Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 333 Accesses

Abstract

Quantum chromodynamics is responsible for some of the most complex and interesting phenomena observed in nuclear physics. Two of which stand out in particular are confinement and asymptotic freedom. The structure of the colour SU(3) gauge group means that as the energy scale increases, the quark-gluon coupling vanishes. This is asymptotic freedom and it results in hadrons appearing to consist of essentially free, point-like particles at large momenta. At the other end of the scale, confinement occurs. The quark-gluon coupling grows with decreasing energy—equivalent to large distances—causing the potential between quarks to increase. At large separation, the energy required to break the bond between quarks is sufficient to create a \(q \bar{q}\) pair out of the vacuum. Consequently, quarks and gluons cannot be observed in isolation, but only in the form of bound, ‘colour-singlet’ states. Figure 4.1 illustrates the behaviour of the strong coupling constant, \(\alpha _s\), as a function of momentum transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The boundary between the perturbative and nonperturbative regions is somewhat loosely defined and later discussions in Chap. 8 on the moments of structure function will touch on this issue.

  2. 2.

    Although there appears to be a \(1/Q^2\) dependence in the second term of Eq. (4.25), by expanding out the logarithm one can check that the cross section vanishes as \(Q^2 \rightarrow 0\).

  3. 3.

    In their analysis, GHRM take the background uncertainty from the model which gives the largest error i.e., Model II.

References

  1. J.I. Friedman, H.W. Kendall, Deep inelastic electron scattering. Ann. Rev. Nucl. Part. Sci. 22, 203–254 (1972)

    Article  ADS  Google Scholar 

  2. E.D. Bloom et al., High-Energy Inelastic e p Scattering at 6-Degrees and 10-Degrees. Phys. Rev. Lett. 23, 930–934 (1969)

    Article  ADS  Google Scholar 

  3. S. Bethke, \(\alpha _s\) 2002. Nucl. Phys. Proc. Suppl. 121, 74–81 (2003)

    Article  ADS  Google Scholar 

  4. J. Beringer et al., Review of Particle Physics (RPP). Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  5. R.P. Feynman, Very high-energy collisions of hadrons. Phys. Rev. Lett. 23, 1415–1417 (1969)

    Article  ADS  Google Scholar 

  6. C.G. Callan, D.J. Gross, High-energy electroproduction and the constitution of the electric current. Phys. Rev. Lett. 22, 156–159 (1969)

    Article  ADS  Google Scholar 

  7. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189–285 (2009)

    Article  ADS  Google Scholar 

  8. Y. Liang et al., Measurement of R = sigma(L) / sigma(T) and the separated longitudinal and transverse structure functions in the nucleon resonance region (2004). arXiv:nucl-ex/0410027

  9. M.E. Christy, P.E. Bosted, Empirical fit to precision inclusive electron-proton cross- sections in the resonance region. Phys. Rev. C 81, 055213 (2010)

    Article  ADS  Google Scholar 

  10. P.E. Bosted, M.E. Christy, Empirical fit to inelastic electron-deuteron and electron-neutron resonance region transverse cross-sections. Phys. Rev. C 77, 065206 (2008)

    Article  ADS  Google Scholar 

  11. M. Gorchtein, C.J. Horowitz, M.J. Ramsey-Musolf, Model-dependence of the \(\gamma Z\) dispersion correction to the parity-violating asymmetry in elastic \(ep\) scattering. Phys. Rev. C 84, 015502 (2011)

    Article  ADS  Google Scholar 

  12. B.C. Rislow, C.E. Carlson, Contributions from \(\gamma Z\) box diagrams to parity violating elastic \(ep\) scattering. Phys. Rev. D 83, 113007 (2011)

    Article  ADS  Google Scholar 

  13. C.E. Carlson, B.C. Rislow, Resonance region structure functions and parity violating deep inelastic scattering. Phys. Rev. D 85, 073002 (2012)

    Article  ADS  Google Scholar 

  14. A. Sibirtsev, P.G. Blunden, W. Melnitchouk, A.W. Thomas, gamma-Z corrections to forward-angle parity-violating e-p scattering. Phys. Rev. D 82, 013011 (2010)

    Article  ADS  Google Scholar 

  15. N. Nikolaev, B.G. Zakharov, Pomeron structure function and diffraction dissociation of virtual photons in perturbative QCD. Z. Phys. C 53, 331–346 (1992)

    Article  ADS  Google Scholar 

  16. N.N. Nikolaev, B.G. Zakharov, Color transparency and scaling properties of nuclear shadowing in deep inelastic scattering. Z. Phys. C 49, 607–618 (1991)

    Article  Google Scholar 

  17. A.H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL pomeron. Nucl. Phys. B 415, 373–385 (1994)

    Article  ADS  Google Scholar 

  18. G. Cvetic, D. Schildknecht, B. Surrow, M. Tentyukov, The Generalized vector dominance color dipole picture of deep inelastic scattering at low x. Eur. Phys. J. C 20, 77–91 (2001)

    Article  ADS  MATH  Google Scholar 

  19. J.R. Forshaw, R. Sandapen, G. Shaw, Further success of the colour dipole model. JHEP 0611, 025 (2006)

    Article  ADS  Google Scholar 

  20. G. Cvetic, D. Schildknecht, A. Shoshi, Deep inelastic scattering, QCD, and generalized vector dominance. Eur. Phys. J. C 13, 301–314 (2000)

    Article  ADS  Google Scholar 

  21. L.N. Lipatov, Small x physics in perturbative QCD. Phys. Rept. 286, 131–198 (1997)

    Article  ADS  Google Scholar 

  22. P.D.B. Collins, An Introduction to Regge Theory and High-Energy Physics (Cambridge University Press, New York, 1977)

    Book  Google Scholar 

  23. A. Donnachie, P.V. Landshoff, Total cross-sections. Phys. Lett. B 296, 227–232 (1992)

    Article  ADS  Google Scholar 

  24. A. Capella, A. Kaidalov, C. Merino, J.T. Thanh, Van, Structure functions and low x physics. Phys. Lett. B 337, 358–366 (1994)

    Article  ADS  MATH  Google Scholar 

  25. J. Alwall, G. Ingelman, Interpretation of electron proton scattering at low Q**2. Phys. Lett. B 596, 77–83 (2004)

    Article  ADS  Google Scholar 

  26. J.J. Sakurai, D. Schildknecht, Generalized vector dominance and inelastic electron–proton scattering. Phys. Lett. B 40, 121–126 (1972)

    Article  ADS  Google Scholar 

  27. K. Nakamura et al., Review of particle physics (RPP). J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  28. M. Gorchtein, C.J. Horowitz, Dispersion gamma Z-box correction to the weak charge of the proton. Phys. Rev. Lett. 102, 091806 (2009)

    Article  ADS  Google Scholar 

  29. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Uncertainties of predictions from parton distributions. 1: Experimental errors. Eur. Phys. J. C 28, 455–473 (2003)

    Article  ADS  Google Scholar 

  30. L. Tiator, D. Drechsel, S.S. Kamalov, M. Vanderhaeghen, Electromagnetic excitation of nucleon resonances. Eur. Phys. J. ST 198, 141–170 (2011)

    Article  Google Scholar 

  31. H.L. Lai et al., New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan L. Hall .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hall, N.L. (2016). Structure Functions. In: Hadron Structure in Electroweak Precision Measurements. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-20221-1_4

Download citation

Publish with us

Policies and ethics