Skip to main content

Thermal Considerations for Supercapacitors

  • Chapter
  • First Online:
Thermal Effects in Supercapacitors

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

  • 1615 Accesses

Abstract

Energy loss in the form of heat generation is inevitable in supercapacitors because coulombic efficiencies are always less than 100 %. The rate of heat generation depends on structural design, power profiles (e.g., charge/discharge rates), and other factors such as voltage imbalances among individual cells within a module. This heat generation causes a temperature rise within the cells. For instance, voltage imbalances can occur in a series string of supercapacitor modules, resulting in temperature differences among the cells. Reliability issues arise when some cells with higher temperatures fail sooner than others, since high temperature generally causes shorter life for the cells. Thus thermal management of supercapacitor systems is important for practical applications. This chapter provides a general discussion of thermal management in supercapacitors, including different practical applications, thermophysical properties of supercapacitor components, thermal transport mechanisms, thermal characterization techniques, performance metrics, and cooling systems. This chapter paves the way for the following chapters that address thermal influences on supercapacitor components and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mars P (2011) A survey of supercapacitors, their applications, power design with supercapacitors, and future directions. In: IEEE technology time machine symposium on technologies beyond 2020, pp 1–2. IEEE, HongKong

    Google Scholar 

  2. Mohseni P, Najafi K, Eliades SJ et al (2005) Wireless multichannel biopotential recording using an integrated FM telemetry circuit. IEEE Trans Neur Sys Rehabil 13:263–271

    Article  Google Scholar 

  3. Nieder A (2000) Miniature stereo radio transmitter for simultaneous recording of multiple single-neuron signals from behaving owls. J Neurosci Methods 101:157–164

    Article  Google Scholar 

  4. Hautefeuille M, O’Mahony C, O’Flynn B et al (2008) A MEMS-based wireless multisensor module for environmental monitoring. Microelectron Reliab 48:906–910

    Article  Google Scholar 

  5. Albano F, Lin YS, Blaauw D et al (2008) A fully integrated microbattery for an implantable microelectromechanical system. J Power Sources 185:1524–1532

    Article  Google Scholar 

  6. Jones SD, Akridge JR (1996) A microfabricated solid-state secondary Li battery. Solid State Ionics 86–8:1291–1294

    Article  Google Scholar 

  7. Lin J, Zhang CG, Yan Z et al (2013) 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett 13:72–78

    Article  Google Scholar 

  8. Kurra N, Alhebshi NA, Alshareef HN (2015) Microfabricated pseudocapacitors using Ni(OH)2 electrodes exhibit remarkable volumetric capacitance and energy density. Adv Energy Mater 5:1401303

    Article  Google Scholar 

  9. Morse JD (2007) Micro-fuel cell power sources. Int J Energ Res 31:576–602

    Article  Google Scholar 

  10. Arico AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  11. Long JW, Dunn B, Rolison DR et al (2004) Three-dimensional battery architectures. Chem Rev 104:4463–4492

    Article  Google Scholar 

  12. Roberts M, Johns P, Owen J et al (2011) 3D lithium ion batteries-from fundamentals to fabrication. J Mater Chem 21:9876–9890

    Article  Google Scholar 

  13. Xiong GP, Meng CZ, Reifenberger RG et al (2014) A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 26:30–51

    Article  Google Scholar 

  14. Gualous H, Bouquain D, Berthon A et al (2003) Experimental study of supercapacitor serial resistance and capacitance variations with temperature. J Power Sources 123:86–93

    Article  Google Scholar 

  15. Maton C, De Vos N, Stevens CV (2013) Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev 42:5963–5977

    Article  Google Scholar 

  16. Arbizzani C, Biso M, Cericola D et al (2008) Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes. J Power Sources 185:1575–1579

    Article  Google Scholar 

  17. Yuan CZ, Zhang XG, Wu QF et al (2006) Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon with alkaline polymer gel electrolyte. Solid State Ionics 177:1237–1242

    Article  Google Scholar 

  18. Kittel C (1996) Introduction to solid state physics. Wiley, London

    Google Scholar 

  19. White MW (2006) Viscous fluid flow. McGraw-Hill, New York

    Google Scholar 

  20. Anouti M, Couadou E, Timperman L et al (2012) Protic ionic liquid as electrolyte for high-densities electrochemical double layer capacitors with activated carbon electrode material. Electrochim Acta 64:110–117

    Article  Google Scholar 

  21. Abramowitz R, Yalkowsky SH (1990) Melting point, boiling point, and symmetry. Pharmaceut Res 7:942–947

    Google Scholar 

  22. Mirkhani SA, Gharagheizi F, Ilani-Kashkouli P et al (2012) Determination of the glass transition temperature of ionic liquids: A molecular approach. Thermochim Acta 543:88–95

    Article  Google Scholar 

  23. Gharagheizi F, Eslamimanesh A, Mohammadi AH et al (2011) QSPR approach for determination of parachor of non-electrolyte organic compounds. Chem Eng Sci 66:2959–2967

    Article  Google Scholar 

  24. Kosmulski M, Gustafsson J, Rosenholm JB (2004) Thermal stability of low temperature ionic liquids revisited. Thermochim Acta 412:47–53

    Article  Google Scholar 

  25. Van Valkenburg ME, Vaughn RL, Williams M et al (2005) Thermochemistry of ionic liquid heat-transfer fluids. Thermochim Acta 425:181–188

    Article  Google Scholar 

  26. Fox DM, Gilman JW, De Long HC et al (2005) TGA decomposition kinetics of 1-butyl-2,3-dimethylimidazolium tetrafluoroborate and the thermal effects of contaminants. J Chem Thermodyn 37:900–905

    Article  Google Scholar 

  27. Baranyai KJ, Deacon GB, Macfarlane DR et al (2004) Thermal degradation of ionic liquids at elevated temperatures. Aust J Chem 145–147

    Google Scholar 

  28. Kroon MC, Buijs W, Peters CJ et al (2007) Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids. Thermochim Acta 465:40–47

    Article  Google Scholar 

  29. Gualous H, Louahlia-Gualous H, Gallay R et al (2009) Supercapacitor thermal modeling and characterization in transient state for industrial applications. IEEE Trans Ind Appl 45

    Google Scholar 

  30. Coats AW, Redfern JP (1963) Thermogravimetric Analysis. A review. Analyst 88:906–924

    Article  Google Scholar 

  31. McEwen AB, McDevitt SF, Koch VR (1997) Nonaqueous electrolytes for electrochemical capacitors: Imidazolium cations and inorganic fluorides with organic carbonates. J Electrochem Soc 144:L84–L86

    Article  Google Scholar 

  32. Liu XH, Wen ZB, Wu DB et al (2014) Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors. J Mater Chem A 2:11569–11573

    Article  Google Scholar 

  33. Lu W, Henry K, Turchi C et al (2008) Incorporating ionic liquid electrolytes into polymer gels for solid-state ultracapacitors. J Electrochem Soc 155:A361–A367

    Article  Google Scholar 

  34. Ragupathy P, Park DH, Campet G et al (2009) Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J Phys Chem C 113:6303–6309

    Article  Google Scholar 

  35. Griffiths PR, De Haseth JA (2007) Fourier transform infrared spectrometry. Wiley, London

    Google Scholar 

  36. Chernushevich IV, Loboda AV, Thomson BA (2001) An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom JMS 36:849–865

    Article  Google Scholar 

  37. Chowdhury A, Thynell ST (2006) Confined rapid thermolysis/FTIR/ToF studies of imidazolium-based ionic liquids. Thermochim Acta 443:159–172

    Article  Google Scholar 

  38. Höhne G, Hemminger W, Flammersheim HJ (2003) Differential scanning calorimetry. Springer, Berlin

    Google Scholar 

  39. Kotz R, Hahn M, Gallay R (2006) Temperature behavior and impedance fundamentals of supercapacitors. J Power Sources 154:550–555

    Article  Google Scholar 

  40. Wang H, Xu ZW, Kohandehghan A et al (2013) Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7:5131–5141

    Article  Google Scholar 

  41. Miller JR (2006) Electrochemical capacitor thermal management issues at high-rate cycling. Electrochim Acta 52:1703–1708

    Article  Google Scholar 

  42. Al Sakka M, Gualous H, Van Mierlo J et al (2009) Thermal modeling and heat management of supercapacitor modules for vehicle applications. J Power Sources 194:581–587

    Article  Google Scholar 

  43. Xia ZP, Zhou CQ, Shen D et al (2014) Study on the cooling system of super-capacitors for hybrid electric vehicle. Appl Mech Mater 492:37–42

    Article  Google Scholar 

  44. Wilk MD, Stone KT (2004) Ultracapacitor energy storage cell pack and methods of assembling and cooling the same. Google Patents

    Google Scholar 

  45. Nguyen VD, Smith AJ, Stone KT et al (2010) Energy storage pack cooling system and method. Google Patents

    Google Scholar 

  46. Myers NP, Trent TC (2013) Cooling system and method. Google Patents

    Google Scholar 

  47. Yatskov AI, Marsala J (2011) Cooling system and method. Google Patents

    Google Scholar 

  48. Wilk MD, T.Stone K, Quintana NAV (2009) High-power ultracapacitor energy storage pack and method of use. Patent Citation, ISE Corporation, Poway CA, United States

    Google Scholar 

  49. Miller JR, Burke AF (2008) Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem Soc Interface 17:53–57

    Google Scholar 

  50. Hallaj SA, Selman JR (2000) A novel thermal management system for electric vehicle batteries using phase-change material. J Electrochem Soc 147:3231–3236

    Article  Google Scholar 

  51. Kizilel R, Lateef A, Sabbah R et al (2008) Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature. J Power Sources 183:370–375

    Article  Google Scholar 

  52. Khateeb SA, Farid MM, Selman JR et al (2004) Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter. J Power Sources 128:292–307

    Article  Google Scholar 

  53. Michaud F, Mondieig D, Soubzmaigne V et al (1996) A sytem with a less than 2 degree melting window in the range within −31°C and −45°C chlorobenzene-bromobenzene. Mater Res Bull 31:943–950

    Article  Google Scholar 

  54. Hawes DW, Feldman D (1992) Absorption of phase change materials in concrete. Sol Energy Mater Sol Cells 27:91–101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Xiong .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Xiong, G., Kundu, A., Fisher, T.S. (2015). Thermal Considerations for Supercapacitors. In: Thermal Effects in Supercapacitors. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-20242-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20242-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20241-9

  • Online ISBN: 978-3-319-20242-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics