Skip to main content

Thermal Management in Electrochemical Energy Storage Systems

  • Chapter
  • First Online:
Thermal Effects in Supercapacitors

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

Thermal management of electrochemical energy storage systems is essential for their high performance over suitably wide temperature ranges. An introduction of thermal management in major electrochemical energy storage systems is provided in this chapter. The general performance metrics and critical thermal characteristics of supercapacitors, lithium ion batteries, and fuel cells are discussed as a means of setting the stage for more detailed analysis in later chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269

    Article  Google Scholar 

  2. Sato N (2001) Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles. J Power Sources 99:70–77

    Article  Google Scholar 

  3. Xiong GP, Meng CZ, Reifenberger RG et al (2014) A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 26:30–51

    Article  Google Scholar 

  4. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91:37–50

    Article  Google Scholar 

  5. Armand M, Endres F, MacFarlane DR et al (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629

    Article  Google Scholar 

  6. Bohlen O, Kowal J, Sauer DU (2007) Ageing behaviour of electrochemical double layer capacitors: part I. Experimental study and ageing model. J Power Sources 172:468–475

    Article  Google Scholar 

  7. Shukla AK, Sampath S, Vijayamohanan K (2000) Electrochemical supercapacitors: energy storage beyond batteries. Curr Sci India 79:1656–1661

    Google Scholar 

  8. Largeot C, Portet C, Chmiola J et al (2008) Relation between the ion size and pore size for an electric double-layer. J Am Chem Soc 130:2730–2735

    Article  Google Scholar 

  9. Bandhauer TM, Garimella S, Fuller TF (2011) A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc 158:R1–R25

    Article  Google Scholar 

  10. Kizilel R, Sabbah R, Selman JR et al (2009) An alternative cooling system to enhance the safety of Li-ion battery packs. J Power Sources 194:1105–1112

    Article  Google Scholar 

  11. Wang QS, Ping P, Zhao XJ et al (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224

    Article  Google Scholar 

  12. Zhang SS, Xu K, Jow TR (2002) A new approach toward improved low temperature performance of Li-ion battery. Electrochem Commun 4:928–932

    Article  Google Scholar 

  13. Shiao HC, Chua D, Lin HP et al (2000) Low temperature electrolytes for Li-ion PVDF cells. J Power Sources 87:167–173

    Article  Google Scholar 

  14. Campana FP, Hahn M, Foelske A et al (2006) Intercalation into and film formation on pyrolytic graphite in a supercapacitor-type electrolyte (C2H5)4NBF4/propylene carbonate. Electrochem Commun 8:1363–1368

    Article  Google Scholar 

  15. Chu A, Braatz P (2002) Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles: I. Initial characterization. J Power Sources 112:236–246

    Article  Google Scholar 

  16. Musolino V, Tironi E (2010) A comparison of supercapacitor and high-power lithium batteries. In: Electrical systems for aircraft, railway and ship propulsion, pp 1–6, Bologna

    Google Scholar 

  17. Obreja VVN (2007) On the performance of commercial supercapacitors as storage devices for renewable electrical energy sources. In: Proceedings of international conference on renewable energies and power quality (ICREPQ07)

    Google Scholar 

  18. Chen HS, Cong TN, Yang W et al (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19:291–312

    Article  Google Scholar 

  19. Chalk SG, Miller JE (2006) Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. J Power Sources 159:73–80

    Article  Google Scholar 

  20. Yi JS, Nguyen TV (1998) An along-the-channel model for proton exchange membrane fuel cells. J Eletrochem Soc 145:1149–1159

    Article  Google Scholar 

  21. Shao Y, Yin G, Wang Z et al (2007) Proton exchange membrane fuel cell from low temperature to high temperature: material challenges. J Power Sources 167:235–242

    Article  Google Scholar 

  22. Nguyen TV, White RE (1993) A water and heat management model for proton-exchange-membrane fuel-cells. J Electrochem Soc 140:2178–2186

    Article  Google Scholar 

  23. Vanderborgh NE, Hedstrom J, Huff JB (1990) In: Proceedings of 25th IECEC, 3.149

    Google Scholar 

  24. Fuller TF, Newman J (1993) Water and Thermal Management in solid-polymer-electrolyte fuel cells. J Electrochem Soc 140:1218–1225

    Article  Google Scholar 

  25. Rao ZH, Wang SF (2011) A review of power battery thermal energy management. Renew Sust Energ Rev 15:4554–4571

    Article  Google Scholar 

  26. Wang W, Luo QT, Li B et al (2013) Recent progress in redox flow battery research and development. Adv Funct Mater 23:970–986

    Article  MathSciNet  Google Scholar 

  27. Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA et al (2011) Progress in flow battery research and development. J Electrochem Soc 158:R55–R79

    Article  Google Scholar 

  28. Rychcik M, Skyllas-Kazacos M (1988) Characteristics of a new all-vanadium redox flow battery. J Power Sources 22:59–67

    Article  Google Scholar 

  29. Narayan SR, Valdez TI (2008) High-energy portable fuel cell power sources. Electrochem Soc Interface 17:40–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Xiong .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Xiong, G., Kundu, A., Fisher, T.S. (2015). Thermal Management in Electrochemical Energy Storage Systems. In: Thermal Effects in Supercapacitors. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-20242-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20242-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20241-9

  • Online ISBN: 978-3-319-20242-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics