Skip to main content

A Scalable, Linear-Time Dynamic Cutoff Algorithm for Molecular Dynamics

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9137))

Included in the following conference series:

Abstract

Recent results on supercomputers show that beyond 65 K cores, the efficiency of molecular dynamics simulations of interfacial systems decreases significantly. In this paper, we introduce a dynamic cutoff method (DCM) for interfacial systems of arbitrarily large size. The idea consists in adopting a cutoff-based method in which the cutoff is chosen on a particle-by-particle basis, according to the distance from the interface. Computationally, the challenge is shifted from the long-range solvers to the detection of the interfaces and to the computation of the particle-interface distances. For these tasks, we present linear-time algorithms that do not rely on global communication patterns. As a result, the DCM algorithm is suited for large systems of particles and massively parallel computers. To demonstrate its potential, we integrated DCM into the LAMMPS open-source molecular dynamics package, and simulated large liquid/vapor systems on two supercomputers: SuperMuc and JUQUEEN. In all cases, the accuracy of DCM is comparable to the traditional particle-particle particle-mesh (PPPM) algorithm, while the performance is considerably superior for large numbers of particles. For JUQUEEN, we provide timings for simulations running on the full system (458, 752 cores), and show nearly perfect strong and weak scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With the exception of a reduction operation to identify the maximum of a scalar in the interface detection method.

  2. 2.

    The edge length h determines the resolution of the interface and can be automatically chosen at the beginning of the simulation.

  3. 3.

    \(D^p = \{ d_{x,y,z} \in \mathbb {R}\,|\, 0 \le x < N_x, 0 \le y < N_y, 0 \le z < N_z\}\); the superscript p indicates that this set is computed on each process, in parallel.

  4. 4.

    The exact value for the threshold is not important here. More information is provided in [25].

  5. 5.

    Possible interpolation functions and the resulting accuracy are discussed in [25].

  6. 6.

    If a body i exerts a force f onto another body j, then j exerts a force \(-f\) on i.

  7. 7.

    This is why most GPU implementations of force calculations also neglect N3.

  8. 8.

    Running on 1024 cores on the BlueGene/Q supercomputer with simultaneous multi-threading enabled for four threads per core.

  9. 9.

    \(f_{i_z}^*\) is computed by the accurate (but expensive) Ewald long-range solver.

References

  1. Berkels, B.: An unconstrained multiphase thresholding approach for image segmentation. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 26–37. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Blokhuis, E., Bedeaux, D., Holcomb, C., Zollweg, J.: Tail corrections to the surface tension of a lennard-jones liquid-vapour interface. Mol. Phys. 85(3), 665–669 (1995)

    Article  Google Scholar 

  3. Bohlen, T.: Parallel 3-d viscoelastic finite difference seismic modelling. Comput. Geosci. 28(8), 887–899 (2002)

    Article  Google Scholar 

  4. Bradley, R., Radhakrishnan, R.: Coarse-grained models for protein-cell membrane interactions. Polymers 5(3), 890–936 (2013)

    Article  Google Scholar 

  5. Bresme, F., Chacón, E., Tarazona, P.: Molecular dynamics investigation of the intrinsic structure of water-fluid interfaces via the intrinsic sampling method. Phys. Chem. Chem. Phys. 10(32), 4704–4715 (2008)

    Article  Google Scholar 

  6. Chapela, G.A., Saville, G., Thompson, S.M., Rowlinson, J.S.: Computer simulation of a gas-liquid surface. Part 1. J. Chem. Soc. Faraday Trans. 2: Mol. Chem. Phys. 73(7), 1133–1144 (1977)

    Article  Google Scholar 

  7. Chialvo, A.A., Debenedetti, P.G.: On the use of the verlet neighbor list in molecular dynamics. Comput. Phys. Commun. 60(2), 215–224 (1990)

    Article  Google Scholar 

  8. Ewald, P.: Die berechnung optischer und elektrostatischer gitterpotentiale. Annalen der Physik 369, 253–287 (1921)

    Article  Google Scholar 

  9. Griebel, M., Knapek, S., Zumbusch, G.: Numerical Simulation in Molecular Dynamics. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  10. Guo, M., Peng, D.-Y., Lu, B.C.-Y.: On the long-range corrections to computer simulation results for the Lennard-Jones vapor-liquid interface. Fluid Phase Equilib. 130(1), 19–30 (1997)

    Article  Google Scholar 

  11. Hill, T.L.: Thermodynamics of Small Systems. Dover Publications, Mineola (2013)

    Google Scholar 

  12. Hockney, R., Goel, S., Eastwood, J.: Quiet high-resolution computer models of a plasma. J. Comput. Phys. 14(2), 148–158 (1974)

    Article  Google Scholar 

  13. in ’t Veld, P.J., Ismail, A.E., Grest, G.S.: Application of ewald summations to long-range dispersion forces. J. Chem. Phys. 127, 144711 (2007)

    Article  Google Scholar 

  14. Isele-Holder, R.E., Ismail, A.E.: Atomistic potentials for trisiloxane, alkyl ethoxylate, and perfluoroalkane-based surfactants with tip4p/2005 and application to simulations at the airwater interface. J. Phys. Chem. B 118(31), 9284–9297 (2014)

    Article  Google Scholar 

  15. Isele-Holder, R.E., Mitchell, W., Hammond, J.R., Kohlmeyer, A., Ismail, A.E.: Reconsidering dispersion potentials: reduced cutoffs in mesh-based ewald solvers can be faster than truncation. J. Chem. Theory Comput. 9(12), 5412–5420 (2013)

    Article  Google Scholar 

  16. Isele-Holder, R.E., Mitchell, W., Ismail, A.E.: Development and application of a particle-particle particle-mesh ewald method for dispersion interactions. J. Chem. Phys. 137(17), 174107 (2012)

    Article  Google Scholar 

  17. Ismail, A.E., Tsige, M., in ’t Veld, P.J., Grest, G.S.: Surface tension of normal and branched alkanes. Mol. Phys. 105(23–24), 3155–3163 (2007)

    Article  Google Scholar 

  18. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pártay, L.B., Hantal, G., Jedlovszky, P., Vincze, Á., Horvai, G.: A new method for determining the interfacial molecules and characterizing the surface roughness in computer simulations. Application to the liquid-vapor interface of water. J. Comput. Chem. 29(6), 945–956 (2008)

    Article  Google Scholar 

  20. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  MATH  Google Scholar 

  21. Rumpf, A.G.: Quocmesh software library. Institute for Numerical Simulation, University of Bonn. http://numod.ins.uni-bonn.de/software/quocmesh/

  22. Sega, M., Kantorovich, S.S., Jedlovszky, P., Jorge, M.: The generalized identification of truly interfacial molecules (ITIM) algorithm for nonplanar interfaces. J. Chem. Phys. 138(4), 044110 (2013)

    Article  Google Scholar 

  23. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. 93(4), 1591–1595 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shekhar, A., Nomura, K.-I., Kalia, R.K., Nakano, A., Vashishta, P.: Nanobubble collapse on a silica surface in water: Billion-atom reactive molecular dynamics simulations. Phys. Rev. Lett. 111, 184503 (2013)

    Article  Google Scholar 

  25. Springer, P.: A scalable, linear-time dynamic cutoff algorithm for molecular simulations of interfacial systems (2013). arXiv:1502.0323

  26. Sun, Y., Zheng, G., Mei, C., Bohm, E.J., Phillips, J.C., Kalé, L.V., Jones, T.R.: Optimizing fine-grained communication in a biomolecular simulation application on cray xk6. In: 2012 International Conference on High Performance Computing, Networking, Storage and Analysis (SC), pp. 1–11. IEEE (2012)

    Google Scholar 

  27. Tameling, D., Springer, P., Bientinesi, P., Ismail, A.E.: Multilevel summation for dispersion: a linear-time algorithm for \(r^{-6}\) potentials. J. Chem. Phys. 140(2), 024105 (2014)

    Article  Google Scholar 

  28. Verlet, L.: Computer “experiments" on classical fluids. I. thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967)

    Article  Google Scholar 

  29. Wang, H., Schütte, C., Zhang, P.: Error estimate of short-range force calculation in inhomogeneous molecular systems. Phys. Rev. E 86(2), 026704 (2012)

    Article  Google Scholar 

  30. Wennberg, C.L., Murtola, T., Hess, B., Lindahl, E.: Lennard-Jones lattice summation in bilayer simulations has critical effects on surface tension and lipid properties. J. Chem. Theory Comput. 9, 3527–3537 (2013)

    Article  Google Scholar 

  31. Zhao, H.: Parallel implementations of the fast sweeping method. J. Comput. Math. 25(4), 421–429 (2007)

    MathSciNet  Google Scholar 

  32. Zhao, H.-K., Osher, S., Merriman, B., Kang, M.: Implicit and nonparametric shape reconstruction from unorganized data using a variational level set method. Comput. Vis. Image Underst. 80(3), 295–314 (2000)

    Article  MATH  Google Scholar 

  33. Zubillaga, R.A., Labastida, A., Cruz, B., Martínez, J.C., Sánchez, E., Alejandre, J.: Surface tension of organic liquids using the OPLS/AA force field. J. Chem. Theory Comput. 9, 1611–1615 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (German Research Association) through grant GSC 111, computing resources on the supercomputer JUQUEEN at Jülich Supercomputing Centre (JSC) (project ID: e5430301) and the Gauss Centre for Supercomputing/Leibniz Supercomputing Centre (project ID: pr84za), and Edoardo Di Napoli and Benjamin Berkels for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Springer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Springer, P., Ismail, A.E., Bientinesi, P. (2015). A Scalable, Linear-Time Dynamic Cutoff Algorithm for Molecular Dynamics. In: Kunkel, J., Ludwig, T. (eds) High Performance Computing. ISC High Performance 2015. Lecture Notes in Computer Science(), vol 9137. Springer, Cham. https://doi.org/10.1007/978-3-319-20119-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20119-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20118-4

  • Online ISBN: 978-3-319-20119-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics