrolyte. Synth Met 166:40–44

    Google Scholar 

  81. Patachia S, Florea C, Friedrich C et al (2009) Tailoring of poly(vinyl alcohol) cryogels properties by salts addition. Express Polym Lett 3:320–331

    Google Scholar 

  82. Wang GM, Lu XH, Ling YC et al (2012) LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors. ACS Nano 6:10296–10302

    Google Scholar 

  83. Yang PH, Xiao X, Li YZ et al (2013) Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 7:2617–2626

    Google Scholar 

  84. Ye YS, Rick J, Hwang BJ (2013) Ionic liquid polymer electrolytes. J Mater Chem A 1:2719–2743

    Google Scholar 

  85. Ahn JH, Wang GX, Liu HK et al (2003) Nanoparticle-dispersed PEO polymer electrolytes for Li batteries. J Power Sources 119:422–426

    Google Scholar 

  86. McBreen J, Lee HS, Yang XQ et al (2000) New approaches to the design of polymer and liquid electrolytes for lithium batteries. J Power Sources 89:163–167

    Google Scholar 

  87. Lightfoot P, Mehta MA, Bruce PG (1993) Crystal-structure of the polymer electrolyte poly(ethylene oxide)3licf3so3. Science 262:883–885

    Google Scholar 

  88. Stallworth PE, Greenbaum SG, Croce F et al (1995) Li-7 Nmr and ionic-conductivity studies of gel electrolytes based on poly(methylmethacrylate). Electrochim Acta 40:2137–2141

    Google Scholar 

  89. Abraham KM, Alamgir M (1993) Ambient-temperature rechargeable polymer-electrolyte batteries. J Power Sources 43:195–208

    Google Scholar 

  90. Mohamed NS, Arof AK (2004) Investigation of electrical and electrochemical properties of PVDF-based polymer electrolytes. J Power Sources 132:229–234

    Google Scholar 

  91. Saikia D, Kumar A (2004) Ionic conduction in P(VDF-HFP)/PVDF-(PC plus DEC)-LiClO4 polymer gel electrolytes. Electrochim Acta 49:2581–2589

    Google Scholar 

  92. Rajendran S, Sivakumar M, Subadevi R (2004) Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes. Mater Lett 58:641–649

    Google Scholar 

  93. Yang C-C, Lin S-J (2002) Preparation of composite alkaline polymer electrolyte. Mater Lett 57:873–881

    Google Scholar 

  94. Bohnke O, Rousselot C, Gillet PA et al (1992) Gel electrolyte for solid-state electrochromic cell. J Electrochem Soc 139:1862–1865

    Google Scholar 

  95. Kato Y, Hasumi K, Yokoyama S et al (2002) Polymer electrolyte plasticized with PEG-borate ester having high ionic conductivity and thermal stability. Solid State Ionics 150:355–361

    Google Scholar 

  96. Song M-K, Kim Y-T, Kim YT et al (2003) Thermally stable gel polymer electrolytes. J Electrochem Soc 150:A439

    Google Scholar 

  97. Dias FB, Plomp L, Veldhuis JBJ (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88:169–191

    Google Scholar 

  98. Gao H, Lian K (2014) Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review. RSC Adv 4:33091–33113

    Google Scholar 

  99. Le Bideau J, Viau L, Vioux A (2011) Ionogels, ionic liquid based hybrid materials. Chem Soc Rev 40:907–925

    Google Scholar 

  100. Lu JM, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34:431–448

    Google Scholar 

  101. Yuan JY, Antonietti M (2011) Poly(ionic liquid)s: polymers expanding classical property profiles. Polymer 52:1469–1482

    Google Scholar 

  102. Mecerreyes D (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Polym Sci 36:1629–1648

    Google Scholar 

  103. Green O, Grubjesic S, Lee SW et al (2009) The design of polymeric ionic liquids for the preparation of functional materials. Polym Rev 49:339–360

    Google Scholar 

  104. Ueki T, Watanabe M (2008) Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules 41:3739–3749

    Google Scholar 

  105. Nakajima H, Ohno H (2005) Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polymer 46:11499–11504

    Google Scholar 

  106. Ohno H, Yoshizawa M, Ogihara W (2003) A new type of polymer gel electrolyte: zwitterionic liquid/polar polymer mixture. Electrochim Acta 48:2079–2083

    Google Scholar 

  107. Gray FM (1991) Solid polymer electrolytes. New York

    Google Scholar 

  108. Rajendran S, Sivakumar M, Subadevi R (2003) Effect of salt concentration in poly(vinyl alcohol)-based solid polymer electrolytes. J Power Sources 124:225–230

    Google Scholar 

  109. Mitra S, Shukla AK, Sampath S (2001) Electrochemical capacitors with plasticized gel-polymer electrolytes. J Power Sources 101:213–218

    Google Scholar 

  110. Pradhan DK, Samantaray BK, Choudhary RNP et al (2005) Effect of plasticizer on structure—property relationship in composite polymer electrolytes. J Power Sources 139:384–393

    Google Scholar 

  111. Kreuer KD, Paddison SJ, Spohr E et al (2004) Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem Rev 104:4637–4678

    Google Scholar 

  112. Breslau BR, Miller IF (1971) A hydrodynamic model for electroosmosis. Ind Eng Chem Fundam 10:554–565

    Google Scholar 

  113. Depre L, Ingram M, Poinsignon C et al (2000) Proton conducting sulfon/sulfonamide functionalized materials based on inorganic-organic matrices. Electrochim Acta 45:1377–1383

    Google Scholar 

  114. Ramya CS, Selvasekarapandian S, Savitha T et al (2006) Conductivity and thermal behavior of proton conducting polymer electrolyte based on poly (N-vinyl pyrrolidone). Eur Polym J 42:2672–2677

    Google Scholar 

  115. Lewandowski A, Zajder M, Frackowiak E et al (2001) Supercapacitor based on activated carbon and polyethylene oxide-KOH-H2O polymer electrolyte. Electrochim Acta 46:2777–2780

    Google Scholar 

  116. Zhang GQ, Zhang XG (2003) A novel alkaline Zn/MnO2 cell with alkaline solid polymer electrolyte. Solid State Ionics 160:155–159

    Google Scholar 

  117. Ohno H, Yoshizawa M, Ogihara W (2004) Development of new class of ion conductive polymers based on ionic liquids. Electrochim Acta 50:255–261

    Google Scholar 

  118. Hirao M, Ito K, Ohno H (2000) Preparation and polymerization of new organic molten salts; N-alkylimidazolium salt derivatives. Electrochim Acta 45:1291–1294

    Google Scholar 

  119. Ohno H, Ito K (1998) Room-temperature molten salt polymers as a matrix for fast ion conduction. Chem Lett 751–752

    Google Scholar 

  120. Yoshizawa M, Ogihara W, Ohno H (2002) Novel polymer electrolytes prepared by copolymerization of ionic liquid monomers. Polym Adv Technol 13:589–594

    Google Scholar 

  121. Sekhon SS, Lalia BS, Park J-S et al (2006) Physicochemical properties of proton conducting membranes based on ionic liquid impregnated polymer for fuel cells. J Mater Chem 16:2256

    Google Scholar 

  122. Meneghetti P, Qutubuddin S (2006) Synthesis, thermal properties and applications of polymer-clay nanocomposites. Thermochim Acta 442:74–77

    Google Scholar 

  123. Fan LZ, Nan CW, Zhao SJ (2003) Effect of modified SiO2 on the properties of PEO-based polymer electrolytes. Solid State Ionics 164:81–86

    Google Scholar 

  124. Ahmad S, Bohidar HB, Ahmad S et al (2006) Role of fumed silica on ion conduction and rheology in nanocomposite polymeric electrolytes. Polymer 47:3583–3590

    Google Scholar 

  125. Nan C-W, Smith DM (1991) A.c. electrical properties of composite solid electrolytes. Mater Sci Eng B 10:99–106

    Google Scholar 

  126. Wieczorek W, Raducha D, Zalewska A et al (1998) Effect of salt concentration on the conductivity of PEO-based composite polymeric electrolytes. J Phys Chem B 102:8725–8731

    Google Scholar 

  127. Nan CW, Fan LZ, Lin YH et al (2003) Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Phys Rev Lett 91:266104

    Google Scholar 

  128. Choi B-K, Kim Y-W, Shin K-H (1997) Effects of ceramic fillers on the electrical properties of (PEO)16LiClO4 electrolytes. J Power Sources 68:357–360

    Google Scholar 

  129. Sharma JP, Sekhon SS (2007) Nanodispersed polymer gel electrolytes: conductivity modification with the addition of PMMA and fumed silica. Solid State Ionics 178:439–445

    Google Scholar 

  130. Halla JD, Mamak M, Williams DE et al (2003) Meso-SiO(2)-C(12)EO(10)OH-CF(3)SO(3)H—a novel proton-conducting solid electrolyte. Adv Funct Mater 13:133–138

    Google Scholar 

  131. Kanamura K, Mitsui T, Munakata H (2005) Preparation of composite membrane between a uniform porous silica matrix and injected proton conductive gel polymer. Chem Mater 17:4845–4851

    Google Scholar 

  132. Yang JY, Shen PK, Varcoe J et al (2009) Nafion/polyaniline composite membranes specifically designed to allow proton exchange membrane fuel cells operation at low humidity. J Power Sources 189:1016–1019

    Google Scholar 

  133. Klemens PG, Pedraza DF (1994) Thermal-conductivity of graphite in the basal-plane. Carbon 32:735–741

    Google Scholar 

  134. Balandin AA, Ghosh S, Bao WZ et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Google Scholar 

  135. Hu XJ, Padilla AA, Xu J et al (2006) 3-omega measurements of vertically oriented carbon nanotubes on silicon. J Heat Trans-T Asme 128:1109–1113

    Google Scholar 

  136. Hauge HH, Presser V, Burheim O (2014) In-situ and ex-situ measurements of thermal conductivity of supercapacitors. Energy 78:373–383

    Google Scholar 

  137. Gualous H, Gallay R (2013) Supercapacitor module sizing and heat management under electric, thermal, and aging constraints. Wiley, KGaA

    Google Scholar 

  138. Cacciola G, Restuccia G, Mercadante L (1995) Composites of activated carbon for refrigeration adsorption machines. Carbon 33:1205–1210

    Google Scholar 

  139. Burheim OS, Aslan M, Atchison JS et al (2014) Thermal conductivity and temperature profiles in carbon electrodes for supercapacitors. J Power Sources 246:160–166

    Google Scholar 

  140. Burheim OS, Onsrud MA, Pharoah JG et al (2014) Thermal conductivity, heat sources and temperature profiles of Li-ion batteries. ECS Trans 58:145–171

    Google Scholar 

  141. Alrashdan A, Mayyas AT, Al-Hallaj S (2010) Thermo-mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of Li-ion battery packs. J Mater Process Tech 210:174–179

    Google Scholar 

  142. Robinson F, Cevallos JG, Bar-Cohen A et al (2011) Modeling and validation of a prototype thermally-enhanced polymer heat exchanger. In: Proceedings of the ASME international mechanical engineering congress and exposition, vol 1, pp 597–606

    Google Scholar 

  143. Burheim O, Vie PJS, Pharoah JG et al (2010) Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell. J Power Sources 195:249–256

    Google Scholar 

  144. Burheim OS, Pharoah JG, Lampert H et al (2011) Through-plane thermal conductivity of pemfc porous transport layers. J Fuel Cell Sci Technol 8:021013

    Google Scholar 

  145. Yamaki J, Takatsuji H, Kawamura T et al (2002) Thermal stability of graphite anode with electrolyte in lithium-ion cells. Solid State Ionics 148:241–245

    Google Scholar 

  146. Roth EP, Doughty DH, Franklin J (2004) DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders. J Power Sources 134:222–234

    Google Scholar 

  147. Maleki H, Deng GP, Anani A et al (1999) Thermal stability studies of Li-ion cells and components. J Electrochem Soc 146:3224–3229

    Google Scholar 

  148. Wu ZS, Ren WC, Gao LB et al (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3:411–417

    Google Scholar 

  149. delaPuente G, Pis JJ, Menendez JA et al (1997) Thermal stability of oxygenated functions in activated carbons. J Anal Appl Pyrol 43:125–138

    Google Scholar 

  150. Ragupathy P, Park DH, Campet G et al (2009) Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J Phys Chem C 113:6303–6309

    Google Scholar 

  151. Kim IH, Kim KB (2006) Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications. J Electrochem Soc 153:A383–A389

    Google Scholar 

  152. Jia QX, Song SG, Wu XD et al (1996) Epitaxial growth of highly conductive RuO2 thin films on (100) Si. Appl Phys Lett 68:1069–1071

    Google Scholar 

  153. Sakiyama K, Onishi S, Ishihara K et al (1993) Deposition and properties of reactively sputtered ruthenium dioxide films. J Electrochem Soc 140:834–839

    Google Scholar 

  154. Dmowski W, Egami T, Swider-Lyons KE et al (2002) Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering. J Phys Chem B 106:12677–12683

    Google Scholar 

  155. Hu CC, Chen WC, Chang KH (2004) How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J Electrochem Soc 151:A281–A290

    Google Scholar 

  156. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Google Scholar 

  157. Chandrakanthi N, Careem MA (2000) Thermal stability of polyaniline. Polym Bull 44:101–108

    Google Scholar 

  158. Hagiwara T, Yamaura M, Iwata K (1988) Thermal-stability of polyaniline. Synth Met 25:243–252

    Google Scholar 

  159. Shi S, Xu C, Yang C et al (2013) Flexible supercapacitors. Particuology 11:371–377

    Google Scholar 

  160. Ruiz V, Blanco C, Granda M et al (2007) Influence of electrode preparation on the electrochemical behaviour of carbon-based supercapacitors. J Appl Electrochem 37:717–721

    Google Scholar 

  161. Ruiz V, Blanco C, Granda M et al (2008) Effect of the thermal treatment of carbon-based electrodes on the electrochemical performance of supercapacitors. J Electroanal Chem 618:17–23

    Google Scholar 

  162. Luo J, Glatkowski P, Wallis P (2005) Polymer binders for flexible and transparent conductive coatings containing carbon nanotubes. United States

    Google Scholar 

  163. Maleki H, Deng GP, Kerzhner-Haller I et al (2000) Thermal stability studies of binder materials in anodes for lithium-ion batteries. J Electrochem Soc 147:4470–4475

    Google Scholar 

  164. Guerfi A, Kaneko M, Petitclerc M et al (2007) LiFePO4 water-soluble binder electrode for Li-ion batteries. J Power Sources 163:1047–1052

    Google Scholar 

  165. Li J, Christensen L, Obrovac MN et al (2008) Effect of heat treatment on Si electrodes using polyvinylidene fluoride binder. J Electrochem Soc 155:A234–A238

    Google Scholar 

  166. Maletin Y (2004) Supercapacitor and a method of manufacturing such a supercapacitor. In Google Patents, United States

    Google Scholar 

  167. Zhang SS, Xu K, Jow TR (2004) Evaluation on a water-based binder for the graphite anode of Li-ion batteries. J Power Sources 138:226–231

    Google Scholar 

  168. Chou SL, Pan Y, Wang JZ et al (2014) Small things make a big difference: binder effects on the performance of Li and Na batteries. Phys Chem Chem Phys 16:20347–20359

    Google Scholar 

  169. Ohta N, Sogabe T, Kuroda K (2001) A novel binder for the graphite anode of rechargeable lithium ion batteries for the improvement of reversible capacity. Carbon 39:1421–1446

    Google Scholar 

  170. Oskam G, Searson PC, Jow TR (1999) Sol-gel synthesis of carbon/silica gel electrodes for lithium intercalation. Electrochem Solid-State Lett 2:610–612

    Google Scholar 

  171. Gamby J, Taberna PL, Simon P et al (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101:109–116

    Google Scholar 

  172. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269

    Google Scholar 

  173. Hsieh C-T, Teng H (2002) Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon 40:667–674

    Google Scholar 

  174. Chen W, Rakhi RB, Hu LB et al (2011) High-performance nanostructured supercapacitors on a sponge. Nano Lett 11:5165–5172

    Google Scholar 

  175. Zhang GQ, Wu HB, Hoster HE et al (2012) Single-crystalline NiCO2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energ Environ Sci 5:9453–9456

    Google Scholar 

  176. Xiong GP, Hembram KPSS, Reifenberger RG et al (2013) MnO2-coated graphitic petals for supercapacitor electrodes. J Power Sources 227:254–259

    Google Scholar 

  177. Liu B, Shioyama H, Jiang H et al (2010) Metal organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitors. Carbon 48:456–463

    Google Scholar 

  178. Seo DH, Han ZJ, Kumar S et al (2013) Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance. Adv Energy Mater 3:1316–1323

    Google Scholar 

  179. Pech D, Brunet M, Durou H et al (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5:651–654

    Google Scholar 

  180. Picóa F, Rojoa JM, Sanjuán ML et al (2011) Flexible nano-felts of carbide-derived carbon with ultra-high power handling capability. J Electrochem Soc 151:A831–A837

    Google Scholar 

  181. Hong MS, Lee SH, Kim SW (2002) Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor. Electrochem Solid State 5:A227–A230

    Google Scholar 

  182. Brousse T, Taberna PL, Crosnier O et al (2007) Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. J Power Sources 173:633–641

    Google Scholar 

  183. Ji J, Zhang LL, Ji H et al (2013) Nanoporous Ni(OH)2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7:6237–6243

    MathSciNet  Google Scholar 

  184. Portet C, Taberna PL, Simon P et al (2004) Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications. Electrochim Acta 49:905–912

    Google Scholar 

  185. Balducci A, Dugas R, Taberna PL et al (2007) High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. J Power Sources 165:922–927

    Google Scholar 

  186. Taberna L, Mitra S, Poizot P et al (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5:567–573

    Google Scholar 

  187. Fischer AE, Pettigrew KA, Rolison DR et al (2007) Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors. Nano Lett 7:281–286

    Google Scholar 

  188. Bao LH, Zang JF, Li XD (2011) Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett 11:1215–1220

    Google Scholar 

  189. Meng C, Liu C, Chen L et al (2010) Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett 10:4025–4031

    Google Scholar 

  190. Wu Q, Xu YX, Yao ZY et al (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970

    Google Scholar 

  191. Bhuvana T, Kumar A, Sood A et al (2010) Contiguous petal-like carbon nanosheet outgrowths from graphite fibers by plasma CVD. ACS Appl Mater Inter 2:644–648

    Google Scholar 

  192. Orendorff CJ (2012) The role of separators in lithium-ion cell safety. Elecrochem Soc Interface 21:61–65

    Google Scholar 

  193. Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364

    Google Scholar 

  194. Huang XS (2011) Separator technologies for lithium-ion batteries. J Solid State Electr 15:649–662

    Google Scholar 

  195. Arora P, Zhang ZM (2004) Battery separators. Chem Rev 104:4419–4462

    Google Scholar 

  196. Bohnstedt W (2004) A review of future directions in automotive battery separators. J Power Sources 133:59–66

    Google Scholar 

  197. Uchida I, Ishikawa H, Mohamedi M et al (2003) AC-impedance measurements during thermal runaway process in several lithium/polymer batteries. J Power Sources 119:821–825

    Google Scholar 

  198. Cho TH, Tanaka M, Onishi H et al (2008) Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery. J Power Sources 181:155–160

    Google Scholar 

  199. Golebiewski J, Galeski A (2007) Thermal stability of nanoclay polypropylene composites by simultaneous DSC and TGA. Compos Sci Technol 67:3442–3447

    Google Scholar 

  200. Laman FC, Gee MA, Denovan J (1993) Impedance studies for separators in rechargeable lithium batteries. J Electrochem Soc 140:L51–L53

    Google Scholar 

  201. Koksbang R, Olsen II, Shackle D (1994) Review of hybrid polymer electrolytes and rechargeable lithium batteries. Solid State Ionics 69:320–335

    Google Scholar 

  202. Andriyko YO, Reischl W, Nauer GE (2009) Trialkyl-substituted imidazolium-based ionic liquids for electrochemical applications: basic physicochemical properties. J Chem Eng Data 54:855–860

    Google Scholar 

  203. Yu HJ, Tang QQ, Wu JH et al (2012) Using eggshell membrane as a separator in supercapacitor. J Power Sources 206:463–468

    Google Scholar 

  204. Borges RS, Reddy ALM, Rodrigues MTF et al (2013) Supercapacitor operating at 200 degrees celsius. Sci Rep-Uk 3. doi:10.1038/srep02572

  205. Tonurist K, Janes A, Thomberg T et al (2009) Influence of mesoporous separator properties on the parameters of electrical double-layer capacitor single cells. J Electrochem Soc 156:A334–A342

    Google Scholar 

  206. Tonurist K, Thomberg T, Janes A et al (2013) Specific performance of supercapacitors at lower temperatures based on different separator materials. J Electrochem Soc 160:A449–A457

    Google Scholar 

  207. Tokuda H, Hayamizu K, Ishii K et al (2005) Physicochemical properties and structures of room temperature ionic liquids 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109:6103–6110

    Google Scholar 

  208. Pandey GP, Hashmi SA (2009) Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. J Power Sources 187:627–634

    Google Scholar 

  209. Helen M, Viswanathan B, Murthy SS (2006) Fabrication and properties of hybrid membranes based on salts of heteropolyacid, zirconium phosphate and polyvinyl alcohol. J Power Sources 163:433–439

    Google Scholar 

  210. Ramani V, Kunz HR, Fenton JM (2006) Metal dioxide supported heteropolyacid/nafion (R) composite membranes for elevated temperature/low relative humidity PEFC operation. J Membrane Sci 279:506–512

    Google Scholar 

  211. Tamada M, Ueda S, Hayashi T et al (2008) Thermally stable polymer gel electrolytes composed of branched polyimide and ionic liquid/zwitterion mixture prepared by in situ polycondensation. Chem Lett 37:86–87

    Google Scholar 

  212. Liu XH, Wen ZB, Wu DB et al (2014) Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors. J Mater Chem A 2:11569–11573

    Google Scholar 

  213. Yan F, Yu S, Zhang X et al (2009) Enhanced proton conduction in polymer electrolyte membranes as sysnthesized by polymerization of protic ionic liquid-based microemulsions. Chem Mater 21:1480–1484

    Google Scholar 

  214. Susan MABH, Kaneko T, Noda A et al (2005) Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J Am Chem Soc 127:4976–4983

    Google Scholar 

  215. Che JW, Cagin T, Goddard WA (2000) Thermal conductivity of carbon nanotubes. Nanotechnology 11:65–69

    Google Scholar 

  216. Hauge HH (2014) Calorimetry and exergy analysis in the context of renewable energy devices. In: Department of chemistry, 172. Norwegian University of Science and Technology, Faculty of Natural Sciences and Technology

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Xiong .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Xiong, G., Kundu, A., Fisher, T.S. (2015). Influence of Temperature on Supercapacitor Components. In: Thermal Effects in Supercapacitors. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-20242-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20242-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20241-9

  • Online ISBN: 978-3-319-20242-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics