Skip to main content

Planck’s Theory of Radiation

  • Chapter
  • First Online:
The Bumpy Road

Part of the book series: SpringerBriefs in History of Science and Technology ((BRIEFSHIST))

Abstract

In this chapter I explore Planck’s radiation theory from his preliminary studies (1896) through his more mature Pentalogy (1897–1899). Planck viewed the problem of the black-body radiation very differently from Wien and the majority of his contemporaries. In particular, Planck was not primarily interested in deriving a radiation law. Instead, he considered heat radiation as an ideal case to support his strict view of thermal irreversibility. He wanted to prove that electromagnetic radiation in a cavity, when suitably stimulated, reaches irreversibly a form of stable thermal equilibrium. Initially, Planck thought that this statement could be demonstrated as a consequence of the electromagnetic features of the problem. Boltzmann jumped in and showed that this could not possibly be the case. In the second part of the Pentalogy, Planck changed strategy. He modified the morphology of his theory to accommodate new resources and gave a more central role to some symbolic practices, notably Fourier series. The central move of the reorganization of his theory was the introduction of the hypothesis of natural radiation as a way to draw a divide between the macroscopic and microscopic state. Planck obtained his argument for irreversibility, but he had to pay a prize for it: his entire program depended essentially on the validity of Wien’s law.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Important theoretical research on the propagation of spherical waves had been already carried out independently by Rowland (1884). For this reason, it is not uncommon to find in the literature the term ‘Rowland-Hertz oscillator’.

  2. 2.

    On this point see (Buchwald 1998).

  3. 3.

    This function, which is actually a potential, is currently known as the Hertz vector. From this vector it is easy to derive the usual scalar and vector potentials (Bremmer 1958; Essex 1977).

  4. 4.

    Planck assumes that no Joule effect takes place, and hence the energy emitted is due to the oscillation and not to transformation into other kinds of energy.

  5. 5.

    In particular, he shows that if the resonator is small with regard to the wavelength of the interacting radiation, it is possible to simplify the expression for the dipole moment and its derivative (Darrigol 1992). Ultimately, Planck’s theory of resonator relies on a clear-cut distinction between two lengths of different orders of magnitude: the characteristic wavelength involved in the resonator-field interaction and the geometric lengths ascribed to the material system (size of the cavity, linear dimension of the resonator). The latter must be much larger than the former to apply the usual laws of refraction and reflection without the intervention of diffraction phenomena.

  6. 6.

    Planck arrives at the second order from the usual third order equation by considering only real solutions.

  7. 7.

    Here one can see at work an example of the difference between ‘physics of problems’ and ‘physics of principle’ recently outlined by Seth (2010).

  8. 8.

    These kinds of assumptions, similarly to the approximations on the linear size of the resonator, are common in Planck’s theory and, more generally, in theories concerned with drawing macroscopic consequences from a microscopic model.

  9. 9.

    Note that this consequence also follows from Wien’s thermodynamic argument that only higher frequencies can produce thermal effects (Wien 1893). Though, Planck does not quote Wien: he wants to make a general argument on the behavior of an oscillating structure separate from the nature of heat radiation.

  10. 10.

    The complete definition of the SZA is more complex; see (Ehrenfest and Ehrenfest 1911, pp. 4–13).

  11. 11.

    Boltzmann (1877, 1909, Vol. II, pp. 164–223). According to common wisdom, Boltzmann did not realize the probabilistic implications of his theory until Loschmidt’s reversibility objection (Klein 1973; Kuhn 1978; Brown et al. 2009). However, this claim does not stand before a careful examination of Boltzmann’s papers during the period of 1868–1877. I have argued elsewhere that Boltzmann was aware since the late 1860 s that irreversibility was a matter of probability (Badino 2011).

  12. 12.

    Indeed, Planck was right: Maxwell’s distribution is the only one that fulfills the SZA applied to reversed collisions (Ehrenfest and Ehrenfest 1911, pp. 11–13). In that case, however, the SZA ceases to be a probabilistic assumption.

  13. 13.

    Boltzmann to Eilhard Wiedemann, 20 March 1896, (Höflechner 1994, Doc. 427).

  14. 14.

    That such a time exists, follows from the condition above that only the harmonics with very high frequency and short period play a role in heat radiation.

  15. 15.

    The amplitude \(C_n\) is related to the amplitude of the Hertz vector, while \(\theta _n\) are its phase constants. The index \(a = 1, 2, 3, \dots \) comes from an ingenious rearrangement of the harmonics that Planck operates to simplify the calculation of the Poynting vector. The cross products can be ordered in groups of harmonics separated by an increasing distance a.

  16. 16.

    The integers \(k_n\) are related to the natural period of the resonator. Essentially, they select the acceptable solutions in terms of the resonance interaction. The amplitude \(D_n\) is related to the field amplitude \(C_n\) via special phase parameters.

  17. 17.

    A clarification of this argument would come in the fourth paper. There, Planck shows that the Fourier series of the radiation intensity is time-dependent in two different ways: in the main series, the time appears in periodic terms, while in the Fourier coefficients, time is the argument of functions that are in general aperiodic. The equilibration process acts precisely on these aperiodic terms (Planck 1898b, 1958, Vol. I, p. 541).

  18. 18.

    In fact, the energetic difference between the primary and the secondary field is precisely the contribution of the resonator.

  19. 19.

    The parameter \(\gamma \) confines the series to terms very close to the characteristic frequency of the resonator.

  20. 20.

    If the damping process lasts too long, the resonator will still be in vibration when a new train of waves impinges on it, and the energy given off will be the superposition of the radiations that arrived at different times instead of the component of a single wave.

  21. 21.

    The parameter \(\delta \) plays the same role as the parameter \(\gamma :\) it constraints the series in order that only frequencies very close to the characteristic frequency carry a non-negligible energy.

  22. 22.

    On the technical aspects of this debate see (Dias 1994). Culverwell had already objected in the same vein in a previous paper (Culverwell 1890), which had apparently gone unnoticed.

  23. 23.

    A similar argument was proposed by (Bryan 1894a) in support of (Watson 1894).

  24. 24.

    (Boltzmann 1895b), see Sect. 3.2.3.

  25. 25.

    Thomas Kuhn has suggested that the molar/molecular distinction allowed Boltzmann to combine statistical and dynamical phraseology because it corresponds to the micro/macro distinction (Kuhn 1978, pp. 54–60). This terminology, however, was not new. J.J. Thomson, for instance, used a similar distinction to stress the uncontrollability of the molecular behavior (Thomson 1887). The molar/molecular distinction meant therefore something slightly different from the micro/macro divide, because the emphasis was preferably on the possibility of acting on microscopic states. It is precisely this point that Boltzmann wants to make with the concept of molecular chaos.

  26. 26.

    Ultimately, Boltzmann’s point amounts to distinguishing between equilibrium as a state described by Maxwell’s distribution and as the end point of a mechanical trajectory. In other words, it concerns the epistemic surplus of two sets of symbolic practices: probabilistic tools and mechanical methods.

  27. 27.

    In effect, Kuhn regards the introduction of the HNR as the entering of statistics into radiation theory. Darrigol is more cautious and points out that Planck did not need to install Boltzmann’s full package in his theory (Darrigol 1992, pp. 51–54).

  28. 28.

    On this point see also (Seth 2010, pp. 119–126).

  29. 29.

    I elaborate on the probabilistic consequences of this hypothesis in (Badino 2009); see also (Needell 1980).

  30. 30.

    Subsequently, Planck published a long paper in the Annalen that essentially reports the result of the fifth part of the Pentalogy with some small technical improvements (Planck 1900, 1958, Vol. I, pp. 614–667).

  31. 31.

    Letter from Planck to Runge, 14 October 1898; see also (Planck 1958, Vol. I, p. 623).

  32. 32.

    One formal difficulty that Planck does not succeed in overcoming is the dependence of the spectral component on the damping constant of the analyzing resonator. At the end, he is forced to drop it on the grounds that an acceptable spectral component cannot possibly depend on the features of the ideal apparatus used to measure it.

  33. 33.

    It is interesting to note that Planck does not write explicitly the relation between energy density and average energy of the resonator:

    figure a

    which is usually associated with his electromagnetic radiation theory. To be sure, this relation can be easily derived from Planck’s equations, but it is worth stressing that, at this stage, energy density and resonator energy are not the two macroscopic quantities he wants to relate. It is much more important for his irreversibility argument to work with the polarized intensity.

  34. 34.

    For a discussion of this aspect see (Badino and Robotti 2001).

  35. 35.

    Criticisms against this procedure were raised in (Burbury 1902; Ehrenfest 1905); see below Sect. 4.7.1.

References

  • Badino M (2009) The odd couple: Boltzmann, Planck and the application of statistics to physics (1900–1913). Annalen der Physik 18(2–3):81–101

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Badino M (2011) Mechanistic slumber vs. statistical insomnia: the early phase of Boltzmann’s H-theorem (1868–1877). Eur Phys J H 36:353–378

    Article  Google Scholar 

  • Badino M, Robotti N (2001) Max Planck and the constants of nature. Ann Sci 58:137–162

    Article  MATH  MathSciNet  Google Scholar 

  • Bjerknes V (1891a) Über den zeitlichen Verlauf der Schwingungen im primären Hertz’schen Leiter. Annalen der Physik 44:513–526

    Article  MATH  ADS  Google Scholar 

  • Bjerknes V (1891b) Über die Erscheinung der multiplen Resonanz electriscer Wellen. Annalen der Physik 44:92–101

    Article  MATH  ADS  Google Scholar 

  • Boltzmann L (1872) Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsberichte der Akademie der Wissenschaften zu Wien 66:275–370

    MATH  Google Scholar 

  • Boltzmann L (1877) Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respective den Sätzen über das Wärmegleichgewicht. Sitzungsberichte der Akademie der Wissenschaften zu Wien 76:373–435

    Google Scholar 

  • Boltzmann L (1894) Über den Beweis des Maxwellschen Geschwindigkeitsverteilungsgesetzes unter Gasmolekülen. Annalen der Physik 53:955–958

    Article  Google Scholar 

  • Boltzmann L (1895a) Erwiderung an Culverwell. Nature 51:581

    Article  ADS  Google Scholar 

  • Boltzmann L (1895b) Nochmals das Maxwellsche Verteilungsgesetz der Geschwindigkeiten. Annalen der Physik 55:223–224

    Article  ADS  Google Scholar 

  • Boltzmann L (1895c) On certain questions of the theory of gases. Nature 51:413–415

    Article  ADS  Google Scholar 

  • Boltzmann L (1895d) On the minimum theorem in the theory of gases. Nature 52:211

    Article  Google Scholar 

  • Boltzmann L (1896) Entgegnung auf die wärmetheoretischen Betrachtungen des Hrn. E. Zermelo. Annalen der Physik 57:773–784

    Google Scholar 

  • Boltzmann L (1897a) Über irreversible Strahlungsvorgänge I. Sitzungsberichte der Preussischen Akademie der Wissenschaften 2:660–662

    Google Scholar 

  • Boltzmann L (1897b) Über irreversible Strahlungsvorgänge II. Sitzungsberichte der Preussischen Akademie der Wissenschaften 2:1013–1018

    Google Scholar 

  • Boltzmann L (1898a) Über die sogenannte H-Kurve. Mathematische Annalen 50:325–332

    Article  MATH  MathSciNet  Google Scholar 

  • Boltzmann L (1898b) Über vermeintlich irreversible Strahlungsvorgänge. Sitzungsberichte der Preussischen Akademie der Wissenschaften 1:182–187

    Google Scholar 

  • Boltzmann L (1898c) Vorlesungen über Gastheorie. Barth, Leipzig

    Google Scholar 

  • Boltzmann L (1909) Wissenschaftliche Abhandlungen. Barth, Leipzig

    MATH  Google Scholar 

  • Bremmer H (1958) Propagation of electromagnetic waves. In: Flügge S (ed) Electric Fields and Waves, Handbuch der Physik, vol 15. Springer, Berlin, pp 423–639

    Google Scholar 

  • Brown HR, Myrvold W, Uffink J (2009) Boltzmann’s H-theorem, its discontents, and the birth of statistical mechanics. Stud Hist Philos Mod Phys 40:174–191

    Article  MATH  MathSciNet  Google Scholar 

  • Bryan GH (1894a) The kinetic theory of gases I. Nature 51:176

    Article  ADS  Google Scholar 

  • Bryan GH (1894b) The kinetic theory of gases II. Nature 51(1311):152

    Article  MATH  ADS  Google Scholar 

  • Bryan GH (1894c) The kinetic theory of gases III. Nature 51(1312):176

    Article  ADS  Google Scholar 

  • Bryan GH (1895) The assumption in Boltzmann’s minimum theorem. Nature 52:29–30

    Article  MATH  ADS  Google Scholar 

  • Buchwald J (1998) Reflections on Hertz and the Hertzian dipole. In: Baird D, Hughes RIG, Nordmann A (eds) Heinrich Hertz: classical physicists. Modern Philosopher, Kluwer Academic, London, pp 269–280

    Google Scholar 

  • Burbury SH (1894) Boltzmann’s minimum function. Nature 51(1308):78–79

    Article  MATH  ADS  Google Scholar 

  • Burbury SH (1902) On irreversible processes and Planck’s theory in relation thereto. Philos Mag 3(14):225–240

    Article  MATH  Google Scholar 

  • Culverwell EP (1890) Note on Boltzmann’s Kinetic theory of gases, and on Sir W. Thomson’s Address to Section A, British Association, 1884. Philos Mag 30(182):95–99

    Article  MATH  Google Scholar 

  • Culverwell EP (1894) Dr. Watson’s proof of Boltzmann’s theorem on permanence of distributions. Nature 50(1304):617

    Article  MATH  ADS  Google Scholar 

  • Culverwell EP (1895a) Boltzmann’s minimum theorem. Nature 51(1315):246

    Article  ADS  Google Scholar 

  • Culverwell EP (1895b) Professor Boltzmann’s letter on the kinetic theory of gases. Nature 51(1329):581

    Article  ADS  Google Scholar 

  • Darrigol O (1992) From c-numbers to q-numbers. The classical analogy in the history of quantum theory. University of California Press, Berkeley

    Google Scholar 

  • Dias PMC (1994) “Will someone say exactly what the H-theorem proves?” A study of Burbury’s condition A and Maxwell’s proposition II. Arch Hist Exact Sci 46(4):341–366

    Article  MathSciNet  Google Scholar 

  • Ehrenfest P (1905) Über die physikalischen Voraussetzungen der Planck’schen Theorie der irreversiblen Strahlungsvorgänge. Sitzungsberichte der Akademie der Wissenschaften zu Wien 114:1301–1314

    MATH  Google Scholar 

  • Ehrenfest P, Ehrenfest T (1911) The conceptual foundations of the statistical approach in mechanics. Dover, New York

    Google Scholar 

  • Essex EA (1977) Hertz vector potentials of electromagnetic theory. Am J Phys 45(11):1099–1101

    Article  ADS  Google Scholar 

  • Gouy LG (1886) Sur le mouvement lumineux. Journal de Physique Théorique et Appliquée 5:354–362

    Article  Google Scholar 

  • Hertz H (1889) Die Kräfte electrischer Schwingungen, behandelt nach der Maxwell’schen Theorie. Annalen der Physik 36(1):1–22

    Article  ADS  Google Scholar 

  • Höflechner W (1994) Ludwig Boltzmann. Akademische Druck und Verlaganstalt. Leben und Briefe, Graz

    Google Scholar 

  • Jeans JH (1903) The kinetic theory of gases developed from a new standpoint. Philos Mag 5(30):597–620

    Article  MATH  Google Scholar 

  • Klein MJ (1973) The development of Boltzmann’s statistical ideas. Acta Phys Austriaca Suppl 10:53–106

    Google Scholar 

  • Kuhn T (1978) Black-body theory and the quantum discontinuity, 1894–1912. Oxford University Press, Oxford

    Google Scholar 

  • Loschmidt J (1876) Über den Zustand des Wärmegleichgewichtes eines Systems von Körpern mit Rücksicht auf die Schwerkraft. Sitzungsberichte der Akademie der Wissenschaften zu Wien 73:128–142

    Google Scholar 

  • Maxwell J (1867) On the dynamical theory of gases. Philos Trans Roy Soc Lond 157:49–88

    Article  Google Scholar 

  • Maxwell J (1871) Theory of heat. Longmans, Green and Co., London

    Google Scholar 

  • Needell A (1980) Irreversibility and the failure of classical dynamics: Max Planck’s work on the quantum theory, 1900–1915. PhD thesis, University of Michigan, Ann Arbor

    Google Scholar 

  • Planck M (1879) Über den zweiten Hauptsatz der mechanischen Wärmetheorie. Ackermann, München

    Google Scholar 

  • Planck M (1891) Allgemeines zur neueren Entwicklung der Wärmetheorie. Zeitschrift für physikalische Chemie 8:647–656

    Google Scholar 

  • Planck M (1894) Antrittsrede, gehalten am 28. Juni 1894 zur Aufnahme in die Akademie. Sitzungsberichte der Preussischen Akademie der Wissenschaften 2:641–644

    Google Scholar 

  • Planck M (1895) Über den Beweis des Maxwellschen Geschwindigkeitsverteilungsgesetzes unter den Gasmolekülen. Annalen der Physik 55:220–222

    Article  MATH  ADS  Google Scholar 

  • Planck M (1896) Absorption und Emission electrischer Wellen durch Resonanz. Annalen der Physik 57(1):1–14

    Article  ADS  Google Scholar 

  • Planck M (1897a) Über electrische Schwingungen, welche durch Resonanz erregt und durch Strahlung gedämpft werden. Annalen der Physik 60:577–599

    Article  ADS  Google Scholar 

  • Planck M (1897b) Über irreversible Strahlungsvorgänge. 1. Mitteilung. Sitzungsberichte der Preussischen Akademie der Wissenschaften 1:57–68

    Google Scholar 

  • Planck M (1897c) Über irreversible Strahlungsvorgänge. 2. Mitteilung. Sitzungsberichte der Preussischen Akademie der Wissenschaften 2:715–717

    Google Scholar 

  • Planck M (1898a) Über irreversible Strahlungsvorgänge. 3. Mitteilung. Sitzungsberichte der Preussischen Akademie der Wissenschaften 1:1122–1145

    Google Scholar 

  • Planck M (1898b) Über irreversible Strahlungsvorgänge. 4. Mitteilung. Sitzungsberichte der Preussischen Akademie der Wissenschaften 2:449–476

    Google Scholar 

  • Planck M (1899) Über irreversible Strahlungsvorgänge. 5. Mitteilung. Sitzungsberichte der Preussischen Akademie der Wissenschaften 1:440–480

    Google Scholar 

  • Planck M (1900) Über irreversible Strahlungsvorgänge. Annalen der Physik 1:69–122

    Article  MATH  ADS  Google Scholar 

  • Planck M (1902) Über die Natur des weissen Lichtes. Annalen der Physik 7:390–400

    Article  MATH  ADS  Google Scholar 

  • Planck M (1906) Vorlesungen über die Theorie der Wärmestrahlung. Barth, Leipzig

    MATH  Google Scholar 

  • Planck M (1958) Physikalische Abhandlungen und Vorträge. Vieweg, Sohn, Braunschweig

    MATH  Google Scholar 

  • Rayleigh JWS (1889) On the character of the complete radiation at a given temperature. Philos Mag 27:460–469

    Article  MATH  Google Scholar 

  • Rowland HA (1884) On the propagation of an arbitrary electro-magnetic disturbance, on spherical waves of light and the dynamical theory of diffraction. Am J Math 6(4):359–381

    MATH  MathSciNet  Google Scholar 

  • Schuster A (1894) On interference phenomena. Philos Mag 37:509–545

    Article  MATH  Google Scholar 

  • Seth S (2010) Crafting the quantum. Arnold sommerfeld and the practice of theory, 1890–1926. MIT Press, Cambridge

    Google Scholar 

  • Thomson JJ (1887) Some applications of dynamical principles to physical phenomena. Part II. Philos Trans Roy Soc Lond 178:471–526

    Article  MATH  ADS  Google Scholar 

  • Watson HW (1893) A treatise on the Kinetic theory of gases, 2nd edn. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Watson HW (1894) Boltzmann’s minimum theorem. Nature 51(1309):105

    Article  MATH  ADS  Google Scholar 

  • Wien W (1893) Die obere Grenze der Wellenlängen, welche in der Wärmestrahlung fester Körper vorkommen können; Folgerungen aus dem zweitem Hauptsatz der Wärmetheorie. Annalen der Physik 49:633–641

    Article  MATH  ADS  Google Scholar 

  • Wien W (1909) Theorie der strahlung. In: Sommerfeld A (ed) Encyklopädie der mathematischen Wissenschaften, vol 3. Teubner, Leipzig, pp 282–357

    Google Scholar 

  • Zermelo E (1896) Über einen Satz der Dynamik und die mechanische Wärmetheorie. Annalen der Physik 57:485–494

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Badino .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Badino, M. (2015). Planck’s Theory of Radiation. In: The Bumpy Road. SpringerBriefs in History of Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-20031-6_3

Download citation

Publish with us

Policies and ethics