Skip to main content

Abstract

Computational models of brain tissue provide important insights for understanding pathological behavior within neuronal networks. Validating these models poses difficult challenges due to the number of neurons and synaptic connections in even the most modest samples. An important step toward validation is determining connectivity within the biological network so that simulations can be configured to match and then compared directly to the observed behaviors. Cultures of dissociated neurons on multi-electrode arrays provide a flexible experimental platform for the study of fundamental network behaviors. Extracting connectivity from this in vitro setup is challenging because we are able to measure only a relatively small number of neurons. Today, cultures are routinely grown on arrays of microelectrodes, each reporting the activity of several neurons. With these techniques we can distinguish at most hundreds of spiking neurons while cultures comprise thousands of neurons. Even as the number of electrodes increases with gains in technology, it is important to understand how much information about the network connectivity can be discovered with sparse spatial sampling. We describe an approach to searching for repeating patterns in parallel spike train data, the presence of which can inform inferences of causality and connectivity in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amarasingham A, Harrison MT, Hatsopoulos NG, Geman S. Conditional modeling and the jitter method of spike resampling. J Neurophysiol. 2012;107(2):517–31. doi:10.1152/jn.00633.2011.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Barnett L, Barrett AB, Seth AK. Granger causality and transfer entropy are equivalent for gaussian variables. Phys Rev Lett. 2009;103:238701. doi:10.1103/PhysRevLett.103.238701.

    Article  PubMed  Google Scholar 

  3. Diekman C, Dasgupta K, Nair V, Unnikrishnan KP. Discovering functional neuronal connectivity from serial patterns in spike train data. Neural Comput. 2014;26:1263–97. doi:10.1162/NECO_a_00598.

    Article  PubMed  Google Scholar 

  4. Gansel KS, Singer W. Detecting multineuronal temporal patterns in parallel spike trains. Front Neuroinform. 2012;doi:10.3389/fninf.2012.00018.

    Google Scholar 

  5. Garofalo M, Nieus T, Massobrio P, Martinoia S. Evaluation of the performance of information theory-based methods and cross-correlation to estimate the functional connectivity in cortical networks. PLoS ONE. 2009;4(8):e6482. doi:10.1371/journal.pone.0006482.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Grün S, Diesmann M, Aertsen A. Unitary events in multiple single-neuron spiking activity: I. Detection and significance. Neural Comput. 2002;14(1):43–80. doi:10.1162/089976602753284455.

    Article  PubMed  Google Scholar 

  7. Grün S, Diesmann M, Aertsen A. Unitary events in multiple single-neuron spiking activity: II. Nonstationary data. Neural Comput. 2002;14(1):81–119. doi:10.1162/089976602753284464.

    Article  PubMed  Google Scholar 

  8. Humphries MD. Spike-train communities: finding groups of similar spike trains. J Neurosci. 2011;31:2321–2336. doi:10.1523/JNEUROSCI.2853-10.2011.

    Article  CAS  PubMed  Google Scholar 

  9. Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R. Synfire chains and cortical songs: temporal modules of cortical activity. Science. 2004;304(5670):559–64. doi:10.1126/science.1093173.

    Article  CAS  PubMed  Google Scholar 

  10. Ito S, Hansen ME, Heiland R, Lumsdaine A, Litke AM, Beggs JM. Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model. PLoS ONE. 2011;6(11):e27431. doi:10.1371/journal.pone.0027431.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Izhikevich EM. Polychronization: computation with spikes. Neural Comput. 2006;282:245–82.

    Article  Google Scholar 

  12. Kobayashi R, Kitano K. Impact of network topology on inference of synaptic connectivity from multi-neuronal spike data simulated by a large-scale cortical network model. J Comput Neurosci. 2013;35:109–24. doi:10.1007/s10827-013-0443-y.

    Article  PubMed  Google Scholar 

  13. Laxman S, Sastry PS, Unnikrishnan KP. A fast algorithm for finding frequent episodes in event streams. Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining—KDD ’07. New York: ACM; 2007. p. 410. doi:10.1145/1281192.1281238.

    Google Scholar 

  14. Li Z, Li X. Estimating temporal causal interaction between spike trains with permutation and transfer entropy. PLoS ONE. 2013;8(8):e70894. doi:10.1371/journal.pone.0070894.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Mannila H, Toivonen H, Verkamo AI. Discovery of frequent episodes in event sequences. Data Min Knowl Discov. 1997;1(3):259–89. doi:10.1023/A:1009748302351.

    Article  Google Scholar 

  16. Mokeichev A, Okun M, Barak O, Katz Y, Ben-Shahar O, Lampl I. Stochastic emergence of repeating cortical motifs in spontaneous membrane potential fluctuations in vivo. Neuron. 2007;53:413–25. doi:10.1016/j.neuron.2007.01.017.

    Article  CAS  PubMed  Google Scholar 

  17. Nedungadi AG, Rangarajan G, Jain N, Ding M. Analyzing multiple spike trains with nonparametric granger causality. J Comput Neurosci. 2009;27:55–64. doi:10.1007/s10827-008-0126–2.

    Article  PubMed  Google Scholar 

  18. Priesemann V, Munk MHJ, Wibral M. Subsampling effects in neuronal avalanche distributions recorded in vivo. BMC Neurosci. 2009;10:40. doi:10.1186/1471-2202-10-40.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Rolston JD, Wagenaar DA, Potter SM. Precisely timed spatiotemporal patterns of neural activity in dissociated cortical cultures. Neuroscience. 2007;148:294–303. doi:10.1016/j.neuroscience.2007.05.025.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Roxin A, Hakim V, Brunel N. The statistics of repeating patterns of cortical activity can be reproduced by a model network of stochastic binary neurons. J Neurosci. 2008;28:10734–45. doi:10.1523/JNEUROSCI.1016-08.2008.

    Article  CAS  PubMed  Google Scholar 

  21. Shelat PB, Plant LD, Wang JC, Lee E, Marks JD. The membrane-active tri-block copolymer Pluronic F-68 profoundly rescues rat hippocampal neurons from oxygen–glucose deprivation-induced death through early inhibition of apoptosis. J Neurosci. 2013;33(30):12287–99.

    Google Scholar 

  22. Schneidman E, Berry MJ, Segev R, Bialek W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature. 2006;440(7087):1007–12. doi:10.1038/nature04701.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Stetter O, Battaglia D, Soriano J, Geisel T. Model-free reconstruction of excitatory neuronal connectivity from calcium imaging signals. PLoS Comput Biol. 2012;8(8):e1002653. doi:10.1371/journal.pcbi.1002653.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Suresh J, Radojicic M, Pesce L, Bhansali A, Tryba AK, Wang J, Marks JD, Van Drongelen W. Role of excitatory and inhibitory synaptic transmission in shaping network burst dynamics in hippocampal neuronal cultures in-vitro. In preparation 2015.

    Google Scholar 

  25. Van Drongelen W, Koch H, Elsen FP, Lee HC, Mrejeru A, Doren E, Marcuccilli CJ, Hereld M, Stevens RL, Ramirez JM. Role of persistent sodium current in bursting activity of mouse neocortical networks in vitro. J Neurophysiol. 2006;96:2564–77. doi:10.1152/jn.00446.2006.

    Article  CAS  PubMed  Google Scholar 

  26. Van Drongelen W, Lee HC, Hereld M, Chen Z, Elsen FP, Stevens RL. Emergent epileptiform activity in neural networks with weak excitatory synapses. IEEE Trans Neural Syst Rehabil Eng. 2005;13:236–41. doi:10.1109/TNSRE.2005.847387.

    Article  PubMed  Google Scholar 

  27. Van Drongelen W, Lee HC, Hereld M, Jones D, Cohoon M, Elsen F, Papka ME, Stevens RL. Simulation of neocortical epileptiform activity using parallel computing. Neurocomputing. 2004;58–60:1203–9. doi:10.1016/j.neucom.2004.01.186.

    Article  Google Scholar 

  28. Van Drongelen W, Lee HC, Stevens RL, Hereld M. Propagation of seizure-like activity in a model of neocortex. J Clin Neurophysiol. 2007;24:182–8. doi:10.1097/WNP.0b013e318039b4de.

    Article  PubMed  Google Scholar 

  29. Vicente R, Wibral M, Lindner M, Pipa G. Transfer entropy-a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci. 2011;30:45–67. doi:10.1007/s10827-010-0262–3.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Weiss SA, Banks GP, McKhann GM, Goodman RR, Emerson RG, Trevelyan AJ, Schevon CA. Ictal high frequency oscillations distinguish two types of seizure territories in humans. Brain. 2013;136(Pt 12):3796–808. doi:10.1093/brain/awt276.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Wilke C, Van Drongelen W, Kohrman M, He B. Neocortical seizure foci localization by means of a directed transfer function method. Epilepsia. 2010;51(4):564–72. doi:10.1111/j.1528-1167.2009.02329.x.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Ralph and Marian Falk Medical Research Trust, the National Institutes of Health under award number R01NS084142, and the U.S. Department of Energy under contract DE-AC02–06CH11357. The content is solely the responsibility of the authors and does not necessarily represent the official views of the granting agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Hereld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hereld, M. et al. (2015). Toward Networks from Spikes. In: Bhattacharya, B., Chowdhury, F. (eds) Validating Neuro-Computational Models of Neurological and Psychiatric Disorders. Springer Series in Computational Neuroscience, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-20037-8_10

Download citation

Publish with us

Policies and ethics