We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Variations of Stable Isotope Ratios in Nature

  • Chapter
  • First Online:
Stable Isotope Geochemistry

Abstract

Extraterrestrial materials consist of samples from the moon, Mars and a variety of smaller bodies such as asteroids and comets. These planetary samples have been used to deduce the evolution of our solar system. A major difference between extraterrestrial and terrestrial materials is the existence of primordial isotopic heterogeneities in the early solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelson PH, Hoering TC (1961) Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proc Natl Acad Sci USA 47:623

    Google Scholar 

  • Abrajano TA, Sturchio NB, Bohlke JH, Lyon GJ, Poreda RJ, Stevens MJ (1988) Methane—hydrogen gas seeps Zambales ophiolite, Phillippines: deep or shallow origin. Chem Geol 71:211–222

    Google Scholar 

  • Affek HP, Bar-Matthews M, Ayalon A, Matthews A, Eiler JM (2008) Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by “clumped isotope” thermometry. Geochim Cosmochim Acta 72:5351–5360

    Google Scholar 

  • Agrinier P, Hekinian R, Bideau D, Javoy M (1995) O and H stable isotope compositions of oceanic crust and upper mantle rocks exposed in the Hess Deep near the Galapagos Triple Junction. Earth Planet Sci Lett 136:183–196

    Google Scholar 

  • Aharon P, Fu B (2000) Microbial sulfate reduction rates and sulfur and oxygen isotope fractionation at oil and gas seeps in deepwater Gulf of Mexico. Geochim Cosmochim Acta 64:233–246

    Google Scholar 

  • Aharon P, Fu B (2003) Sulfur and oxygen isotopes of coeval sulphate-sulfide in pore fluids of cold seep sediments with sharp redox gradients. Chem Geol 195:201–218

    Google Scholar 

  • Alexander CM, Russell SS, Arden JW, Ash RD, Grady MM, Pillinger CT (1998) The origin of chondritic macromolecular organic matter: a carbon and nitrogen isotope study. Meteorit Planet Sci 33:603–622

    Google Scholar 

  • Alexander B, Savarino J, Barkov N, Delmas RJ, Thiemens MH (2002) Climate driven changes in the oxidation pathways of atmospheric sulfur. Geophys Res Lett 29(14):30–31

    Google Scholar 

  • Alexander B, Savarino J, Kreutz KJ, Thiemens MH (2004) Impact of preindustrial biomass-burning emissions on the oxidation pathways of troposheric sulfur and nitrogen. J Geophys Res 109:8030–8038

    Google Scholar 

  • Alexander CM, Fogel M, Yabuta H, Cody GD (2007) The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim Cosmochim Acta 71:4380–4403

    Google Scholar 

  • Alexander CM, Newsome SD, Fogel ML, Nittler LR, Busemann H, Cody GR (2010) Deuterium enrichments in chondritic macromolecular material—implications for the origin and evolution of organics, water and asteroids. Geochim Cosmochim Acta 74:4417–4437

    Google Scholar 

  • Alexander CM, Bowden R, Fogel ML, Howard KT, Herd CD, Nittler LR (2012) The provenances of asteroids and their contributions to the volatile inventories of the terrestrila planets. Science 337:721–723

    Google Scholar 

  • Allard P (1983) The origin of hydrogen, carbon, sulphur, nitrogen and rare gases in volcanic exhalations: evidence from isotope geochemistry. In: Tazieff H, Sabroux JC (eds) Forecasting volcanic events. Elsevier Publlishing Co., pp 337–386

    Google Scholar 

  • Allen RB, Cuffey KM (2001) Oxygen- and hydrogen-isotopic ratios of water in precipitation: beyond paleothermometry. Rev Mineral Geochem 43:527–553

    Google Scholar 

  • Alt JC, Muehlenbachs K, Honnorez J (1986) An oxygen isotopic profile through the upper kilometer of the oceanic crust, DSDP hole 504 B. Earth Planet Sci Lett 80:217–229

    Google Scholar 

  • Altabet MA, Deuser WC (1985) Seasonal variations in natural abundance of 15N in particles sinking to the deep Sargasso Sea. Nature 315:218–219

    Google Scholar 

  • Altabet MA, McCarthy JJ (1985) Temporal and spatial variations in the natural abundance of 15N in POM from a warm-core ring. Deep Sea Res 32:755–772

    Google Scholar 

  • Altabet MA, Deuser WG, Honjo S, Stienen C (1991) Seasonal and depth related changes in the source of sinking particles in the North Atlantic. Nature 354:136–139

    Google Scholar 

  • Amari S, Hoppe P, Zinner E, Lewis RS (1993) The isotopic compositions of stellar sources of meteoritic graphite grains. Nature 365:806–809

    Google Scholar 

  • Amrani A (2014) Organosulfur compounds: molecular and isotopic evolution from biota to oil and gas. Ann Rev Earth Planet Sci 42:733–768

    Google Scholar 

  • Amrani A, Deev A, Sessions AL, Tang Y, Adkins JF, Hill RL, Moldowan JM, Wei Z (2012) The sulfur-isotopic comppositions of benzothiophenes and dibenzothiophenes as a proxy for thermochemical sulfate reduction. Geochim Cosmochim Acta (in press)

    Google Scholar 

  • Anbar AD, Rouxel O (2007) Metal stable isotopes in paleoceanography. Ann Rev Earth Planet Sci 35:717–746

    Google Scholar 

  • Ancour AM, Sheppard SMF, Guyomar O, Wattelet J (1999) Use of 13C to trace origin and cycling of inorganic carbon in the Rhone river system. Chem Geol 159:87–105

    Google Scholar 

  • Anderson AT, Clayton RN, Mayeda TK (1971) Oxygen isotope thermometry of mafic igneous rocks. J Geol 79:715–729

    Google Scholar 

  • Angert A, Cappa CD, DePaolo DJ (2004) Kinetic O-17 effects in the hydrologic cycle: indirect evidence and implications. Geochim Cosmochim Acta 68:3487–3495

    Google Scholar 

  • Antler G, Turchyn AV, Rennie V, Herut B, Sivan O (2013) Coupled sulphur and oxygen isotope insight into bacterial sulphate reduction in the natural environment. Geochim Cosmochim Acta 118:98–117

    Google Scholar 

  • Archer C, Vance D (2006) Coupled Fe and S isotope evidence for Archean microbial Fe(III) and sulphate reduction. Geology 34:153–156

    Google Scholar 

  • Armytage RMG, Georg RB, Williams HM, Halliday AN (2012) Silicon isotopes in lunar rocks: implications for the Moon, s formation and the early history of the Earth. Geochim Cosmochim Acta 77:504–514

    Google Scholar 

  • Arnold M, Sheppard SMF (1981) East Pacific Rise at 21°N: isotopic composition and origin of the hydrothermal sulfur. Earth Planet Sci Lett 56:148–156

    Google Scholar 

  • Arthur MA, Dean WE, Claypool CE (1985) Anomalous 13C enrichment in modern marine organic carbon. Nature 315:216–218

    Google Scholar 

  • Asael D, Matthews A, Oszczepalski S, Bar-Matthews M, Halicz L (2009) Fluid speciation controls of low temperature copper isotope fractionation applied to the Kupferschiefer and Timna ore deposits. Chem Geol 262:147–158

    Google Scholar 

  • Ayliffe LK, Chivas AR (1990) Oxyen isotope composition of the bone phosphate of Australian kangaroos: potential as a palaeoenvironmental recorder. Geochim Cosmochim Acta 54:2603–2609

    Google Scholar 

  • Ayliffe LK, Lister AM, Chivas AR (1992) The preservation of glacial-interglacial climatic signatures in the oxygen isotopes of elephant skeletal phosphate. Palaeo, Palaeo, Palaeo 99:179–191

    Google Scholar 

  • Ayliffe LK, Chivas AR, Leakey MG (1994) The retention of primary oxygen isotope compositions of fossil elephant skeletal phosphate. Geochim Cosmochim Acta 58:5291–5298

    Google Scholar 

  • Bacastow RB, Keeling CD, Lueker TJ, Wahlen M, Mook WG (1996) The δ 13C Suess effect in the world surface oceans and its implications for oceanic uptake of CO2: analysis of observations at Bermuda. Global Biochem Cycles 10:335–346

    Google Scholar 

  • Baker AJ, Fallick AE (1989) Heavy carbon in two-billion-year-old marbles from Lofoten-Vesteralen, Norway: implications for the Precambrian carbon cycle. Geochim Cosmochim Acta 53:1111–1115

    Google Scholar 

  • Baker J, Matthews A (1995) The stable isotope evolution of a metamorphic complex, Naxos, Greece. Contr Mineral Petrol 120:391–403

    Google Scholar 

  • Baker JA, Macpherson CG, Menzies MA, Thirlwall MF, Al-Kadasi M, Mattey DP (2000) Resolving crustal and mantle contributions to continental flood volcanism, Yemen: constraints from mineral oxygen isotope data. J Petrol 41:1805–1820

    Google Scholar 

  • Banner JL, Wasserburg GJ, Dobson PF, Carpenter AB, Moore CH (1989) Isotopic and trace element constraints on the orgin and evolution of saline groundwaters from central Missouri. Geochim Cosmochim Acta 53:383–398

    Google Scholar 

  • Bao H (2015) Sulfate: a time capsule for Earth’s O2, O3 and H2O. Chem Geol 395:108–118

    Google Scholar 

  • Bao H, Gu B (2004) Natural perchlorate has a unique oxygen isotope signature. Environ Sci Tech 38:5073–5077

    Google Scholar 

  • Bao H, Koch PL (1999) Oxygen isotope fractionation in ferric oxide-water systems: low temperature synthesis. Geochim Cosmochim Acta 63:599–613

    Google Scholar 

  • Bao H, Thiemens MH, Farquahar J, Campbell DA, Lee CC, Heine K, Loope DB (2000) Anomalous 17O compositions in massive sulphate deposits on the Earth. Nature 406:176–178

    Google Scholar 

  • Bao H, Thiemens MH, Heine K (2001) Oxygen-17 excesses of the Central Namib gypcretes: spatial distribution. Earth Planet Sci Lett 192:125–135

    Google Scholar 

  • Barkan E, Luz B (2005) High precision measurements of 17O/16O and 18O/16O ratios in H2O. Rapid Commun Mass Spectr 19:3737–3742

    Google Scholar 

  • Barkan E, Luz B (2007) Diffusivity fractionations of H 162 O/H 172 O and H 162 O/H 182 O in air and their implications for isotope hydrology. Rapid Commun Mass Spectrom 21:2999–3005

    Google Scholar 

  • Barkan E, Luz B (2011) The relationship among the three stable isotopes of oxygen in air, seawater and marine photosynthesis. Rapid Commun Mass Spectrom 25:2367–2369

    Google Scholar 

  • Barnes I, Irwin WP, White DE (1978) Global distribution of carbon dioxide discharges and major zones of seismicity. US Geol Survey, Water-Resources Investigation 78–39, Open File Report

    Google Scholar 

  • Barnes JJ, Franchi IA, Anand M, Tartese R, Starkey NA, Koike M, Sano Y, Russell SS (2013) Accurate and precise measurements of the D/H ratio and hydroxyl content in lunar apaites using NanoSIMS. Chem Geol 337–338:48–55

    Google Scholar 

  • Baroni M, Thiemens MH, Delmas RJ, Savarino J (2007) Mass-independent sulfur isotopic composition in stratospheric volcanic eruptions. Science 315:84–87

    Google Scholar 

  • Batenburg AM, Walter S et al (2011) Temporal and spatial variability of the stable isotope composition of atmospheric molecular hydrogen. Atm Chem Phys Discuss 11:10087–10120

    Google Scholar 

  • Baumgartner LP, Rumble D (1988) Transport of stable isotopes. I. Development of a kinetic continuum theory for stable isotope transport. Contr Mineral Petrol 98:417–430

    Google Scholar 

  • Baumgartner LP, Valley JW (2001) Stable isotope transport and contact metamorphic fluid flow. In: Stable Isotope Geochemistry. Rev Mineral Geochem 43:415–467

    Google Scholar 

  • Beaty DW, Taylor HP (1982) Some petrologic and oxygen isotopic relationships in the Amulet Mine, Noranda, Quebec, and their bearing on the origin of Archaean massive sulfide deposits. Econ Geol 77:95–108

    Google Scholar 

  • Bechtel A, Hoernes S (1990) Oxygen isotope fractionation between oxygen of different sites in illite minerals: a potential geothermometer. Contrib Mineral Petrol 104:463–470

    Google Scholar 

  • Bechtel A, Sun Y, Püttmann W, Hoernes S, Hoefs J (2001) Isotopic evidence for multi-stage base metal enrichment in the Kupferschiefer from the Sangershausen Basin, Germany. Chem Geol 176:31–49

    Google Scholar 

  • Becker RH, Epstein S (1982) Carbon, hydrogen and nitrogen isotopes in solvent-extractable organic matter from carbonaceous chondrites. Geochim Cosmochim Acta 46:97–103

    Google Scholar 

  • Bell DR, Ihinger PD (2000) The isotopic composition of hydrogen in nominally anhydrous mantle minerals. Geochim Cosmochim Acta 64:2109–2118

    Google Scholar 

  • Bemis BE, Spero HJ, Bijma J, Lea DW (1998) Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography 13:150–160

    Google Scholar 

  • Bender ML, Keigwin LD (1979) Speculations about upper Miocene changes in abyssal Pacific dissolved bicarbonate δ13C. Earth Planet Sci Lett 45:383–393

    Google Scholar 

  • Bender M, Sowers T, Labeyrie L (1994) The Dole effect and its variations during the last 130000 years as measured in the Vostok ice core. Global Biogeochem Cycles 8:363–376

    Google Scholar 

  • Bennett SA, Rouxel O, Schmidt K, Garbe-Schönberg D, Statham PJ, German CR (2009) Iron isotope fractionation in a buyant hydrothermal plume, 5°S Mid-Atlantic Ridge. Geochim Cosmochim Acta 73:5619–5634

    Google Scholar 

  • Berndt ME, Seal RR, Shanks WC, Seyfried WE (1996) Hydrogen isotope systematics of phase separation in submarine hydrothermal systems: experimental calibration and theoretical models. Geochim Cosmochim Acta 60:1595–1604

    Google Scholar 

  • Berner RA (1990) Atmospheric carbon dioxide levels over Phanerozoic time. Science 249:1382–1386

    Google Scholar 

  • Berner U, Faber E, Scheeder G, Panten D (1995) Primary cracking of algal and landplant kerogens: kinetic models of isotope variations in methane, ethane and propane. Chem Geol 126:233–245

    Google Scholar 

  • Beucher CP, Brzezinski MA, Jones JL (2008) Sources and biological fractionation of silicon isotopes in the Eastern Equatorial Pacific. Geochim Cosmochim Acata 72:3063–3073

    Google Scholar 

  • Bickle MJ, Baker J (1990) Migration of reaction and isotopic fronts in infiltration zones: assessments of fluid flux in metamorphic terrains. Earth Planet Sci Lett 98:1–13

    Google Scholar 

  • Bidigare RR et al (1997) Consistent fractionation of 13C in nature and in the laboratory: growth-rate effects in some haptophyte algae. Global Biogeochem Cycles 11:279–292

    Google Scholar 

  • Bindeman IN, Eiler JN et al (2005) Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth Planet Sci Lett 235:480–496

    Google Scholar 

  • Bindeman IN, Ponomareva VV, Bailey JC, Valley JW (2004) Volcanic arc of Kamchatka: a province with high-δ18O magma sources and large scale 18O/16O depletion of the upper crust. Geochim Cosmochim Acta 68:841–865

    Google Scholar 

  • Bindeman IN, Eiler JM, Wing BA, Farquhar J (2007) Rare sulfur and triple oxygen isotope geochemistry of volcanogenic sulfate aerosols. Geochim Cosmochim Acta 71:2326–2343

    Google Scholar 

  • Bindeman IN, Gurenko A, Sigmarsson O, Chaussidon M (2008) Oxygen isotope heterogeneity and disequilibria of olivine crystals in large volume Holocene basalts from Iceland: evidence for magmatic digestion and erosion of Pleistocene hyaloclastites. Geochim Cosmochim Acta 72:4397–4420

    Google Scholar 

  • Bird MI, Ascoughz PL (2012) Isotopes in pyrogenic carbon: a review. Org Geochem 42:1529–1539

    Google Scholar 

  • Bird MI, Chivas AR (1989) Stable-isotope geochronology of the Australian regolith. Geochim Cosmochim Acta 53:3239–3256

    Google Scholar 

  • Bird MI, Longstaffe FJ, Fyfe WS, Bildgen P (1992) Oxygen isotope systematics in a multiphase weathering system in Haiti. Geochim Cosmochim Acta 56:2831–2838

    Google Scholar 

  • Black JR, Epstein E, Rains WD, Yin Q-Z, Casey WD (2008) Magnesium isotope fractionation during plant growth. Environ Sci Technol 42:7831–7836

    Google Scholar 

  • Blair N, Leu A, Munoz E, Olsen J, Kwong E, Desmarais D (1985) Carbon isotopic fractionation in heterotrophic microbial metabolism. Appl Environ Microbiol 50:996–1001

    Google Scholar 

  • Blake RE, O’Neil JR, Garcia GA (1997) Oxygen isotope systematics of biologically mediated reactions of phosphate: I Microbial degradation of organophosphorus compounds. Geochim Cosmochim Acta 61:441–4422

    Google Scholar 

  • Blake RE, O’Neil JR, Surkov A (2005) Biogeochemical cycling of phosphorus: insights from oxygen isotope effects of phosphoenzymes. Am J Sci 305:596–620

    Google Scholar 

  • Blattner P, Dietrich V, Gansser A (1983) Contrasting 18O enrichment and origins of High Himalayan and Transhimalayan intrusives. Earth Planet Sci Lett 65:276–286

    Google Scholar 

  • Blisnink PM, Stern LA (2005) Stable isotope altimetry: a critical review. Am J Sci 305:1033–1074

    Google Scholar 

  • Boctor NZ, Alexander CM, Wang J, Hauri E (2003) The sources of water in Martian meteorites: clues from hydrogen isotopes. Geochim Cosmochim Acta 67:3971–3989

    Google Scholar 

  • Boehme SE, Blair NE, Chanton JP, Martens CS (1996) A mass balance of 13C and 12C in an organic-rich methane-producing marine sediment. Geochim Cosmochim Acta 60:3835–3848

    Google Scholar 

  • Bogard DD, Johnson P (1983) Martian gases in an Antarctic meteorite. Science 221:651–654

    Google Scholar 

  • Böhlke JK, Sturchio NC, Gu B, Horita J, Brown GM, Jackson WA, Batista Jr, Hatzinger PB (2005) Perchlorate isotope forensics. Anal Chem 77:7838–7842

    Google Scholar 

  • Bolliger C, Schroth MH, Bernasconi SM, Kleikemper J, Zeyer J (2001) Sulfur isotope fractionation during microbial reduction by toluene-degrading bacteria. Geochim Cosmochim Acta 65:3289–3299

    Google Scholar 

  • Böttcher ME, Brumsack HJ, Lange GJ (1998) Sulfate reduction and related stable isotope (34S, 18O) variations in interstitial waters from the eastern Mediterranean. Proc Ocean Drill Program, Sci Res 160:365–373

    Google Scholar 

  • Böttcher ME, Thamdrup B, Vennemann TW (2001) Oxygen and sulfur isotope fractionation during anaerobic bacterial disproportionation of elemental sulfur. Geochim Cosmochim Acta 65:1601–1609

    Google Scholar 

  • Bottinga Y, Craig H (1969) Oxygen isotope fractionation between CO2 and water and the isotopic composition of marine atmospheric CO2. Earth Planet Sci Lett 5:285–295

    Google Scholar 

  • Bottomley DJ, Katz A, Chan LH, Starinsky A, Douglas M, Clark ID, Raven KG (1999) The origin and evolution of Canadian Shield brines: evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave craton. Chem Geol 155:295–320

    Google Scholar 

  • Bowers TS, Taylor HP (1985) An integrated chemical and isotope model of the origin of midocean ridge hot spring systems. J Geophys Res 90:12583–12606

    Google Scholar 

  • Bowman JR, O’Neil JR, Essene EJ (1985) Contact skarn formation at Elkhorn, Montana. II. Origin and evolution of C-O-H skarn fluids. Am J Sci 285:621–660

    Google Scholar 

  • Boyd SR, Pillinger CT (1994) A preliminary study of 15N/14N in octahedral growth from diamonds. Chem Geol 116:43–59

    Google Scholar 

  • Boyd SR, Pillinger CT, Milledge HJ, Mendelssohn MJ, Seal M (1992) C and N isotopic composition and the infrared absorption spectra of coated diamonds: evidence for the regional uniformity of CO2-H2O rich fluids in lithospheric mantle. Earth Planet Sci Lett 109:633–644

    Google Scholar 

  • Bradley AS, Summons RE (2010) Multiple origins of methane at the Lost City hydrothermal field. Earth Planet Sci Lett 297:34–41

    Google Scholar 

  • Brandriss ME, O’Neil JR, Edlund MB, Stoermer EF (1998) Oxygen isotope fractionation between diatomaceous silica and water. Geochim Cosmochim Acta 62:1119–1125

    Google Scholar 

  • Brenninkmeijer CAM (1993) Measurement of the abundance of 14CO in the atmosphere and the 13C/12C and 18O/16O ratio of atmospheric CO with applications in New Zealand and Australia. J Geophys Res 98:10595–10614

    Google Scholar 

  • Brenninkmeijer CAM, Lowe DC, Manning MR, Sparks RJ, van Velthoven PFJ (1995) The 13C, 14C and 18O isotopic composition of CO, CH4 and CO2 in the higher southern latitudes and lower stratosphere. J Geophys Res 100:26163–26172

    Google Scholar 

  • Brenninkmeijer CAM, Janssen C, Kaiser J, Röckmann T, Rhee TS, Assonov SS (2003) Isotope effects in the chemistry of atmospheric trace compounds. Chem Rev 103:5125–5161

    Google Scholar 

  • Bridgestock LJ, Williams H et al (2014) Unlocking the zinc isotope systematics of iron meteorites. Earth Planet Sci Lett 400:153–164

    Google Scholar 

  • Broecker WS (1974) Chemical oceanography. Harcourt Brace Jovanovich, New York

    Google Scholar 

  • Brüchert V, Pratt LM (1996) Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from the St Andrew Bay, Florida, USA. Geochim Cosmochim Acta 60:2325–2332

    Google Scholar 

  • Brumsack HJ, Zuleger E, Gohn E, Murray RW (1992) Stable and radiogenic isotopes in pore waters from Leg 1217, Japan Sea. Proc Ocean Drill Program 127(128):635–649

    Google Scholar 

  • Brunner B, Bernasconi SM, Kleikemper J, Schroth MH (2005) A model of oxygen and sulfur isotope fractionation in sulfate during bacterial sulfate reduction. Geochim Cosmochim Acta 69:4773–4785

    Google Scholar 

  • Bryant JD, Koch PL, Froelich PN, Showers WJ, Genna BJ (1996) Oxygen isotope partitioning between phosphate and carbonate in mammalian apatite. Geochim Cosmochim Acta 60:5145–5148

    Google Scholar 

  • Buhl D, Neuser RD, Richter DK, Riedel D, Roberts B, Strauss H, Veizer J (1991) Nature and nurture: environmental isotope story of the river Rhine. Naturwissenschaften 78:337–346

    Google Scholar 

  • Burdett JW, Arthur MA, Richardson A (1989) A Neogene seawater sulfate isotope age curve from calcareous pelagic microfossils. Earth Planet Sci Lett 94:189–198

    Google Scholar 

  • Burke A, Adkins JF et al (2013) Constraining the modern riverine sulphur isotope budget. Abstr VM Goldschmidt Conf

    Google Scholar 

  • Burruss RC, Laughrey CD (2010) Carbon and hydrogen isotope reversal in deep basin gas: evidence for limits to the stability of hydrocarbons. Org Geochem 41:1285–1296

    Google Scholar 

  • Butler IB, Archer C, Vance D, Oldroyd A, Rickard D (2005) Fe isotope fractionation on FeS formation in ambient aqueous solution. Earth Planet Sci Lett 236:430–442

    Google Scholar 

  • Cabral RA, Jackson MG, Rose-Koga EF, Koga KT, Whitehouse MJ, Antonelli MA, Farquhar J, Day JM, Hauri EH (2013) Anomaleous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature 496:490–493

    Google Scholar 

  • Calmels D, Gaillerdet J, Brenot A, France-Lanord C (2007) Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: climatic perspectives. Geology 35:1003–1006

    Google Scholar 

  • Cameron EM (1982) Sulphate and sulphate reduction in early Precambrian oceans. Nature 296:145–148

    Google Scholar 

  • Cameron EM, Hall GEM, Veizer J, Krouse HR (1995) Isotopic and elemental hydrogeochemistry of a major river system: Fraser River, British Columbia, Canada. Chem Geol 122:149–169

    Google Scholar 

  • Canfield DE, Teske A (1996) Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382:127–132

    Google Scholar 

  • Canfield DE, Thamdrup B (1994) The production of 34S depleted sulfide during bacterial disproportion to elemental sulfur. Science 266:1973–1975

    Google Scholar 

  • Cartigny P (2005) Stable isotopes and the origin of diamond. Elements 1:79–84

    Google Scholar 

  • Cartigny P (2010) Mantle-related carbonados? Geochemical insights from diamonds from the Dachine komatiite (French Guiana). Earth Planet Sci Lett 296:329–339

    Google Scholar 

  • Cartigny P, Marty B (2013) Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere-crust-mantle connection. Elements 9:359–366

    Google Scholar 

  • Cartigny P, Boyd SR, Harris JW, Javoy M (1997) Nitrogen isotopes in peridotitic diamonds from Fuxian, China: the mantle signature. Terra Nova 9:175–179

    Google Scholar 

  • Cartigny P, Harris JW, Javoy M (1998) Subduction related diamonds? The evidence for a mantle-derived origin from coupled delta 13C - delta 15N determinations. Chem Geol 147:147–159

    Google Scholar 

  • Cartigny P, Palot M, Thomassot E, Harris JW (2014) Diamond formation: a stable isotope perspective. Ann Rev Earth Planet Sci 42:699–732

    Google Scholar 

  • Cartwright I, Valley JW (1991) Steep oxygen isotope gradients at marble-metagranite contacts in the NW Adirondacks Mountains, N.Y. Earth Planet Sci Lett 107:148–163

    Google Scholar 

  • Cerling TE (1991) Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. Am J Sci 291:377–400

    Google Scholar 

  • Cerling TE, Sharp ZD (1996) Stable carbon and oxygen isotope analyses of fossil tooth enamel using laser ablation. Palaeo Palaeo Palaeoecol 126:173–186

    Google Scholar 

  • Cerling TE, Brown FH, Bowman JR (1985) Low-temperature alteration of volcanic glass: hydration, Na, K, 18O and Ar mobility. Chem Geol 52:281–293

    Google Scholar 

  • Cerling TE, Wang Y, Quade J (1993) Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361:344–345

    Google Scholar 

  • Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158

    Google Scholar 

  • Chakrabarti R, Knoll AH, Jacobsen SB, Fischer WW (2012) Si isotope variability in Proterozoic cherts. Geochim Cosmochim Acta (in press)

    Google Scholar 

  • Chamberlain CP, Poage MA (2000) Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals. Geology 28:115–118

    Google Scholar 

  • Chapligin B, Leng MJ et al (2011) Inter-laboratory comparison of oxygen isotope compositions from biogenic silica. Geochim Cosmochim Acta 75:7242–7256

    Google Scholar 

  • Chaussidon M, Marty B (1995) Primitive boron isotope composition of the mantle. Science 269:383–386

    Google Scholar 

  • Chaussidon M, Albarede F, Sheppard SMF (1987) Sulphur isotope heterogeneity in the mantle from ion microprobe measurements of sulphide inclusions in diamonds. Nature 330:242–244

    Google Scholar 

  • Chaussidon M, Albarede F, Sheppard SMF (1989) Sulphur isotope variations in the mantle from ion microprobe analysis of microsulphide inclusions. Earth Planet Sci Lett 92:144–156

    Google Scholar 

  • Chazot G, Lowry D, Menzies M, Mattey D (1997) Oxygen isotope compositions of hydrous and anhydrous mantle peridotites. Geochim Cosmochim Acta 61:161–169

    Google Scholar 

  • Chen H, Savage PS, Teng FZ, Helz RT, Moynier F (2013) Zinc isotopic fractionation during magmatic differentiation and the isotopic composition of bulk Earth. Earth Planet Sci Lett 369–370:34–42

    Google Scholar 

  • Chiba H, Sakai H (1985) Oxygen isotope exchange rate between dissolved sulphate and water at hydrothermal temperatures. Geochim Cosmochim Acta 49:993–1000

    Google Scholar 

  • Chivas AR, Andrew AS, Sinha AK, O’Neil JR (1982) Geochemistry of Pliocene-Pleistocene oceanic arc plutonic complex, Guadalcanal. Nature 300:139–143

    Google Scholar 

  • Ciais P, Tans PP, Trolier M, White JWC, Francey RJ (1995) A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science 269:1098–1102

    Google Scholar 

  • Cifuentes LA, Fogel ML, Pennock JR, Sharp JR (1989) Biogeochemical factors that influence the stable nitrogen isotope ratio of dissolved ammonium in the Delaware Estuary. Geochim Cosmochim Acta 53:2713–2721

    Google Scholar 

  • Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:199–260

    Google Scholar 

  • Clayton RN (2002) Self-shielding in the solar nebula. Nature 451:860–861

    Google Scholar 

  • Clayton RN (2004) Oxygen isotopes in meteorites. In: Treatise on geochemistry, vol 1. Elsevier, Amsterdam, pp 129–142

    Google Scholar 

  • Clayton RN, Mayeda TK (1996) Oxygen isotope studies of achondrites. Geochim Cosmochim Acta 60:1999–2017

    Google Scholar 

  • Clayton RN, Mayeda TK (1999) Oxygen isotope studies of carbonaceous chondrites. Geochim Cosmochim Acta 63:2089–2104

    Google Scholar 

  • Clayton DD, Nittler LR (2004) Astrophysics with presolar stardust. Ann Rev Astron Astrophys 42:39–78

    Google Scholar 

  • Clayton RN, Steiner A (1975) Oxygen isotope studies of the geothermal system at Warakei, New Zealand. Geochim Cosmochim Acta 39:1179–1186

    Google Scholar 

  • Clayton RN, Friedman I, Graf DL, Mayeda TK, Meents WF, Shimp NF (1966) The origin of saline formation waters. 1. Isotopic composition. J Geophys Res 71:3869–3882

    Google Scholar 

  • Clayton RN, Muffler LJP, White (1968) Oxygen isotope study of calcite and silicates of the River Branch No. I well, Salton Sea Geothermal Field, California. Am J Sci 266:968–979

    Google Scholar 

  • Clayton RN, Grossman L, Mayeda TK (1973a) A component of primitive nuclear composition in carbonaceous meteorites. Science 182:485–488

    Google Scholar 

  • Clayton RN, Hurd JM, Mayeda TK (1973b) Oxygen isotopic compositions of Apollo 15, 16 and 17 samples and their bearing on lunar origin and petrogenesis. In: Proceedings of 4th lunar Science Conference, Geochimica Cosmochimica Acta Supplement, vol 2, pp 1535–1542

    Google Scholar 

  • Cliff SS, Thiemens MH (1997) The 18O/16O and 17O/16O ratios in atmospheric nitrous oxide: a mass independent anomaly. Science 278:1774–1776

    Google Scholar 

  • Cliff SS, Brenninkmeijer CAM, Thiemens MH (1999) First measurement of the 18O/16O and 17O/16O ratios in stratospheric nitrous oxide: a mass-independent anomaly. J Geophys Res 104:16171–16175

    Google Scholar 

  • Cline JD, Kaplan IR (1975) Isotopic fractionation of dissolved nitrate during denitrification in the eastern tropical North Pacific Ocean. Mar Chem 3:271–299

    Google Scholar 

  • Clor LE, Fischer TP, Hilton DR, Sharp ZD, Hartono U (2005) Volatile and N isotope chemistry of the Molucca Sea collision zone: tracing source components along the Sangihe arc, Indonesia. Geochem Geophys Geosys 6:Q03J14. doi:10.1029/2004GC00825

  • Cobert F, Schmitt AD, Bourgeade P, Labolle F, Badot PM, Chabaux F, Stille P (2011) Experimental identification of Ca isotopic fractionations in higher plants. Geochim Cosmochim Acta 75:5467–5482

    Google Scholar 

  • Cohen AS, Al Coe, Kemp DB (2007) The Late-Paleocene-Early Eocene and Toarcian (Early Jurassic) carbon isotope excursions: a comparison of their time scales, associated environmental changes, causes and consequences. J Geol Soc 164:1093–1108

    Google Scholar 

  • Cole JE, Fairbanks RG (1990) The southern oscillation recorded in the δ18O of corals from Tarawa atoll. Paleoceanography 5:669–683

    Google Scholar 

  • Cole JE, Fairbanks RG, Shen GT (1993) The spectrum of recent variability in the southern oscillation: results from a Tarawa atoll. Science 260:1790–1793

    Google Scholar 

  • Colman AS, Blake RE, Karl DM, Fogel ML, Turekian KK (2005) Marine phosphate oxygen isotopes and organic matter remineralization in the oceans. PNAS 102:13023–13028

    Google Scholar 

  • Connolly CA, Walter LM, Baadsgaard H, Longstaffe F (1990) Origin and evolution of formation fluids, Alberta Basin, western Canada sedimentary basin: II. Isotope systematics and fluid mixing. Appl Geochem 5:397–414

    Google Scholar 

  • Cook N, Hoefs J (1997) Sulphur isotope characteristics of metamorphosed Cu-(Zn) volcanogenic massive sulphide deposits in the Norwegian Caledonides. Chem Geol 135:307–324

    Google Scholar 

  • Cooper KM, Eiler JM, Asimov PD, Langmuir CH (2004) Oxygen isotope evidence for the origin of enriched mantle beneath the mid-Atlantic ridge. Earth Planet Sci Lett 220:297–316

    Google Scholar 

  • Coplen TB (2007) Calibration of the calcite-water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochim Cosmochim Acta 71:3948–3957

    Google Scholar 

  • Coplen TB, Hanshaw BB (1973) Ultrafiltration by a compacted clay membrane. I. Oxygen and hydrogen isotopic fractionation. Geochim Cosmochim Acta 37:2295–2310

    Google Scholar 

  • Cortecci G, Longinelli A (1970) Isotopic composition of sulfate in rain water, Pisa, Italy. Earth Planet Sci Lett 8:36–40

    Google Scholar 

  • Craddock PR, Dauphas N (2010) Iron isotopic compositions of geological reference materials and chondrites. Geostand Geoanal Res 35:101–123

    Google Scholar 

  • Craddock PR, Warren JM, Dauphas N (2013) Abyssal peridotites reveal the near-chondritic Fe isotope composition of the Earth. Earth Planet Sci Lett 365:63–76

    Google Scholar 

  • Craig H (1953) The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta 3:53–92

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Google Scholar 

  • Craig H, Gordon L (1965) Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Symposium on marine geochemistry. Graduate School of Oceanography, vol 3. University of Rhode Island, OCC Publications, p 277

    Google Scholar 

  • Craig H, Boato G, White DE (1956) Isotopic geochemistry of thermal waters. In: Proceedings of 2nd Conference on Nuclear Process Geological Settings, p 29

    Google Scholar 

  • Craig H, Chou CC, Welhan JA, Stevens CM, Engelkemeier A (1988) The isotopic composition of methane in polar ice cores. Science 242:1535–1539

    Google Scholar 

  • Criss RE, Taylor HP (1986) Meteoric-hydrothermal systems. Stable isotopes in high temperature geological processes. Rev Mineral 16:373–424

    Google Scholar 

  • Criss RE, Champion DE, McIntyre DH (1985) Oxygen isotope, aeromagnetic and gravity anomalies associated with hydrothermally altered zones in the Yankee Fork Mining District, Custer County, Idaho. Econ Geol 80:1277–1296

    Google Scholar 

  • Criss RE, Fleck RJ, Taylor HP (1991) Tertiary meteoric hydrothermal systems and their relation to ore deposition, Northwestern United States and Southern British Columbia. J Geophys Res 96:133335–13356

    Google Scholar 

  • Crowson RA, Showers WJ, Wright EK, Hoering TC (1991) Preparation of phosphate samples for oxygen isotope analysis. Anal Chem 63:2397–2400

    Google Scholar 

  • Curry WB, Duplessy JC, Labeyrie LD, Shackleton NJ (1988) Quaternary deep-water circulation changes in the distribution of δ13C of deep water ΣCO2 between the last glaciation and the Holocene. Paleoceanography 3:317–342

    Google Scholar 

  • Cypionka H, Smock A, Böttcher MA (1998) A combined pathway of sulfur compound disproportionation in Desulfovibrio desulfuricans. FEMS Microbiol Lett 166:181–186

    Google Scholar 

  • D‘Errico ME, Lackey JS, Surpless BE, Loewy SL, Wooden JL, Barnes JD, Strickland A, Valley JW (2012) A detailed record of shallow hydrothermal fluid flow in the Sierra Nevada magmatic arc from low-d18O skarn garnets. Geology 40:763–766

    Google Scholar 

  • Daeron M, Guo W et al (2011) !3C18O clumping in speleothems: observations from natural caves and precipitation experiments. Geochim Cosmochim Acta 75:3303–3317

    Google Scholar 

  • Dansgaard W (1964) Stable isotope in precipitation. Tellus 16:436–468

    Google Scholar 

  • Dansgaard W et al (1993) Evidence for general instability of past climate from a 250 kyr ice-core record. Nature 364:218–220

    Google Scholar 

  • Dauphas N, Marty B (1999) Heavy nitrogen in carbonatites of the Kola peninsula: a possible signature of the deep mantle. Science 286:2488–2490

    Google Scholar 

  • De Hoog JCM, Taylor BE, Van Bergen MJ (2009) Hydrogen-isotope systematics in degassing basaltic magma and application to Indonesian arc basalts. Chem Geol 266:256–266

    Google Scholar 

  • De La Rocha CL, De Paolo DJ (2000) Isotopic evidence for variations in the marine calcium cycle over the Cenozoic. Science 289:1176–1178

    Google Scholar 

  • De Moor JM, Fischer TP et al (2013) Sulfur degassing at Erta Ale (Ethiopia) and Masaya (Nicaragua) volcanoes: implications for degassing processes and oxygen fugacities of basaltic systems. Geochem Geophys Geosys 14(10). doi:10.102/ggge.20255

  • De Moor JM, Fischer TP, Sharp ZD, Hauri EH, Hilton DR, Atudorei V (2010) Sulfur isotope fractionation during the May 2003 eruption of Anatahan volcano, Mariana Islands: implications for sulfur sources and plume processes. Geochim Cosmochim Acta 74:5382–5397

    Google Scholar 

  • De Souza GF, Reynolds BC, Johnson GC, Bullister JL, Bourdon B (2012a) Southern Ocean control of silicon stable isotope distribution in the deep Atlantic Ocean. Global Biogeochem Cycl 26:GB2035. doi:10.1029/2011GB004141

  • Degens ET, Epstein S (1962) Relationship between 18O/16O ratios in coexisting carbonates, cherts and diatomites. Bull Am Assoc Pet Geol 46:534–535

    Google Scholar 

  • Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes JC (eds) Handbook of environmental geochemistry, Vol l. Elsevier, New York Amsterdam, pp 239–406

    Google Scholar 

  • Deines P (1989) Stable isotope variations in carbonatites. In: Carbonatites, genesis and evolution, K.Bell (ed) Unwin Hyman, London 619p

    Google Scholar 

  • Deines P, Gold DP (1973) The isotopic composition of carbonatite and kimberlite carbonates and their bearing on the isotopic composition of deep-seated carbon. Geochim Cosmochim Acta 37:1709–1733

    Google Scholar 

  • Deines P, Haggerty SE (2000) Small-scale oxygen isotope variations and petrochemistry of ultradeep (>300 km) and transition zone xenoliths. Geochim Cosmochim Acta 64:117–131

    Google Scholar 

  • Deines P, Gurney JJ, Harris JW (1984) Associated chemical and carbon isotopic composition variations in diamonds from Finsch and Premier Kimberlite, South Africa. Geochim Cosmochim Acta 48:325–342

    Google Scholar 

  • Delaygue G, Jouzel J, Dutay JC (2000) Oxygen-18 - salinity relationship simulated by an oceanic general simulation model. Earth Planet Sci Lett 178:113–123

    Google Scholar 

  • Deloule E, Robert F (1995) Interstellar water in meteorites? Geochim Cosmochim Acta 59:4695–4706

    Google Scholar 

  • Deloule E, Albarede F, Sheppard SMF (1991) Hydrogen isotope heterogeneities in the mantle from ionprobe analysis of amphiboles from ultramafic rocks. Earth Planet Sci Lett 105:543–553

    Google Scholar 

  • Deloule E, Robert F, Doukhan JC (1998) Interstellar hydroxyl in meteoritic chondrules: implications for the origin of water in the inner solar system. Geochim Cosmochim Acta 62:3367–3378

    Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Google Scholar 

  • DeNiro MJ, Epstein S (1979) Relationship between the oxygen isotope ratios of terrestrial plant cellulose, carbon dioxide and water. Science 204:51–53

    Google Scholar 

  • DeNiro MJ, Epstein S (1981) Isotopic composition of cellulose from aquatic organisms. Geochim Cosmochim Acta 45:1885–1894

    Google Scholar 

  • Dennis KJ, Schrag DP (2010) Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. Geochim Cosmochim Acta 74:4110–4122

    Google Scholar 

  • Dennis PF, Rowe PJ, Atkinson TC (2001) The recovery and isotopic measurement of water from fluid inclusions in speleothems. Geochim Cosmochim Acta 65:871–884

    Google Scholar 

  • Derry LA, Kaufmann AJ, Jacobsen SB (1992) Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes. Geochim Cosmochim Acta 56:1317–1329

    Google Scholar 

  • Des Marais DJ (2001) Isotopic evolution of the biogeochemical carbon cycle during the Precambrian. In: Valley J, Cole D (eds) Stable isotope geochemistry. Rev Mineralogy 43:555–578

    Google Scholar 

  • Des Marais DJ, Moore JG (1984) Carbon and its isotopes in mid-oceanic basaltic glasses. Earth Planet Sci Lett 69:43–57

    Google Scholar 

  • Deutsch S, Ambach W, Eisner H (1966) Oxygen isotope study of snow and firn of an Alpine glacier. Earth Planet Sci Lett 1:197–201

    Google Scholar 

  • Dickens GR (2003) Rethinking the global carbon cycle with a large dynamic and micrmediated gas hydrate capacitor. Earth Planet Sci Lett 213:169–182

    Google Scholar 

  • Dickson JAD, Coleman ML (1980) Changes in carbon and oxygen isotope composition during limestone diagenesis. Sedimentology 27:107–118

    Google Scholar 

  • Dickson JAD, Smalley PC, Raheim A, Stijfhoorn DE (1990) Intracrystalline carbon and oxygen isotope variations in calcite revealed by laser micro-sampling. Geology 18:809–811

    Google Scholar 

  • Dietzel M, Tang J, Leis A, Köhler SJ (2009) Oxygen isotopic fractionation during inorganic calcite precipitation—effects of temperature, precipitation rate and pH. Chem Geol 268:107–115

    Google Scholar 

  • Dipple GM, Ferry JM (1992) Fluid flow and stable isotope alteration in rocks at elevated temperatures with applications to metamorphism. Geochim Cosmochim Acta 56:3539–3550

    Google Scholar 

  • Dobson PF, O’Neil JR (1987) Stable isotope composition and water contents of boninite series volcanic rocks from Chichi-jima, Bonin Islands, Japan. Earth Planet Sci Lett 82:75–86

    Google Scholar 

  • Dobson PF, Epstein S, Stolper EM (1989) Hydrogen isotope fractionation between coexisting vapor and silicate glasses and melts at low pressure. Geochim Cosmochim Acta 53:2723–2730

    Google Scholar 

  • Dodd JP, Sharp ZD (2010) A laser fluorination method for oxygen isotope analysis of biogenic silica and a new oxygen isotope calibration of modern diatoms in freshwater environments. Geochim Cosmochim Acta 74:1381–1390

    Google Scholar 

  • Dodd JP, Sharp ZD, Fawcett PJ, Brearley AJ, McCubbin FM (2013) Rapid post-mortem maturation of diatom silica oxygen isotope values. Geochem Geophys Geosys 13(9). doi:10.1029/2011GC004019

  • Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contr Mineral Petrol 40:259–274

    Google Scholar 

  • Dole M, Lange GA, Rudd DP, Zaukelies DA (1954) Isotopic composition of atmospheric oxygen and nitrogen. Geochim Cosmochim Acta 6:65–78

    Google Scholar 

  • Donahue TM, Hoffman JH, Hodges RD, Watson AJ (1982) Venus was wet: a measurement of the ratio of deuterium to hydrogen. Science 216:630–633

    Google Scholar 

  • Dorendorf F, Wiechert U, Wörner G (2000) Hydrated sub-arc mantle: a source for the Kluchevskoy volcano, Kamchatka, Russia. Earth Planet Sci Lett 175:69–86

    Google Scholar 

  • Drake MJ, Righter K (2002) Determining the composition of the Earth. Nature 416:39–44

    Google Scholar 

  • Driesner T (1997) The effect of pressure on deuterium-hydrogen fractionation in high-temperature water. Science 277:791–794

    Google Scholar 

  • Driesner T, Seward TM (2000) Experimental and simulation study of salt effects and pressure/density effects on oxygen and hydrogen stable isotope liquid-vapor fractionation for 4–5 molal aqueous NaCl and KCl solutions to 400 °C. Geochim Cosmochim Acta 64:1773–1784

    Google Scholar 

  • Dunbar RB, Wellington GM, Colgan MW, Glynn PW (1994) Eastern sea surface temperature since 1600 A.D.: The δ18O record of climate variability in Galapagos corals. Paleoceanography 9:291–315

    Google Scholar 

  • Duplessy JC, Shackleton NJ, Fairbanks RG, Labeyrie L, Oppo D, Kallel N (1988) Deepwater source variations during the last climatic cycle and their impact on the global circulation. Paleoceanography 3:343–360

    Google Scholar 

  • Durka W, Schulze ED, Gebauer G, Voerkelius S (1994) Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372:765–767

    Google Scholar 

  • Ehhalt D, Rohrer F (2009) The tropospheric cycle of H2: a critical review. Tellus 61:500–535

    Google Scholar 

  • Eiler JM (2007) The study of naturally-occuring multiply-substituted isotopologues. Earth Planet Sci Lett 262:309–327

    Google Scholar 

  • Eiler JM (2013) The isotopic anatomies of molecules and minerals. Ann Rev Earth Planet Sci 41:411–441

    Google Scholar 

  • Eiler JM, Kitchen N (2004) Hydrogen isotope evidence for the origin and evolution of the carbonaceous chondrites. Geochim Cosmochim Acta 68:1395–1411

    Google Scholar 

  • Eiler JM, Baumgartner LP, Valley JW (1992) Intercrystalline stable isotope diffusion: a fast grain boundary model. Contr Mineral Petrol 112:543–557

    Google Scholar 

  • Eiler JM, Valley JW, Baumgartner LP (1993) A new look at stable isotope thermometry. Geochim Cosmochim Acta 57:2571–2583

    Google Scholar 

  • Eiler JM, Farley KA, Valley JW, Hofmann A, Stolper EM (1996) Oxygen isotope constraints on the sources of Hawaiian volcanism. Earth Planet Sci Lett 144:453–468

    Google Scholar 

  • Eiler JM, Crawford A, Elliott T, Farley KA, Valley JW, Stolper EM (2000) Oxygen isotope geochemistry of oceanic-arc lavas. J Petrol 41:229–256

    Google Scholar 

  • Eiler JM, Stolper EM, McCanta M (2011) Intra- and interc rystalline oxygen isotope variations in minerals from basalts and peridotites. J Petrol 52:1393–1413

    Google Scholar 

  • Eiler JM et al (2014) Frontiers of stable isotope geoscience. Chem Geol 372:119–143

    Google Scholar 

  • Eldridge CS, Compston W, Williams IS, Both RA, Walshe JL, Ohmoto H (1988) Sulfur isotope variability in sediment hosted massive sulfide deposits as determined using the ion microprobe SHRIMP. I. An example from the Rammelsberg ore body. Econ Geol 83:443–449

    Google Scholar 

  • Eldridge CS, Compston W, Williams IS, Harris JW, Bristow JW (1991) Isotopic evidence for the involvement of recycled sediments in diamond formation. Nature 353:649–653

    Google Scholar 

  • Eldridge CS, Williams IS, Walshe JL (1993) Sulfur isotope variability in sediment hosted massive sulfide deposits as determined using the ion microprobe SHRIMP. II. A study of the H.Y.C. deposit at McArthur River, Northern Territory, Australia. Econ Geol 88:1–26

    Google Scholar 

  • Elkins LJ, Fischer TP, Hilton DR, Sharp ZD, McKnight S, Walker J (2006) Tracing nitrogen in volcanic and geothermal volatiles from the Nicaraguan volcanic front. Geochim Cosmochim Acta 70:5215–5235

    Google Scholar 

  • Elliot M, Labeyrie L, Duplessy JC (2002) Changes in North Atlantic deep-water formation associated with the Dansgaard-Oeschger temperature oscillations (60–10 ka). Quat Sci Rev 21:1153–1165

    Google Scholar 

  • Elliott T, Jeffcoate AB, Bouman C (2004) The terrestrial Li isotope cycle: light-weight constraints on mantle convection. Earth Planet Sci Lett 220:231–245

    Google Scholar 

  • Emiliani C (1955) Pleistocene temperatures. J Geol 63:538–578

    Google Scholar 

  • Emiliani C (1978) The cause of the ice ages. Earth Planet Sci Lett 37:349–354

    Google Scholar 

  • Engel MH, Macko SA, Silfer JA (1990) Carbon isotope composition of individual amino acids in the Murchison meteorite. Nature 348:47–49

    Google Scholar 

  • Epica community members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628

    Google Scholar 

  • Epstein S, Yapp CJ, Hall JH (1976) The determination of the D/H ratio of non-exchangeable hydrogen in cellulose extracted from aquatic and land plants. Earth Planet Sci Lett 30:241–251

    Google Scholar 

  • Epstein S, Thompson P, Yapp CJ (1977) Oxygen and hydrogen isotopic ratios in plant cellulose. Science 198:1209–1215

    Google Scholar 

  • Epstein S, Krishnamurthy RV, Cronin JR, Pizzarello S, Yuen GU (1987) Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite. Nature 326:477–479

    Google Scholar 

  • Erez J, Luz B (1983) Experimental paleotemperature equation for planktonic foraminifera. Geochim Cosmochim Acta 47:1025–1031

    Google Scholar 

  • Eslinger EV, Savin SM (1973) Oxygen isotope geothermometry of the burial metamorphic rocks of the Precambrian Belt Supergroup, Glacier National Park, Montana. Bull Geol Soc Am 84:2549–2560

    Google Scholar 

  • Estep MF, Hoering TC (1980) Biogeochemistry of the stable hydrogen isotopes. Geochim Cosmochim Acta 44:1197–1206

    Google Scholar 

  • Etiope G, Schoell M (2014) Abiotic gas: atypical, but not rare. Elements 10:291–296

    Google Scholar 

  • Etiope G, Sherwood-Lollar B (2013) Abiotic methane on Earth. Rev Geophys 51:276–299

    Google Scholar 

  • Evans BW, Hattori K, Baronnet A (2013) Serpentinite: what, why where? Elements 9:99–106

    Google Scholar 

  • Exley RA, Mattey DP, Boyd SR, Pillinger CT (1987) Nitrogen isotope geochemistry of basaltic glasses: implications for mantle degassing and structure. Earth Planet Sci Lett 81:163–174

    Google Scholar 

  • Fairbanks RG (1989) A 17000 year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature 342:637–642

    Google Scholar 

  • Fantle MS (2010) Evaluating the Ca isotope proxy. Am J Sci 310:194–210

    Google Scholar 

  • Fantle MS, De Paolo DJ (2005) Variations in the marine Ca cycle over the past 20 million years. Earth Planet Sci Lett 237:102–117

    Google Scholar 

  • Farkas J, Buhl D, Blenkinsop J, Veizer J (2007) Evolution of the oceanic calcium cycle during the late Mesozoic: evidence from δ44/40 Ca of marine skeletal carbonates. Earth Planet Sci Lett 253:96–111

    Google Scholar 

  • Farquhar J, Thiemens MH (2000) The oxygen cycle of the Martian atmosphere-regolith system: Δ17Ο of secondary phases in Nakhla and Lafayette. J Geophys Res 105:11991–11998

    Google Scholar 

  • Farquhar GD et al (1993) Vegetation effects on the isotope composition of oxygen in atmospheric CO2. Nature 363:439–443

    Google Scholar 

  • Farquhar J, Chacko T, Ellis DJ (1996) Preservation of oxygen isotopic compositions in granulites from Northwestern Canada and Enderby Land, Antarctica: implications for high-temperature isotopic thermometry. Contr Mineral Petrol 125:213–224

    Google Scholar 

  • Farquhar J, Thiemens MH, Jackson T (1998) Atmosphere-surface interactions on Mars: Δ17Ο measurements of carbonate from ALH 84001. Science 280:1580–1582

    Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–759

    Google Scholar 

  • Farquhar J, Wing B, McKeegan KD, Harris JW (2002) Insight into crust-mantle coupling from anomalous Δ33S of sulfide inclusions in diamonds. Geochim Cosmochim Acta Spec Suppl 66:A225

    Google Scholar 

  • Farquhar J, Johnston DT, Wing BA, Habicht KS, Canfield DE, Airieau S, Thiemens MH (2003) Multiple sulphur isotope interpretations for biosynthetic pathways: implications for biological signatures in the sulphur isotope record. Geobiology 1:27–36

    Google Scholar 

  • Farquhar J, Kim ST, Masterson A (2007) Implications from sulfur isotopes of the Nakhla meteorite for the origin of sulfate on Mars. Earth Planet Sci Lett 264:1–8

    Google Scholar 

  • Ferry JM (1992) Regional metamorphism of the Waits River Formation: delineation of a new type of giant hydrothermal system. J Petrol 33:45–94

    Google Scholar 

  • Ferry JM, Dipple GM (1992) Models for coupled fluid flow, mineral reaction and isotopic alteration during contact metamorphism: the Notch Peak aureole, Utah. Am Mineral 77:577–591

    Google Scholar 

  • Ferry JM, Passey BH, Vasconcelos C, Eiler JM (2011) Formation of dolomite at 40–80 °C in the Latemar carbonate buildup, Dolomites, Italy from clumped isotope thermometry. Geology 39:571–574

    Google Scholar 

  • Ferry JM, Kitajima K, Strickland A, Valley JW (2014) Ion microprobe survey of the grain-scale oxygen isotope geochemistry of minerals in metamorphic rocks. Geochim Cosmochim Acta (in press)

    Google Scholar 

  • Fiebig J, Chiodini G, Caliro S, Rizzo A, Spangenberg J, Hunziker JC (2004) Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: generation of CH4 in arc magmatic-hydrothermal systems. Geochim Cosmochim Acta 68:2321–2334

    Google Scholar 

  • Field CW, Gustafson LB (1976) Sulfur isotopes in the porphyry copper deposit at El Salvador, Chile. Econ Geol 71:1533–1548

    Google Scholar 

  • Fiorentini E, Hoernes S, Hoffbauer R, Vitanage PW (1990) Nature and scale of fluid-rock exchange in granulite-grade rocks of Sri Lanka: a stable isotope study. In: Vielzeuf D, Vidal Ph (eds) Granulites and crustal evolution. Kluwer Dordrecht, pp 311–338

    Google Scholar 

  • Fischer TP, Giggenbach WF, Sano Y, Williams SN (1998) Fluxes and sources of volatiles discharged from Kudryavy, a subduction zone volcano, Kurile Islands. Earth Planet Sci Lett 160:81–96

    Google Scholar 

  • Fischer TP, Hilton DR, Zimmer MM, Shaw AM, Sharp ZD, Walker JA (2002) Subduction and recycling of nitrogen along the Central American margin. Science 297:1154–1157

    Google Scholar 

  • Fittoussi C, Bourdon B, Kleine T, Oberli F, Reynolds BC (2009) Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth’s core. Earth Planet Sci Lett 287:77–85

    Google Scholar 

  • Fogel ML, Cifuentes LA (1993) Isotope fractionation during primary production. In: Engel MH, Macko SA (eds) Organic Geochemistry, Plenum Press, pp 73–98

    Google Scholar 

  • Francey RJ, Tans PP (1987) Latitudinal variation in oxygen-18 of atmospheric CO2. Nature 327:495–497

    Google Scholar 

  • Franchi IA, Wright IP, Sexton AS, Pillinger T (1999) The oxygen isotopic composition of Earth and Mars. Meteorit Planet Sci 34:657–661

    Google Scholar 

  • Franz HB et al (2014) Isotopic links between atmospheric chemistry and the deep sulphur cycle on Mars. Nature 508:364–368

    Google Scholar 

  • Frape SK, Fritz P (1987) Geochemical trends from groundwaters from the Canadian Shield. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks, Geological Association of Canada, Special Paper, vol 33. pp 19–38

    Google Scholar 

  • Frape SK, Fritz P, McNutt RH (1984) Water-rock interaction and chemistry of groundwaters from the Canadian Shield. Geochim Cosmochim Acta 48:1617–1627

    Google Scholar 

  • Freeman KH, Hayes JM (1992) Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochem Cycles 6:185–198

    Google Scholar 

  • Freeman KH, Hayes JM, Trendel JM, Albrecht P (1990) Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature 343:254–256

    Google Scholar 

  • Frei R, Gaucher C, Poulton SW, Canfield DE (2009) Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461:250–253

    Google Scholar 

  • Freyer HD (1979) On the 13C-record in tree rings. I. 13C variations in northern hemisphere trees during the last 150 years. Tellus 31:124–137

    Google Scholar 

  • Freyer HD, Belacy N (1983) 13C/12C records in northern hemispheric trees during the past 500 years—anthropogenic impact and climatic superpositions. J Geophys Res 88:6844–6852

    Google Scholar 

  • Fricke HC, O’Neil JR (1999) The correlation between 18O/16O ratios of meteoric water and surface temperature: its use in investigating terrestrial climate change over geologic time. Earth Planet Sci Lett 170:181–196

    Google Scholar 

  • Fricke HC, Wickham SM, O’Neil JR (1992) Oxygen and hydrogen isotope evidence for meteoric water infiltration during mylonitization and uplift in the Ruby Mountains—East Humboldt Range core complex, Nevada. Contr Mineral Petrol 111:203–221

    Google Scholar 

  • Fricke HC, Clyde WC, O’Neil JR (1998a) Intra-tooth variations in δ18O (PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables. Geochim Cosmochim Acta 62:1839–1850

    Google Scholar 

  • Fricke HC, Clyde WC, O’Neil JR, Gingerich PD (1998b) Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming). Earth Planet Sci Lett 160:193–208

    Google Scholar 

  • Friedman I, Scholz TG (1974) Isotopic composition of atmospheric hydrogen (1967–1969). J Geophys Res 79:785–788

    Google Scholar 

  • Fripiat F, Cavagna AJ, Delairs F, de Brauwere A, Andre L, Cardinal D (2012) Processes controlling the Si isotopic composition in the Southern Ocean and application for paleoceanography. Biogeosciences 9:2443–2457

    Google Scholar 

  • Frost CD, von Blanckenburg F, Schoenberg R, Frost BR, Swapp SM (2007) Preservation of Fe isotope heterogeneities during diagenesis and metamorphism of banded iron formation. Contr Mineral Petrol 153:211–235

    Google Scholar 

  • Fry B (1988) Food web structure on Georges Bank from stable C, N and S isotopic compositions. Limnol Oceanogr 3:1182–1190

    Google Scholar 

  • Fu Q, Sherwood Lollar B, horita J, Lacrampe-Couloume G, Seyfried WE (2007) Abiotic formation of hydrocarbons under hydrothermal conditions: constraints from chemical and isotope data. Geochim Cosmochim Acta 71:1982–1998

    Google Scholar 

  • Gagan MK, Ayliffe LK, Beck JW, Cole JE, Druffel ER, Schrag DP (2000) New views of tropical paleoclimates from corals. Quat Sci Rev 19:45–64

    Google Scholar 

  • Galimov EM (1985) The relation between formation conditions and variations in isotope compositions of diamonds. Geochem Int 22(1):118–141

    Google Scholar 

  • Galimov EM (1988) Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks. Chem Geol 71:77–95

    Google Scholar 

  • Galimov EM (1991) Isotopic fractionation related to kimberlite magmatism and diamond formation. Geochim Cosmochim Acta 55:1697–1708

    Google Scholar 

  • Galimov EM (2006) Isotope organic geochemistry. Org Geochem 37:1200–1262

    Google Scholar 

  • Gao X, Thiemens MH (1993a) Isotopic composition and concentration of sulfur in carbonaceous chondrites. Geochim Cosmochim Acta 57:3159–3169

    Google Scholar 

  • Gao X, Thiemens MH (1993b) Variations of the isotopic composition of sulfur in enstatite and ordinary chondrites. Geochim Cosmochim Acta 57:3171–3176

    Google Scholar 

  • Gao Y, Hoefs J, Przybilla R, Snow JE (2006) A complete oxygen isotope profile through the lower oceanic crust, ODP hole 735B. Chem Geol 233:217–234

    Google Scholar 

  • Garlick GD, Epstein S (1967) Oxygen isotope ratios in coexisting minerals of regionally metamorphosed rocks. Geochim Cosmochim Acta 31:181

    Google Scholar 

  • Gat JR (1971) Comments on the stable isotope method in regional groundwater investigation. Water Resour Res 7:980

    Google Scholar 

  • Gat JR (1984) The stable isotope composition of Dead Sea waters. Earth Planet Sci Lett 71:361–376

    Google Scholar 

  • Gat JR, Issar A (1974) Desert isotope hydrology: water sources of the Sinai desert. Geochim Cosmochim Acta 38:1117–11131

    Google Scholar 

  • Georg RB, Reynolds BC, Frank M, Halliday AN (2006) Mechanisms controlling the silicon isotopic compositions of river water. Earth Planet Sci Lett 249:290–306

    Google Scholar 

  • Georg RB, Halliday AN, Schauble EA, Reynolds BC (2007) Silicon in the Earth’s core. Nature 447:1102–1106

    Google Scholar 

  • Gerdes ML, Baumgartner LP, Person M, Rumble D (1995) One- and two-dimensional models of fluid flow and stable isotope exchange at an outcrop in the Adamello contact aureole, Southern Alps, Italy. Am Mineral 80:1004–1019

    Google Scholar 

  • Gerlach TM, Taylor BE (1990) Carbon isotope constraints on degassing of carbon dioxide from Kilauea volcano. Geochim Cosmochim Acta 54:2051–2058

    Google Scholar 

  • Gerlach TM, Thomas DM (1986) Carbon and sulphur isotopic composition of Kilauea parental magma. Nature 319:480–483

    Google Scholar 

  • Geske A, Goldstein RH, Mavromatis V, Richter DK, Buhl D, Kluge T, John CM, Immenhauser A (2015) The magnesium isotope (δ26Mg) signature of dolomites. Geochim Cosmochim Acta 149:131–151

    Google Scholar 

  • Ghosh P et al (2006) 13C-18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim Cosmochim Acta 70:1439–1456

    Google Scholar 

  • Giggenbach WF (1992) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet Sci Lett 113:495–510

    Google Scholar 

  • Giletti BJ (1986) Diffusion effect on oxygen isotope temperatures of slowly cooled igneous and metamorphic rocks. Earth Planet Sci Lett 77:218–228

    Google Scholar 

  • Gilg HA (2000) D/H evidence for the timing of kaolinization in Northeast Bavaria, Germany. Chem Geol 170:5–18

    Google Scholar 

  • Girard JP, Savin S (1996) Intercrystalline fractionation of oxygen isotopes between hydroxyl and non-hydroxyl sites in kaolinite measured by thermal dehydroxylation and partial fluorination. Geochim Cosmochim Acta 60:469–487

    Google Scholar 

  • Given RK, Lohmann KC (1985) Derivation of the original isotopic composition of Permian marine cements. J Sediment Petrol 55:430–439

    Google Scholar 

  • Goericke R, Fry B (1994) Variations of marine plankton δ13C with latitude, temperature and dissolved CO2 in the world ocean. Global Geochem Cycles 8:85–90

    Google Scholar 

  • Goldhaber MB, Kaplan IR (1974) The sedimentary sulfur cycle. In: Goldberg EB (ed) The sea, vol IV. Wiley, New York

    Google Scholar 

  • Goldhammer T, Brunner B, Bernasconi SM, Ferdelman TG, Zabel M (2011) Phosphate oxygen isotopes: insights into sedimentary phosphorus cycling from the Benguela upwelling system. Geochim Cosmochim Acta 75:3741–3756

    Google Scholar 

  • Gonfiantini R (1986) Environmental isotopes in lake studies. In: Fritz P, Fontes J (eds) Handbook of environmental isotope geochemistry, vol 2. Elsevier Publ Co, pp 112–168

    Google Scholar 

  • Grachev AM, Severinghaus JP (2003) Laboratory determination of thermal diffusion constants for 29N/28N2 in air at temperatures from -60 to 0°C for reconstruction of magnitudes of abrupt climate changes using the ice core fossil-air paleothermometer. Geochim Cosmochim Acta 67:345–360

    Google Scholar 

  • Grady MM, Pillinger CT (1990) ALH 85085: nitrogen isotope analysis of a highly unusual primitive chondrite. Earth Planet Sci Lett 97:29–40

    Google Scholar 

  • Grady MM, Pillinger CT (1993) Acfer 182: search for the location of 15N-enriched nitrogen. Earth Planet Sci Lett 116:165–180

    Google Scholar 

  • Graham S, Pearson N, Jackson S, Griffin W, O‘ Reilly SY (2004) Tracing Cu and Fe from source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit. Chem Geol 207:147–169

    Google Scholar 

  • Grasse P, Ehlert C, Frank M (2013) The influence of water mass mixing on the dissolved Si isotope composition in the eastern Equatorial Pacific. Earth Planet Sci Lett 380:60–71

    Google Scholar 

  • Green GR, Ohmoto D, Date J, Takahashi T (1983) Whole-rock oxygen isotope distribution in the Fukazawa-Kosaka Area, Hokuroko District, Japan and its potential application to mineral exploration. Econ Geol Monogr 5:395–411

    Google Scholar 

  • Greenwood JP, Riciputi LR, McSween HY (1997) Sulfide isotopic compositions in shergottites and ALH 84001, and possible implications for life on Mars. Geochim Cosmochim Acta 61:4449–4453

    Google Scholar 

  • Greenwood RC, Franchi IA, Jambon A, Barrat JA, Burbine TH (2006) Oxygen isotope variation in stony-iron meteorites. Science 313:1763–1765

    Google Scholar 

  • Greenwood JP, Itoh S, Sakamoto N, Warren P, Taylor L, Yurimoto H (2011) Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nat Geosci 4:79–82

    Google Scholar 

  • Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at Mid-Ocean Ridges. J Geophys Res 86:2737–2755

    Google Scholar 

  • Gregory RT, Taylor HP (1986) Possible non-equilibrium oxygen isotope effects in mantle nodules, an alternative to the Kyser-O, Neil-Carmichael 18O/16O geothermometer. Contr Mineral Petrol 93:114–119

    Google Scholar 

  • Griffith EM, Paytan A, Kozdon R, Eisenhauer A, Ravelo AC (2008a) Influences on the fractionation of calcium isotopes in planktonic foraminifera. Earth Planet Sci Lett 268:124–136

    Google Scholar 

  • Griffith EM, Schauble EA, Bullen TD, Paytan A (2008b) Characterization of calcium isotopes in natural and synthetic barite. Geochim Cosmochim Acta 72:5641–5658

    Google Scholar 

  • Griffith EM, Payton A, Caldeira K, Bullen TD, Thomas E (2008c) A dynamic marine calcium cycle during the past 28 million years. Science 322:1671–1674

    Google Scholar 

  • Grimes CB, Ushikubo T, John BE, Valley JW (2011) Uniformly mantle-like δ18O in zircons from oceanic plagiogranite and gabbros. Contr Mineral Petrol 161:13–33

    Google Scholar 

  • Grootes PM, Stuiver M, White JWC, Johnsen S, Jouzel J (1993) Comparison of oxygen isotope records from the GISP-2 and GRIP Greenland ice cores. Nature 366:552–554

    Google Scholar 

  • Grossman EL (1984) Carbon isotopic fractionation in live benthic foraminifera—comparison with inorganic precipitate studies. Geochim Cosmochim Acta 48:1505–1512

    Google Scholar 

  • Grottoli AG, Eakin CM (2007) A review of modern coral δ18O and Δ14C proxy records. Earth Sci Rev 81:67–91

    Google Scholar 

  • Gruber N (1998) Anthropogenic CO2 in the Atlantic Ocean. Global Biogeochem Cycles 12:165–191

    Google Scholar 

  • Gruber N et al (1999) Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect: Global Biogeochem Cycles 13: 307–335

    Google Scholar 

  • Guelke M, von Blanckenburg F (2007) Fractionation of stable iron isotopes in higher plants. Environ Sci Tech 41:1896–1901

    Google Scholar 

  • Guilbaud R, Butler IB, Ellam RM (2011) Abiotic pyrite formation produces a large Fe isotope fractionation. Science 332:1548–1551

    Google Scholar 

  • Guo W, Eiler JM (2007) Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites. Geochim Cosmochim Acta 71:5565–5575

    Google Scholar 

  • Guy RD, Fogel ML, Berry JA (1993) Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Phys 101:37–47

    Google Scholar 

  • Haack U, Hoefs J, Gohn E (1982) Constraints on the origin of Damaran granites by Rb/Sr and δ18O data. Contrib Mineral Petrol 79:279–289

    Google Scholar 

  • Hackley KC, Anderson TF (1986) Sulfur isotopic variations in low-sulfur coals from the Rocky Mountain region. Geochim Cosmochim Acta 50:703–1713

    Google Scholar 

  • Hahm D, Hilton DR, Castillo PR, Hawkins JW, Hanan BB, Hauri EH (2012) An overview of the volatile systematics of the Lau Basin—resolving the effects of source variation, magmatic degassing and crustal contamination. Geochim Cosmochim Acta 85:88–113

    Google Scholar 

  • Haimson M, Knauth LP (1983) Stepwise fluorination-a useful approach for the isotopic analysis of hydrous minerals. Geochim Cosmochim Acta 47:1589–1595

    Google Scholar 

  • Halbout J, Robert F, Javoy M (1990) Hydrogen and oxygen isotope compositions in kerogen from the Orgueil meteorite: clues to a solar origin. Geochim Cosmochim Acta 54:1453–1462

    Google Scholar 

  • Hallis LJ, Anand M, Greenwood RC, Miller MF, Franchi IA, Russell SS (2010) The oxygen isotope composition, petrology and geochemistry of mare basalts: evidence for large-scale compositional variation in the lunar mantle. Geochim Cosmochim Acta 74:6885–6899

    Google Scholar 

  • Halverson GP, Poitrasson F, Hoffman PE, Nedelec A, Montel JM, Kirby J (2011) Fe isotope and trace element geochemistry of the Neoproterozoic syn-glacial Rapitan iron formation. Earth Planet Sci Lett 309:100–112

    Google Scholar 

  • Hamza MS, Epstein S (1980) Oxygen isotope fractionation between oxygen of different sites in hydroxyl-bearing silicate minerals. Geochim Cosmochim Acta 44:173–182

    Google Scholar 

  • Harmon RS, Hoefs J (1995) Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings. Contr Mineral Petrol 120:95–114

    Google Scholar 

  • Harmon RS, Hoefs J, Wedepohl KH (1987) Stable isotope (O, H, S) relationships in Tertiary basalts and their mantle xenoliths from the Northern Hessian Depression, W.Germany. Contr Mineral Petrol 95:350–369

    Google Scholar 

  • Harte B, Otter M (1992) Carbon isotope measurements on diamonds. Chem Geol 101:177–183

    Google Scholar 

  • Hartmann M, Nielsen H (1969) δ34S-Werte in rezenten Meeressedimenten und ihre Deutung am Beispiel einiger Sedimentprofile aus der westlichen Ostsee. Geol Rundsch 58:621–655

    Google Scholar 

  • Hauri EH, Wang J, Pearson DG, Bulanova GP (2002) Microanalysis of δ13C, δ15N and N abundances in diamonds by secondary ion mass spectrometry. Chem Geol 185:149–163

    Google Scholar 

  • Hauri EH, Weinreich T, Saal AE, Rutherford MC, Van Orman JA (2011) High pre-eruptive water contents preserved in melrt inclusions. Science 333:213–215

    Google Scholar 

  • Hawkesworth CJ, Kemp AIS (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol 226:144–162

    Google Scholar 

  • Hayes JM (2001) Fractionation of carbon and hydrogen isotopes in biosynthetic processes. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Reviews in mineralogy and geochemistry, vol 43. pp 225–277

    Google Scholar 

  • Hayes JM, Waldbauer JR (2006) The carbon cycle and associated redox processes through time. Phil Trans R Soc B 361:931–950

    Google Scholar 

  • Hayes JM, Kaplan IR, Wedeking KW (1983) Precambrian organic chemistry, preservation of the record. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution, chap 5. Princeton University Press, pp 93–132

    Google Scholar 

  • Hayes JM, Popp BN, Takigiku R, Johnson MW (1989) An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation. Geochim Cosmochim Acta 53:2961–2972

    Google Scholar 

  • Hayes JM, Strauss H, Kaufman AJ (1999) The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem Geol 161:103–125

    Google Scholar 

  • Hays PD, Grossman EL (1991) Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate. Geology 19:441–444

    Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the earth’s orbit: pacemaker of the ice ages. Science 194:943–954

    Google Scholar 

  • Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol 59:87–102

    Google Scholar 

  • Helman Y, Barkan E, Eisenstadt D, Luz B, Kaplan A (2005) Fractionation of the three stable oxygen isotopes by oxygen producing and consuming reactions in photosynthetic organisms. Plant Phys 2005:2292–2298

    Google Scholar 

  • Hendy CH, Wilson AT (1968) Paleoclimatic data from speleothems. Nature 219:48–51

    Google Scholar 

  • Heraty LJ, Fuller ME, Huang L, Abrajano T, Sturchio NC (1999) Isotopic fractionation of carbon and chlorine by microbial degradation of dichlormethane. Org Geochem 30:793–799

    Google Scholar 

  • Herwarth D, Pack A, Friedrichs B, Bischoff A (2014) Identification of the giant impactor Theia in lunar rocks. Science 344:1146–1150

    Google Scholar 

  • Hin RC, Schmidt MW, Bourdon B (2012) Experimental evidence for the absence of iron isotope fractionation between metal and silicate liquids at 1GPA and 1250-1300°C and its cosmochemical consequences. Geochim Cosmochim Acta 93:164–181

    Google Scholar 

  • Hin RC, Fitoussi C, Schmidt MW, Bourdon B (2014) Experimental determination of the Si isotope fractionation factor between liquid metal and liquid silicate. Earth Planet Sci Lett 387:55–66

    Google Scholar 

  • Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Google Scholar 

  • Hitchon B, Friedman I (1969) Geochemistry and origin of formation waters in the western Canada sedimentary basin. 1. Stable isotopes of hydrogen and oxygen. Geochim Cosmochim Acta 33:1321–1349

    Google Scholar 

  • Hitchon B, Krouse HR (1972) Hydrogeochemistry of the surface waters of the Mackenzie River drainage basin, Canada. III. Stable isotopes of oxygen, carbon and sulfur. Geochim Cosmochim Acta 36:1337–1357

    Google Scholar 

  • Hoag KJ, Still CJ, Fung IY, Boering KA (2005) Triple oxygen isotope composition of tropospheric carbon dioxide as a tracer of terrestrial gross carbon fluxes. Geophys Res Lett 32:L02802

    Google Scholar 

  • Hoefs J (1970) Kohlenstoff-und Sauerstoff-Isotopenuntersuchungen an Karbonatkonkretionen und umgebendem Gestein. Contrib Mineral Petrol 27:66–79

    Google Scholar 

  • Hoefs J (1992) The stable isotope composition of sedimentary iron oxides with special reference to Banded Iron Formations. In: Isotopic signatures and sedimentary records. Lecture Notes in Earth Science, vol 43. Springer Verlag, pp 199–213

    Google Scholar 

  • Hoefs J, Emmermann R (1983) The oxygen isotope composition of Hercynian granites and pre-Hercynian gneisses from the Schwarzwald, SW Germany. Contrib Mineral Petrol 83:320–329

    Google Scholar 

  • Hoefs J, Sywall M (1997) Lithium isotope composition of quaternary and Tertiary biogene carbonates and a global lithium isotope balance. Geochim Cosmochim Acta 61:2679–2690

    Google Scholar 

  • Hoering T (1975) The biochemistry of the stable hydrogen isotopes. Carnegie Inst Washington Yearb 74:598

    Google Scholar 

  • Hoernes S, Van Reenen DC (1992) The oxygen isotopic composition of granulites and retrogressed granulites from the Limpopo Belt as a monitor of fluid-rock interaction. Precambrian Res 55:353–364

    Google Scholar 

  • Hoffman JH, Hodges RR, McElroy MB, Donahue TM, Kolpin M (1979) Composition and structure of the Venus atmosphere: results from Pioneer Venus. Science 205:49–52

    Google Scholar 

  • Hoffman PE, Kaufman AJ, Halverson GP, Schrag DP (1998) Neoproterozoic snowball earth. Science 281:1342–1346

    Google Scholar 

  • Hofmann ME, Horvath B, Pack A (2012) Triple oxygen isotope equilibrium fractionation between carbon dioxide and water. Earth Planet Sci Lett 319–320:159–164

    Google Scholar 

  • Hofstetter TB, Scharzenbach RP, Bernasconi SM (2008) Assessing transformation processes of organic compounds using stable isotope fractionation. Environ Sci Technol 42:7737–7743

    Google Scholar 

  • Holloway JR, Blank JG (1994) Application of experimental results to C-O-H species in natural melts. In: Carroll MR, Holloway JR (eds) Volatiles in magmas. Review on Mineral, vol 30, pp 187–230

    Google Scholar 

  • Holmden C (2009) Ca isotope study of Ordovician dolomite, limestone, and anhydrite in the Williston basin: Implications for subsurface dolomitization and local Ca cycling. Chem Geol 268:180–188

    Google Scholar 

  • Holser WT (1977) Catastrophic chemical events in the history of the ocean. Nature 267:403–408

    Google Scholar 

  • Holser WT, Kaplan IR (1966) Isotope geochemistry of sedimentary sulfates. Chem Geol 1:93–135

    Google Scholar 

  • Hoppe P, Zinner E (2000) Presolar dust grains from meteorites and their stellar sources. J Geophys Res Space Phys 105:10371–10385

    Google Scholar 

  • Horita J (1989) Stable isotope fractionation factors of water in hydrated salt minerals. Earth Planet Sci Lett 95:173–179

    Google Scholar 

  • Horita J (2014) Oxygen and carbon isotope fractionation in the system dolomite-water-CO2 to elevated temperatures. Geochim Cosmochim Acta (in press)

    Google Scholar 

  • Horita J, Berndt ME (1999) Abiogenic methane formation and isotope fractionation under hydrothermal conditions. Science 285:1055–1057

    Google Scholar 

  • Horita J, Cole DR, Wesolowski DJ (1995) The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: III. Vapor-liquid water equilibration of NaCl solutions to 350 °C. Geochim Cosmochim Acta 59:1139–1151

    Google Scholar 

  • Horita J, Driesner T, Cole DR (1999) Pressure effect on hydrogen isotope fractionation between brucite and water at elevated temperatures. Science 286:1545–1547

    Google Scholar 

  • Horita J, Cole DR, Polyakov VB, Driesner T (2002a) Experimental and theoretical study of pressure effects on hydrous isotope fractionation in the system brucite-water at elevated temperatures. Geochim Cosmochim Acta 66:3769–3788

    Google Scholar 

  • Horita J, Zimmermann H, Holland HD (2002b) Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporates. Geochim Cosmochim Acta 66:3733–3756

    Google Scholar 

  • Horvath B, Hofmann M, Pack A (2012) On the triple oxygen isotope composition of carbon dioxide from some combustion processes. Geochim Cosmochim Acta 95:160–168

    Google Scholar 

  • Huang L, Strurchio NC, Abrajano T, Heraty LJ, Holt BD (1999) Carbon and chlorine isotope fractionation of chlorinated aliphatic hydrocarbons by evaporation. Org Geochem 30:777–785

    Google Scholar 

  • Huang Y, Wang Y, Alexandre M, Lee T, Rose-Petruck C, Fuller M, Pizzarello S (2005) Molecular and compound-specific isotopic characterization of monocarboxylic acids in carbonaceous chondrites. Geochim Cosmochim Acta 69:1073–1084

    Google Scholar 

  • Hudson JD (1977) Stable isotopes and limestone lithification. J Geol Soc London 133:637–660

    Google Scholar 

  • Hulston JR (1977) Isotope work applied to geothermal systems at the Institute of Nuclear Sciences, New Zealand. Geothermics 5:89–96

    Google Scholar 

  • Hulston JR, Thode HG (1965) Variations in the 33S, 34S and 36S contents of meteorites and their relations to chemical and nuclear effects. J Geophys Res 70:3475–3484

    Google Scholar 

  • Huntington KW, Wernicke BP, Eiler JM (2010) Influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry. Tectonics 29:TC3005. doi:101.1029/2009TC002449

    Google Scholar 

  • Huntington KW, Budd DA, Wernicke BP, Eiler JM (2011) Use of clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite. J Sediment Res 81:656–669

    Google Scholar 

  • Iacumin P, Bocherens H, Marriotti A, Longinelli A (1996) Oxygen isotope analysis of coexisting carbonate and phosphate in biogenic apatite; a way to monitor diagenetic alteration of bone phosphate? Earth Planet Sci Lett 142:1–6

    Google Scholar 

  • Ikehata K, Notsu K, Hirata T (2011) Copper isotope characteristics of copper-rich minerals from Besshi-type volcanogenic massive sulfide deposits, Japan, determined using a Femtosecond La-MC-ICP-MS. Econ Geol 106:307–316

    Google Scholar 

  • Ionov DA, Hoefs J, Wedepohl KH, Wiechert U (1992) Contents and isotopic composition of sulfur in ultramafic xenoliths from Central Asia. Earth Planet Sci Lett 111:269–286

    Google Scholar 

  • Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for the source of diagenetic carbonate during burial of organic-rich sediments. Nature 269:209–213

    Google Scholar 

  • Ishibashi J, Sano Y, Wakita H, Gamo T, Tsutsumi M, Sakai H (1995) Helium and carbon geochemistry of hydrothermal fluids from the Mid-Okinawa trough back arc basin, southwest of Japan. Chem Geology 123:1–15

    Google Scholar 

  • Jaffrés JB, Shields GA, Wallmann K (2007) The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Sci Rev 83:83–122

    Google Scholar 

  • James DE (1981) The combined use of oxygen and radiogenic isotopes as indicators of crustal contamination. Ann Rev Earth Planet Sci 9:311–344

    Google Scholar 

  • James AT (1983) Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components. Am Assoc Petrol Geol Bull 67:1167–1191

    Google Scholar 

  • James AT (1990) Correlation of reservoired gases using the carbon isotopic compositions of wet gas components. Am Assoc Petrol Geol Bull 74:1441–1458

    Google Scholar 

  • Jaouen K, Pons ML, Balter V (2013) Iron, copper and zinc isotopic fractionation up mammal trophic chains. Earth Planet Sci Lett (in press)

    Google Scholar 

  • Jasper JP, Hayes JM (1990) A carbon isotope record of CO2 levels during the late Quaternary. Nature 347:462–464

    Google Scholar 

  • Jasper JP, Hayes JM, Mix AC, Prahl FG (1994) Photosynthetic fractionation of C-13 and concentrations of dissolved CO2 in the central equatorial Pacific. Paleoceanography 9:781–798

    Google Scholar 

  • Javoy M, Pineau F, Delorme H (1986) Carbon and nitrogen isotopes in the mantle. Chem Geology 57:41–62

    Google Scholar 

  • Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper K, Brooker R (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218

    Google Scholar 

  • Jeffrey AW, Pflaum RC, Brooks JM, Sackett WM (1983) Vertical trends in particulate organic carbon 13C/12C ratios in the upper water column. Deep Sea Res 30:971–983

    Google Scholar 

  • Jenden PD, Kaplan IR, Poreda RJ, Craig H (1988) Origin of nitrogen-rich natural gases in the California Great Valley: evidence from helium, carbon and nitrogen isotope ratios. Geochim Cosmochim Acta 52:851–861

    Google Scholar 

  • Jenden PD, Drazan DJ, Kapan IR (1993) Mixing of thermogenic natural gases in northern Appalachian Basin. Am Assoc Petrol Geol Bull 77:980–998

    Google Scholar 

  • Jendrzejewski N, Eggenkamp HGM, Coleman ML (2001) Characterisation of chlorinated hydrocarbons from chlorine and carbon isotopic compositions: scope of application to environmental problems. Appl Geochem 16:1021–1031

    Google Scholar 

  • Jenkyns HC (2010) Geochemistry of oceanic anoxic events. Geochem Geophys Geosys 11:Q03004

    Google Scholar 

  • Jiang J, Clayton RN, Newton RC (1988) Fluids in granulite facies metamorphism: a comparative oxygen isotope study on the South India and Adirondack high grade terrains. J Geol 96:517–533

    Google Scholar 

  • Joachimski M, van Geldern R, Breisig S, Buggisch W, Day J (2004) Oxygen isotope evolution of biogenic calcite and apatite during the Middle and Late Devonian. Int J Earth Sci 93:542–553

    Google Scholar 

  • Joachimski M, Simon L, van Geldern R, Lecuyer C (2005) Boron isotope geochemistry of Paleozoic brachiopod calcite: implications for a secular change in the boron isotope geochemistry of seawater over the Phanerozoic. Geochim Cosmochim Acta 69:4035–4044

    Google Scholar 

  • Joachimski MM, Breisig S, Buggisch W, Talent JA, Mawson R, Gereke M, Morrow JR, Day J, Weddige K (2009) Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth Planet Sci Lett 284:599–609

    Google Scholar 

  • Joachimski MM, Lai X, Shen S, Jiang H, Luo G, Chen J, Sun Y (2012) Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology 40:195–198

    Google Scholar 

  • Johnsen SJ, Dansgaard W, White JW (1989) The origin of Arctic precipitation under present and glacial conditions. Tellus 41B:452–468

    Google Scholar 

  • Johnsen SJ, Clausen HB, Dansgaard W, Gundestrup N, Hammer CU, Tauber H (1995) The Eem stable isotope record along the GRIP ice core and ist interpretation. Quat Res 43:117–124

    Google Scholar 

  • Johnson DG, Jucks KW, Traub WA, Chance KV (2001) Isotopic composition of stratospheric water vapour: measurements and photochemistry. J Geophys Res 106D:12211–12217

    Google Scholar 

  • Johnson CM, Skulan JL, Beard BL, Sun H, Nealson KH, Braterman PS (2002) Isotopic fraction between Fe(III) and Fe(II) in aqueous solutions. Earth Planet Sci Lett 195:141–153

    Google Scholar 

  • Johnson CM, Beard BL, Beukes NJ, Klein C, O‘ Leary JM (2003) Ancient geochemical cycling in the Earth as inferred from Fe-isotope studies of banded iron formations from the Transvaal craton. Contr Mineral Petrol 114:523–547

    Google Scholar 

  • Johnson CM, Beard BL, Roden EE (2008) The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Ann Rev Earth Planet Sci 36:457–493

    Google Scholar 

  • Jones HD, Kesler SE, Furman FC, Kyle JR (1996) Sulfur isotope geochemistry of southern Appalachian Mississippi Valley-type depopsits. Econ Geol 91:355–367

    Google Scholar 

  • Jǿrgensen BB, Böttcher MA, Lüschen H, Neretin LN, Volkov II (2004) Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochim Cosmochim Acta 68:2095–2118

    Google Scholar 

  • Jouzel J, Merlivat L, Roth E (1975) Isotopic study of hail. J Geophys Res 80:5015–5030

    Google Scholar 

  • Jouzel J, Merlivat L, Lorius C (1982) Deuterium excess in an East Antarctic ice core suggests higher relative humidity at the oceanic surface during the last glacial maximum. Nature 299:688–691

    Google Scholar 

  • Jouzel J, Lorius C, Petit JR, Barkov NI, Kotlyakov VM, Petrow VM (1987) Vostok ice core: a continuous isotopic temperature record over the last climatic cycle (160000 years). Nature 329:403–408

    Google Scholar 

  • Juranek LW, Quay PD (2010) Basin-wide photosynthetic production rates in the subtropical and tropical Pacific Ocean determined from dissolved oxygen isotope ratio measurements. Global Biogeochem Cycles 24:GB2006. doi:10.1029/2009GB003492

  • Kampschulte A, Strauss H (2004) The sulfur isotope evolution of Phanerozoic seawater based on the analyses of sructurally substituted sulfate in carbonates. Chem Geol 204:255–280

    Google Scholar 

  • Kaplan IR (1975) Stable isotopes as a guide to biogeochemical processes. Proc R Soc London Ser B 189:183–211

    Google Scholar 

  • Kaplan IR, Hulston JR (1966) The isotopic abundance and content of sulfur in meteorites. Geochim Cosmochim Acta 30:479–496

    Google Scholar 

  • Kaplan IR, Rittenberg SC (1964) Microbiological fractionation of sulphur isotopes. J Gen Microbiol 34:195–212

    Google Scholar 

  • Kasting JF, Howard MT, Wallmann K, Veizer J, Shields G, Jaffrés J (2006) Paleoclimates, ocean depth and the oxygen isotopic composition of the ocean. Earth Planet Sci Lett 252:82–93

    Google Scholar 

  • Kaufman AJ, Knoll GM (1995) Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res 73:27–49

    Google Scholar 

  • Kaye J (1987) Mechanisms and observations for isotope fractionation of molecular species in planetary atmospheres. Rev Geophysics 25:1609–1658

    Google Scholar 

  • Keeling CD (1958) The concentration and isotopic abundance of atmospheric carbon dioxide in rural areas. Geochim Cosmochim Acta 13:322–334

    Google Scholar 

  • Keeling CD (1961) The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochim Cosmochim Acta 24:277–298

    Google Scholar 

  • Keeling CD, Mook WG, Tans P (1979) Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature 277:121–123

    Google Scholar 

  • Keeling CD, Carter AF, Mook WG (1984) Seasonal, latitudinal and secular variations in the abundance and isotopic ratio of atmospheric carbon dioxide. II. Results from oceanographic cruises in the tropical Pacific Ocean. J Geophys Res 89:4615–4628

    Google Scholar 

  • Keeling CD, Bacastow RB, Carter AF, Piper SC, Whorf TR, Heimann M, Mook WG, Roeloffzen H (1989) A three dimensional model of atmospheric CO2 transport based on observed winds. 1. Analysis of observational data. Geophys Monogr 55:165–236

    Google Scholar 

  • Keeling CD, Whorf TP, Wahlen M, van der Plicht J (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375:666–670

    Google Scholar 

  • Kelly WC, Rye RO, Livnat A (1986) Saline minewaters of the Keweenaw Peninsula, Northern Michigan: their nature, origin and relation to similar deep waters in Precambrian crystalline rocks of the Canadian Shield. Am J Sci 286:281–308

    Google Scholar 

  • Kelly J, Fu B, Kita N, Valley J (2007) Optically continuous silcrete quartz cements in the St. Peter sandstone. Geochim Cosmochim Acta 71:3812–3832

    Google Scholar 

  • Kelts K, McKenzie JA (1982) Diagenetic dolomite formation in quaternary anoxic diatomaceous muds of DSDP Leg 64, Gulf of California. Initial Rep DSDP 64:553–569

    Google Scholar 

  • Kempton PD, Harmon RS (1992) Oxygen isotope evidence for large-scale hybridization of the lower crust during magmatic underplating. Geochim Cosmochim Acta 56:971–986

    Google Scholar 

  • Kennicutt MC, Barker C, Brooks JM, De Freitaas DA, Zhu GH (1987) Selected organic matter indicators in the Orinoco, Nile and Changjiang deltas. Org Geochem 11:41–51

    Google Scholar 

  • Keppler F, Hamilton JTG, Braß M, Röckmann (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    Google Scholar 

  • Kerrich R, Rehrig W (1987) Fluid motion associated with Tertiary mylonitization and detachment faulting: 18O/16O evidence from the Picacho metamorphic core complex, Arizona. Geology 15:58–62

    Google Scholar 

  • Kerrich R, Latour TE, Willmore L (1984) Fluid participation in deep fault zones: evidence from geological, geochemical and to 18O/16O relations. J Geophys Res 89:4331–4343

    Google Scholar 

  • Kerridge JF (1983) Isotopic composition of carbonaceous-chondrite kerogen: evidence for an interstellar origin of organic matter in meteorites. Earth Planet Sci Lett 64:186–200

    Google Scholar 

  • Kerridge JF, Haymon RM, Kastner M (1983) Sulfur isotope systematics at the 21°N site, East Pacific Rise. Earth Planet Sci Lett 66:91–100

    Google Scholar 

  • Kerridge JF, Chang S, Shipp R (1987) Isotopic characterization of kerogen-like material in the Murchison carbonaceous chondrite. Geochim Cosmochim Acta 51:2527–2540

    Google Scholar 

  • Kharaka YK, Berry FAF, Friedman I (1974) Isotopic composition of oil-field brines from Kettleman North Dome, California and their geologic implications. Geochim Cosmochim Acta 37:1899–1908

    Google Scholar 

  • Kharaka YK, Cole DR, Hovorka SD, Gunter WD, Knauss KG, Freifeld BM (2006) Gas-water-rock interactions in Frio formation following CO2 injection: implications to the storage of greenhouse gases in sedimentary basins. Geology 34:577–580

    Google Scholar 

  • Kiczka M, Wiederhold JG, Kraemer SM, Bourdon B, Kretzschmar R (2010) Iron isotope fractionation during Fe uptake and translocation in Alpine plants. Environ Sci Technol 44:6144–6150

    Google Scholar 

  • Kim KR, Craig H (1990) Two isotope characterization of N2O in the Pacific Ocean and constraints on its origin in deep water. Nature 347:58–61

    Google Scholar 

  • Kim KR, Craig H (1993) Nitrogen-15 and oxygen-18 characteristics of nitrous oxide. Science 262:1855–1858

    Google Scholar 

  • King PL, McLennan SM (2009) Sulfur on Mars. Elements 6:107–112

    Google Scholar 

  • Kirkley MB, Gurney JJ, Otter ML, Hill SJ, Daniels LR (1991) The application of C-isotope measurements to the identification of the sources of C in diamonds. Appl Geochemistry 6:477–494

    Google Scholar 

  • Kloppmann W, Girard JP, Négrel P (2002) Exotic stable isotope composition of saline waters and brines from the crystalline basement. Chem Geol 184:49–70

    Google Scholar 

  • Knauth LP (1988) Origin and mixing history of brines, Palo Duro Basin, Texas, USA. Appl Geochem 3:455–474

    Google Scholar 

  • Knauth LP, Beeunas MA (1986) Isotope geochemistry of fluid inclusions in Permian halite with implications for the isotopic history of ocean water and the origin of saline formation waters. Geochim Cosmochim Acta 50:419–433

    Google Scholar 

  • Knauth LP, Lowe DR (1978) Oxygen isotope geochemistry of cherts from the Onverwacht group (3.4 billion years), Transvaal, South Africa, with implications for secular variations in the isotopic composition of chert. Earth Planet Sci Lett 41:209–222

    Google Scholar 

  • Knoll AH, Hayes JM, Kaufman AJ, Swett K, Lambert IB (1986) Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature 321:832–838

    Google Scholar 

  • Kohn MJ (1996) Predicting animal δ18O: accounting for diet and physiological adaptation. Geochim Cosmochim Acta 60:4811–4829

    Google Scholar 

  • Kohn MJ (1999) Why most “dry” rocks should cool “wet”. Am Mineral 84:570–580

    Google Scholar 

  • Kohn MJ, Cerling TE (2002) Stable isotope compositions of biological apatite. Rev Mineral Geochem 48:455–488

    Google Scholar 

  • Kohn MJ, Valley JW (1994) Oxygen isotope constraints on metamorphic fluid flow, Townshend Dam, Vermont, USA. Geochim Cosmochim Acta 58:5551–5566

    Google Scholar 

  • Kohn MJ, Valley JW, Elsenheimer D, Spicuzza M (1993) Oxygen isotope zoning in garnet and staurolite: evidence for closed system mineral growth during regional metamorphism. Am Mineral 78:988–1001

    Google Scholar 

  • Kohn MJ, Riciputi LR, Stakes D, Orange DL (1998) Sulfur isotope variability in biogenic pyrite: reflections of heterogeneous bacterial colonzation? Am Mineral 83:1454–1486

    Google Scholar 

  • Kolodny Y, Kerridge JF, Kaplan IR (1980) Deuterium in carbonaceous chondrites. Earth Planet Sci Lett 46:149–153

    Google Scholar 

  • Kolodny Y, Luz B, Navon O (1983) Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite—rechecking the rules of the game. Earth Planet Sci Lett 64:393–404

    Google Scholar 

  • Kolodny Y, Luz B, Sander M, Clemens WA (1996) Dinosaur bones: fossils or pseudomorphs? The pitfalls of physiology reconstruction from apatitic fossils. Palaeo, Palaeo, Palaeoecol 126:161–171

    Google Scholar 

  • Kool DM, Wrage N, Oenema O, Harris D, Van Groenigen JW (2009) The 18O signature of biogenic nitrous oxide is determined by O exchange with water. Rapid Commun Mass Spectrom 23:104–108

    Google Scholar 

  • Krankowsky D, Lämmerzahl P, Mauersberger K (2000) Isotopic measurements of stratospheric ozone. Geophys Res Lett 27:2593–2595

    Google Scholar 

  • Krishnamurthy RV, Epstein S, Cronin JR, Pizzarello S, Yuen GU (1992) Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite. Geochim Cosmochim Acta 56:4045–4058

    Google Scholar 

  • Kroopnick P (1985) The distribution of 13C of ΣCO2 in the world oceans. Deep Sea Res 32:57–84

    Google Scholar 

  • Kroopnick P, Craig H (1972) Atmospheric oxygen: isotopic composition and solubility fractionation. Science 175:54–55

    Google Scholar 

  • Kroopnick P, Weiss RF, Craig H (1972) Total CO2, 13C and dissolved oxygen-18O at Geosecs II in the North Atlantic. Earth Planet Sci Lett 16:103–110

    Google Scholar 

  • Krouse HR, Case JW (1983) Sulphur isotope abundances in the environment and their relation to long term sour gas flaring, near Valleyview, Alberta. Final report, Research Management Division, University Alberta RMD Rep 83/18

    Google Scholar 

  • Krouse HR, Viau CA, Eliuk LS, Ueda A, Halas S (1988) Chemical and isotopic evidence of thermochemical sulfate reduction by light hydrocarbon gases in deep carbonate reservoirs. Nature 333:415–419

    Google Scholar 

  • Kump LR (1989) Alternative modeling approaches to the geochemical cycles of carbon, sulfur and strontium isotopes. Am J Sci 289:390–410

    Google Scholar 

  • Kump LR (2005) Ironing out biosphere oxidation. Science 307:1058–1059

    Google Scholar 

  • Kump LR, Arthur MA (1999) Interpreting carbon-isotope excursions: carbonates and organic matter. Chem Geol 161:181–198

    Google Scholar 

  • Kung CC, Clayton RN (1978) Nitrogen abundances and isotopic compositions in stony meteorites. Earth Planet Sci Lett 38:421–435

    Google Scholar 

  • Kvenvolden KA (1995) A review of the geochemistry of methane in natural gas hydrate. Org Geochem 23:997–1008

    Google Scholar 

  • Kyser TK, O’Neil JR (1984) Hydrogen isotope systematics of submarine basalts. Geochim Cosmochim Acta 48:2123–2134

    Google Scholar 

  • Kyser TK, O’Neil JR, Carmichael ISE (1981) Oxygen isotope thermometry of basic lavas and mantle nodules. Contrib Mineral Petrol 77:11–23

    Google Scholar 

  • Kyser TK, O’Neil JR, Carmichael ISE (1982) Genetic relations among basic lavas and mantle nodules. Contrib Mineral Petrol 81:88–102

    Google Scholar 

  • Kyser TK, O’Neil JR, Carmichael ISE (1986) Reply to “Possible non-equilibrium oxygen isotope effects in mantle nodules, an alternative to the Kyser-O‘ Neil-Carmichael geothermometer. Contr Mineral Petrol 93:120–123

    Google Scholar 

  • Labeyrie LD, Juillet A (1982) Oxygen isotope exchangeability of diatom valve silica; interpretation and consequences for paleoclimatic studies. Geochim Cosmochim Acta 46:967–975

    Google Scholar 

  • Labeyrie LD, Duplessy JC, Blanc PL (1987) Deep water formation and temperature variations over the last 125000 years. Nature 327:477–482

    Google Scholar 

  • Labidi J, Catigny P, Birck JL, Assayag N, Bourrand JJ (2012) Determination of multiple sulphur isotopes in glasses: a reappraisal of the MORB δ34S. Chem Geol 334:189–198

    Google Scholar 

  • Labidi J, Cartigny P, Moreira M (2013) Non-chondritic sulphur isotope composition of the terrestrial mantle. Nature 501:208–211

    Google Scholar 

  • Labidi J, Cartigny P, Hamelin C, Moreira M, Dosso L (2014) Sulfur isotope budget (32S, 33S, 34S, 36S) in Pacific-Antarctic ridge basalts: a record of mantle source heterogeneity and hydrothermal sulfide assimilation. Geochim Cosmochim Acta 133:47–67

    Google Scholar 

  • Lachniet MS (2009) Climatic and environmental controls on speleothem oxygen-isotope values. Quat Sci Rev 28:412–432

    Google Scholar 

  • Land LS (1980) The isotopic and trace element geochemistry of dolomite: the state of the art. In: Concepts and models of dolomitization. Soc Econ Paleontol Min Spec Publ 28:87–110

    Google Scholar 

  • Landais A, Barkan E, Luz B (2008) Record of δ18O and 17O excess in ice from Vostok, Antarctica during the last 150000 years. Geophys Res Lett 35:L02709

    Google Scholar 

  • Lane GA, Dole M (1956) Fractionation of oxygen isotopes during respiration. Science 123:574–576

    Google Scholar 

  • Lawrence JR (1989) The stable isotope geochemistry of deep-sea pore water. In: Handbook of environmental isotope geochemistry, vol 3. Elsevier Publ Co, pp 317–356

    Google Scholar 

  • Lawrence JR, Gieskes JM (1981) Constraints on water transport and alteration in the oceanic crust from the isotopic composition of the pore water. J Geophys Res 86:7924–7934

    Google Scholar 

  • Lawrence JR, Taviani M (1988) Extreme hydrogen, oxygen and carbon isotope anomalies in the pore waters and carbonates of the sediments and basalts from the Norwegian Sea: methane and hydrogen from the mantle? Geochim Cosmochim Acta 52:2077–2083

    Google Scholar 

  • Lawrence JR, Taylor HP (1971) Deuterium and oxygen-18 correlation: clay minerals and hydroxides in quaternary soils compared to meteoric waters. Geochim Cosmochim Acta 35:993–1003

    Google Scholar 

  • Lawrence JR, White JWC (1991) The elusive climate signal in the isotopic composition of precipitation. In: Stable isotope geochemistry: a tribute to Samuel Epstein. Special Publication, The Geochemical Society vol 3, pp 169–185

    Google Scholar 

  • Laws EA, Popp BN, Bidigare RR, Kennicutt MC, Macko SA (1995) Dependence of phytoplankton carbon isotopic composition on growth rate and CO2aq: theoretical considerations and experimental results. Geochim Cosmochim Acta 59:1131–1138

    Google Scholar 

  • Leclerc AJ, Labeyrie LC (1987) Temperature dependence of oxygen isotopic fractionation between diatom silica and water. Earth Planet Sci Lett 84:69–74

    Google Scholar 

  • Lécuyer C, Grandjean P, Reynard B, Albarede F, Telouk P (2002) 11B/10B analysis of geological materials by ICP-MS Plasma 54: application to bron fractionation between brachiopod calcite and seawater. Chem Geol 186:45–55

    Google Scholar 

  • Leder JL, Swart PK, Szmant AM, Dodge RE (1996) The origin of variations in the isotopic record of scleractinian corals: I. Oxygen. Geochim Cosmochim Acta 60:2857–2870

    Google Scholar 

  • Lemarchand D, Gaillardet J, Lewin E, Allegre CJ (2000) The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. Nature 408:951–954

    Google Scholar 

  • Lemarchand D, Gaillardet J, Lewin E, Allègre CJ (2002) Boron isotope systematics in large rivers: implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic. Chem Geol 190:123–140

    Google Scholar 

  • Leng MJ, Marshall JD (2004) Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Sci Rev 23:811–831

    Google Scholar 

  • Leshin LA, Epstein S, Stolper EM (1996) Hydrogen isotope geochemistry of SNC meteorites. Geochim Cosmochim Acta 60:2635–2650

    Google Scholar 

  • Leshin LA, McKeegan KD, Carpenter PK, Harvey RP (1998) Oxygen isotopic constraints on the genesis of carbonates from Martian meteorite ALH 84001. Geochim Cosmochim Acta 62:3–13

    Google Scholar 

  • Leuenberger M, Siegenthaler U, Langway CC (1992) Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core. Nature 357:488–490

    Google Scholar 

  • Lewan MD (1983) Effects of thermal maturation on stable carbon isotopes as determined by hydrous pyrolysis of Woodford shale. Geochim Cosmochim Acta 47:1471–1480

    Google Scholar 

  • Lewis RS, Anders E, Wright IP, Norris SJ, Pillinger CT (1983) Isotopically anomalous nitrogen in primitive meteorites. Nature 305:767–771

    Google Scholar 

  • Li W, Jackson SE, Pearson NJ, Graham S (2010a) Copper isotope zonation in the Northparkes porphyry Cu-Au deposit, SE Australia. Geochim Cosmochim Acta 74:4078–4096

    Google Scholar 

  • Li W-Y, Teng F-Z, Ke S, Rudnick R, Gao S, Wu F-Y, Chappell B (2010b) Heterogeneous magnesium isotopic composition of the upper continental crust. Geochim Cosmochim Acta 74:6867–6884

    Google Scholar 

  • Liotta M, Rizzo A, Paonita A, Caracausi A, Martelli M (2012) Sulfur isotopic compositions of fumarolic and plume gases at Mount Etna (Italy) and inferences on their magmatic source. Geochem Geophys Geosys 13(5). doi:1029/2012GC0042118

    Google Scholar 

  • Lister GS, Kelts K, Chen KZ, Yu JQ, Niessen F (1991) Lake Qinghai, China: closed-basin lake levels and the oxygen isotope record for ostracoda since the latest Pleistocene. Palaeo, Palaeo, Palaeoecology 84:141–162

    Google Scholar 

  • Liu Y, Spicuzza MJ, Craddock PR, Day JM, Valley JW, Dauphas N, Taylor LA (2010) Oxygen and iron isotope constraints on near-surface fractionation effects and the composition of lunar mare basalt source regions. Geochim Cosmochim Acta 74:6249–6262

    Google Scholar 

  • Lloyd MR (1967) Oxygen-18 composition of oceanic sulfate. Science 156:1228–1231

    Google Scholar 

  • Lloyd MR (1968) Oxygen isotope behavior in the sulfate-water system. J Geophys Res 73:6099–6110

    Google Scholar 

  • Longinelli A (1966) Ratios of oxygen-18: oxygen-16 in phosphate and carbonate from living and fossil marine organisms. Nature 211:923–926

    Google Scholar 

  • Longinelli A (1984) Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochim Cosmochim Acta 48:385–390

    Google Scholar 

  • Longinelli A, Bartelloni M (1978) Atmospheric pollution in Venice, Italy, as indicated by isotopic analyses. Water Air Soil Poll 10:335–341

    Google Scholar 

  • Longinelli A, Craig H (1967) Oxygen-18 variations in sulfate ions in sea-water and saline lakes. Science 156:56–59

    Google Scholar 

  • Longinelli A, Edmond JM (1983) Isotope geochemistry of the Amazon basin. A reconnaissance. J Geophys Res 88:3703–3717

    Google Scholar 

  • Longinelli A, Nuti S (1973) Revised phosphate-water isotopic temperature scale. Earth Planet Sci Lett 19:373–376

    Google Scholar 

  • Longstaffe FJ (1989) Stable isotopes as tracers in clastic diagenesis. In: Hutcheon IE (ed) Short course in burial diagenesis, Mineralogical Association of Canada short course series, vol 15, pp 201–277

    Google Scholar 

  • Longstaffe FJ, Schwarcz HP (1977) 18O/16O of Archean clastic metasedimentary rocks: a petrogenetic indicator for Archean gneisses? Geochim Cosmochim Acta 41:1303–1312

    Google Scholar 

  • Lorius C, Jouzel J, Ritz C, Merlivat L, Barkov NI, Korotkevich YS, Kotlyakov VM (1985) A 150000 year climatic record from Antarctic ice. Nature 316:591–596

    Google Scholar 

  • Luck JM, Ben Othman D, Albarede F (2005) Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes. Geochim Cosmochim Acta 69:5351–5363

    Google Scholar 

  • Lücke A, Moschen R, Schleser G (2005) High-temperature carbon reduction of silica: a novel approach for oxygen isotope analysis of biogenic opal. Geochim Cosmochim Acta 69:1423–1433

    Google Scholar 

  • Luz B, Barkan E (2000) Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen. Science 288:2028–2031

    Google Scholar 

  • Luz B, Barkan E (2005) The isotopic ratios 17O/16O and 18O/16O in molecular oxygen and their significance in biogeochemistry. Geochim Cosmochim Acta 69:1099–1110

    Google Scholar 

  • Luz B, Barkan E (2010) Variations of 17O/16O and 18O/16O in meteoric waters. Geochim Cosmochim Acta 74:6276–6286

    Google Scholar 

  • Luz B, Kolodny Y (1985) Oxygen isotope variations in phosphate of biogenic apatites, IV: mammal teeth and bones. Earth Planet Sci Lett 75:29–36

    Google Scholar 

  • Luz B, Kolodny Y, Horowitz M (1984) Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochim Cosmochim Acta 48:1689–1693

    Google Scholar 

  • Luz B, Cormie AB, Schwarcz HP (1990) Oxygen isotope variations in phosphate of deer bones. Geochim Cosmochim Acta 54:1723–1728

    Google Scholar 

  • Luz B, Barkan E, Bender ML, Thiemens MH, Boering KA (1999) Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity. Nature 400:547–550

    Google Scholar 

  • Magna T, Wiechert U, Halliday AN (2006) New constraints on the lithium isotope composition of the Moon and terrestrial planets. Earth Planet Sci Lett 243:336–353

    Google Scholar 

  • Mahaffy PR, Webster CR et al (2013) Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity Rover. Science 341:263–266

    Google Scholar 

  • Maher K, Larson P (2007) Variation in copper isotope ratios and controls on fractionation in hypogene skarn mineralization at Coroccohuayco and Tintaya, Peru. Econ Geol 102:225–237

    Google Scholar 

  • Mandeville CW, Webster JD, Tappen C, Taylor BE, Timbal A, Sasaki A, Hauri E, Bacon CR (2009) Stable isotope and petrologic evidence for open-system degassing during the climactic and pre-climactic eruptions of Mt. Mazama, Crater Lake, Oregon. Geochim Cosmochim Acta 73:2978–3012

    Google Scholar 

  • Marin J, Chaussidon M, Robert F (2010) Microscale oxygen isotope variations in 1.9 Ga Gunflint cherts: assessments of diagenetic effects and implications for oceanic paleotemperature reconstructions. Geochim Cosmochim Acta 74:116–130

    Google Scholar 

  • Marin-Carbonne J, Chaussidon M, Boiron MC, Robert F (2011) A combined in situ oxygen, silicon and fluid inclusion study of a chert sample from Onverwacht Group (3.35 Ga, South Africa): new constraints on fluid circulation. Chem Geol 286:59–71

    Google Scholar 

  • Marin-Carbonne J, Chaussidon M, Robert F (2012) Micrometer-scale chemical and isotopic criteria (O and Si) on the origin and history of Precambrian cherts: implications for paleo-temperature reconstructions. Geochim Cosmochim Acta 92:129–147

    Google Scholar 

  • Marin-Carbonne J et al (2014) CoupleFe and WS isotope variatiions in pyrite nodules from Archaen shale. Earth Planet Sci Lett 392:67–79

    Google Scholar 

  • Markl G, Lahaye Y, Schwinn G (2006a) Copper isotopes as monitors of redox processes in hydrothermal mineralization. Geochim Cosmochim Acta 70:4215–4228

    Google Scholar 

  • Markl G, von Blanckenburg F, Wagner T (2006b) Iron isotope fractionation during hydrothermal ore deposition and alteration. Geochim Cosmochim Acta 70:3011–3030

    Google Scholar 

  • Marowsky G (1969) Schwefel-, Kohlenstoff-und Sauerstoffisotopenuntersuchungen am Kupferschiefer als Beitrag zur genetischen Deutung. Contrib Mineral Petrol 22:290–334

    Google Scholar 

  • Martin E, Bindeman I (2009) Mass-independent isotopic signatures of volcanic sulfate from three supereuption ash deposits in Lake Tecopa, California. Earth Planet Sci Lett 282:102–114

    Google Scholar 

  • Martinson DG, Pisias NG, Hays JD, Imbrie J, Moore TC, Shackleton NJ (1987) Age dating and the orbital theory of the ice ages: development of a high resolution 0 to 300000 year chronostratigraphy. Quat Res 27:1–29

    Google Scholar 

  • Marty B (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet Sci Lett 313–314:56–66

    Google Scholar 

  • Marty B, Humbert F (1997) Nitrogen and argon isotopes in oceanic basalts. Earth Planet Sci Lett 152:101–112

    Google Scholar 

  • Marty B, Zimmermann L (1999) Volatiles (He, C, N, Ar)in mid-ocean ridge basalts: assesment of shallow-level fractionation and characterization of source composition. Geochim Cosmochim Acta 63:3619–3633

    Google Scholar 

  • Marty B, Chaussidon M, Wiens RC, Jurewicz Burnett DS (2011) A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples. Science 332:1533–1536

    Google Scholar 

  • Mason TFD et al (2005) Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chem Geol 221:170–187

    Google Scholar 

  • Masson-Delmotte V, Jouzel J et al (2005) GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin. Science 309:118–121

    Google Scholar 

  • Mastalerz M, Schimmelmann A (2002) Isotopically exchangeable organic hydrogen in coal relates to thermal maturity and maceral composition. Org Geochem 33:921–931

    Google Scholar 

  • Matheney RK, Knauth LP (1989) Oxygen isotope fractionation between marine biogenic silica and seawater. Geochim Cosmochim Acta 53:3207–3214

    Google Scholar 

  • Mathur R, Dendas M, Titley S, Phillips A (2010) Patterns in the copper isotope composition of minerals in porphyry copper deposits in southwestern United States. Econ Geol 105:1457–1467

    Google Scholar 

  • Matsubaya O, Sakai H (1973) Oxygen and hydrogen isotopic study on the water of crystallization of gypsum from the Kuroko-type mineralization. Geochem J 7:153–165

    Google Scholar 

  • Matsuhisa Y (1979) Oxygen isotopic compositions of volcanic rocks from the east Japan island arcs and their bearing on petrogenesis. J Volcanic Geotherm Res 5:271–296

    Google Scholar 

  • Matsumoto R (1992) Causes of the oxygen isotopic depletion of interstitial waters from sites 798 and 799, Japan Sea, Leg 128. Proc Ocean Drill Program, Sci Results 127(128):697–703

    Google Scholar 

  • Matsuo S, Friedman I, Smith GI (1972) Studies of quaternary saline lakes. I. Hydrogen isotope fractionation in saline minerals. Geochim Cosmochim Acta 36:427–435

    Google Scholar 

  • Mattey DP, Carr RH, Wright IP, Pillinger CT (1984) Carbon isotopes in submarine basalts. Earth Planet Sci Lett 70:196–206

    Google Scholar 

  • Mattey DP, Lowry D, MacPherson C (1994) Oxygen isotope composition of mantle peridotites. Earth Planet Sci Lett 128:231–241

    Google Scholar 

  • Mauersberger K (1981) Measurement of heavy ozone in the stratosphere. Geophys Res Lett 8:935–937

    Google Scholar 

  • Mauersberger K (1987) Ozone isotope measurements in the stratosphere. Geophys Res Letter 14:80–83

    Google Scholar 

  • McCaig AM, Wickham SM, Taylor HP (1990) Deep fluid circulation in Alpine shear zones, Pyrenees, France: field and oxygen isotope studies. Contr Mineral Petrol 106:41–60

    Google Scholar 

  • McClelland JW, Montoya JP (2002) Trophic relationships and the nitrogen isotope composition of amino acids in plankton. Ecology 83:2173–2180

    Google Scholar 

  • McCollom TM, Seewald JS (2006) Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet Sci Lett 243:74–84

    Google Scholar 

  • McConnaughey T (1989a) 13C and 18O disequilibrium in biological carbonates. II. In vitro simulation of kinetic isotope effects. Geochim Cosmochim Acta 53:163–171

    Google Scholar 

  • McConnaughey T (1989b) °) 13C and 18° disequilibrium in biological carbonates.I. Patterns. Geochim Cosmochim Acta 53:151–162

    Google Scholar 

  • McCorkle DC, Emerson SR (1988) The relationship between pore water isotopic composition and bottom water oxygen concentration. Geochim Cosmochim Acta 52:1169–1178

    Google Scholar 

  • McCorkle DC, Emerson SR, Quay P (1985) Carbon isotopes in marine porewaters. Earth Planet Sci Lett 74:13–26

    Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Google Scholar 

  • McDermott F (2004) Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quaternary Sci Rev 23:901–918

    Google Scholar 

  • McGarry S, Bar-Matthews M, Matthews A, Vaks A, Schilman B, Ayalon A (2004) Constraints on hydrological and paleotemperature variations in the eastern Mediterranean region in the last 140 ka given by the δD values of speleothem fluid inclusions. Quat Sci Rev 23:919–934

    Google Scholar 

  • McGregor ID, Manton SR (1986) Roberts Victor eclogites: ancient oceanic crust. J Geophys Res 91:14063–14079

    Google Scholar 

  • McInerney FA, Wing SL (2011) The Paleocene-Eocene thermal maximum: a perturbation of carbon cycle, climate and biosphere with implications for the future. Ann Rev Earth Planet Sci 39:489–516

    Google Scholar 

  • McKay DS et al (1996) Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH 84001. Science 273:924–930

    Google Scholar 

  • McKeegan KD, Kallio AP, Heber VS et al (2011) The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332:1528–1532

    Google Scholar 

  • McKenzie J (1984) Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, U.A.E.: A stable isotope study. J Geol 89:185–198

    Google Scholar 

  • McKibben MA, Riciputi LR (1998) Sulfur isotopes by ion microprobe. In: Applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7:121–140

    Google Scholar 

  • McLaughlin K, Chavez F, Pennington JT, Paytan A (2006) A time series investigation of the oxygen isotope composition of dissolved inorganic phosphate in Monterey Bay, California. Limnol Oceanogr 51:2370–2379

    Google Scholar 

  • McSween HY, Taylor LA, Stolper EM (1979) Allan Hills 77005: a new meteorite type found in Antarctica. Science 204:1201–1203

    Google Scholar 

  • Meier-Augustein W (2010) Stable isotope forensics. Wiley-Blackwell, Chichester

    Google Scholar 

  • Mengel K, Hoefs J (1990) Li - δ18O - SiO2 systematics in volcanic rocks and mafic lower crustal xenoliths. Earth Planet Sci Lett 101:42–53

    Google Scholar 

  • Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J Geophys Res 84:5029–5033

    Google Scholar 

  • Michalski G, Bhattacharya SK, Mase DF (2011) Oxygen isotope dynamics of atmospheric nitrate and its precursor molecules. In: Baskaran M (ed) Handbook of environmental isotope geochemistry, Springer, pp 613–635

    Google Scholar 

  • Mikaloff-Fletcher SE et al (2006) Inverse estimates of anthropogenic CO2 uptake, transport and storage by the ocean. Global Biogeochem Cycles 20:GB2002. doi:10/10292005GB002532

    Google Scholar 

  • Milkov AV (2005) Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological settings. Org Geochem 36:681–702

    Google Scholar 

  • Ming T, Anders E, Hoppe P, Zinner E (1989) Meteoritic silicon carbide and its stellar sources, implications for galactic chemical evolution. Nature 339:351–354

    Google Scholar 

  • Minigawa M, Wada E (1984) Stepwise enrichments of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140

    Google Scholar 

  • Misra S, Froelich PN (2012) Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335:818–823

    Google Scholar 

  • Mix HT, Chamberlain CP (2014) Stable isotope records of hydrologic change and paleotemperature from smectite in Cenozoic western North America. Geochim Cosmochim Acta 141:532–546

    Google Scholar 

  • Moldovanyi EP, Lohmann KC (1984) Isotopic and petrographic record of phreatic diagenesis: Lower Cretaceous Sligo and Cupido Formations. J Sediment Petrol 54:972–985

    Google Scholar 

  • Monster J, Anders E, Thode HG (1965) 34S/32S ratios for the different forms of sulphur in the Orgueil meteorite and their mode of formation. Geochim Cosmochim Acta 29:773–779

    Google Scholar 

  • Monster J, Appel PW, Thode HG, Schidlowski M, Carmichael CW, Bridgwater D (1979) Sulphur isotope studies in early Archean sediments from Isua, West Greenland: implications for the antiquity of bacterial sulfate reduction. Geochim Cosmochim Acta 43:405–413

    Google Scholar 

  • Montoya JP, Horrigan SG, McCarthy JJ (1991) Rapid, storm-induced changes in the natural abundance of 15N in a planktonic ecosystem, Chesapeake Bay, USA. Geochim Cosmochim Acta 55:3627–3638

    Google Scholar 

  • Mook WG, Koopman M, Carter AF, Keeling CD (1983) Seasonal, latitudinal and secular variations in the abundance and isotopic ratios of atmospheric carbon dioxide. I. Results from land stations. J Geophys Res 88:10915–10933

    Google Scholar 

  • Morin S, Savarino J, Frey MF, Yan N, Bekki S, Bottenheim JW, Martins JM (2008) Tracing the origin and fate of NOx in the arctic atmosphere using stable isotopes in nitrate. Science 322:730–732

    Google Scholar 

  • Moschen R, Lücke A, Parplies U, Radtke B, Schleser GH (2006) Transfer and early diagenesis of biogenic silica oxygen isotope signals during settling and sedimentation of diatoms in a temperate freshwater lake (Lake Holzmaar, Germany). Geochim Cosmochim Acta 70:4367–4379

    Google Scholar 

  • Mossmann JR, Aplin AC, Curtis CD, Coleman ML (1991) Geochemistry of inorganic and organic sulfur in organic-rich sediments from the Peru Margin. Geochim Cosmochim Acta 55:3581–3595

    Google Scholar 

  • Moynier F, Blichert-Toft J, Telouk P, Luck JM, Albarede F (2007) Comparative stable isotope geochemistry of Ni, Cu, Zn and Fe in chondrites and iron meteorites. Geochim Cosmochim Acta 71:4365–4379

    Google Scholar 

  • Moynier F, Pichat S, Pons ML, Fike D, Balter V, Albarède F (2008) Isotope fractionation and transport mechanisms of Zn in plants. Chem Geol 267:125–130

    Google Scholar 

  • Muehlenbachs K, Byerly G (1982) 18O enrichment of silicic magmas caused by crystal fractionation at the Galapagos Spreading Center. Contr Mineral Petrol 79:76–79

    Google Scholar 

  • Muehlenbachs K, Clayton RN (1972) Oxygen isotope studies of fresh and weathered submarine basalts. Can J Earth Sci 9:471–479

    Google Scholar 

  • Muehlenbachs K, Clayton RN (1976) Oxygen isotope composition of the oceanic crust and its bearing on seawater. J Geophys Res 81:4365–4369

    Google Scholar 

  • Mulitza S, Duerkoop A, Hale S, Wefer S, Niebler HS (1997) Planktonic foraminifera as recorders of past surface water stratification. Geology 25: 335–338

    Google Scholar 

  • Nabelek PI (1991) Stable isotope monitors. In: Contact metamorphism. Rev Mineral 26:395–435

    Google Scholar 

  • Nabelek PI, Labotka TC, O’Neil JR, Papike JJ (1984) Contrasting fluid/rock interaction between the Notch Peak granitic intrusion and argillites and limestones in western Utah: evidence from stable isotopes and phase assemblages. Contr Mineral Petrol 86:25–43

    Google Scholar 

  • Neretin LN, Böttcher ME, Jǿrgensen BB, Volkov II, Lüschen H, Hilgenfeldt K (2004) Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistone sediments of the Black Sea. Geochim Cosmochim Acta 68:2081–2094

    Google Scholar 

  • Nielsen H, Ricke W (1964) S-Isotopenverhaltnisse von Evaporiten aus Deutschland. Ein Beitrag zur Kenntnis von δ34S im Meerwasser Sulfat. Geochim Cosmochim Acta 28:577–591

    Google Scholar 

  • Niles PB, Leshin LA, Guan Y (2005) Microscale carbon isotope variability in ALH84001 carbonates and a discussion of possible formation environments. Geochim Cosmochim Acta 69:2931–2944

    Google Scholar 

  • Nishio Y, Sasaki S, Gamo T, Hiyagon H, Sano Y (1998) Carbon and helium isotope systematics of North Fiji basin basalt glasses: carbon geochemical cycle in the subduction zone. Earth Planet Sci Lett 154:127–138

    Google Scholar 

  • Norris RD, Röhl U (1999) Carbon cycling and chronology of climate warming during the Paleocene/Eocene transition. Nature 401:775–778

    Google Scholar 

  • Norton D, Taylor HP (1979) Quantitative simulation of the hydrothermal systems of crystallizing magmas on the basis of transport theory and oxygen isotope data: an analysis of the Skaergaard intrusion. J Petrol 20:421–486

    Google Scholar 

  • Nriagu JO, Coker RD, Barrie LA (1991) Origin of sulphur in Canadian Arctic haze from isotope measurements. Nature 349:142–145

    Google Scholar 

  • O‘Leary JA, Eiler JM, Rossman GR (2005) Hydrogen isotope geochemistry of nominally anhydrous minerals. Geochim Cosmochim Acta 69:A745

    Google Scholar 

  • O’Neil JR, Roe LJ, Reinhard E, Blake RE (1994) A rapid and precise method of oxygen isotope analysis of biogenic phosphate. Israel J Earth Sci 43:203–212

    Google Scholar 

  • Ohmoto H (1972) Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ Geol 67:551–578

    Google Scholar 

  • Ohmoto H (1986) Stable isotope geochemistry of ore deposits. Rev Mineral 16:491–559

    Google Scholar 

  • Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley Interscience, New York, pp 435–486

    Google Scholar 

  • Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Geochemistry of hydrothermal ore deposits, 2nd edn. Holt Rinehart and Winston, New York

    Google Scholar 

  • Ohmoto H, Mizukani M, Drummond SE, Eldridge CS, Pisutha-Arnond V, Lenagh TC (1983) Chemical processes of Kuroko formation. Econ Geol Monogr 5:570–604

    Google Scholar 

  • Ohmoto H, Kakegawa T, Lowe DR (1993) 3.4 billion year old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence. Science 262:555

    Google Scholar 

  • Ongley JS, Basu AR, Kyser TK (1987) Oxygen isotopes in coexisting garnets, clinopyroxenes and phlogopites of Roberts Victor eclogites: implications for petrogenesis and mantle metasomatism. Earth Planet Sci Lett 83:80–84

    Google Scholar 

  • Ono S, Shanks WC, Rouxel OJ, Rumble D (2007) S-33 constraints on the seawater sulphate contribution in modern seafloor hydrothermal vent sulfides. Geochim Cosmochim Acta 71:1170–1182

    Google Scholar 

  • Onuma N, Clayton RN, Mayeda TK (1970) Oxygen isotope fractionation between minerals and an estimate of the temperature of formation. Science 167:536–538

    Google Scholar 

  • Ott U (1993) Interstellar grains in meteorites. Nature 364:25–33

    Google Scholar 

  • Owen T, Maillard JP, DeBergh C, Lutz BL (1988) Deuterium on Mars: the abundance of HDO and the value of D/H. Science 240:1767–1770

    Google Scholar 

  • Pack A, Gehler A, Süssenberger A (2013) Exploring the usability of isotopically anomaleous oxygen in bones and teeth as palaeo-CO2-barometer. Geochim Cosmochim Acta 102:306–317

    Google Scholar 

  • Pagani M, Arthur MA, Freeman KH (1999a) Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14:273–292

    Google Scholar 

  • Pagani M, Freeman KH, Arthur MA (1999b) Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285:876–879

    Google Scholar 

  • Page B, Bullen T, Mitchell M (2008) Influences of calcium availability and tree species on Ca isotope fractionation in soil and vegetation. Biogeochemistry 88:1–13

    Google Scholar 

  • Palmer MR, Pearson PN, Conbb SJ (1998) Reconstructing past ocean pH-depth profiles. Science 282:1468–1471

    Google Scholar 

  • Pawellek F, Veizer J (1994) Carbon cycle in the upper Danube and its tributaries: δ13CDIC constraints. Israel J Earth Sci 43:187–194

    Google Scholar 

  • Payne JL, Kump LR (2007) Evidence for recurrent early triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth Planet Sci Lett 256:264–277

    Google Scholar 

  • Paytan A, Kastner M, Campbell D, Thiemens MH (1998) Sulfur isotope composition of Cenozoic seawater sulfate. Science 282:1459–1462

    Google Scholar 

  • Paytan A, Luz B, Kolodny Y, Neori A (2002) Biologically mediated oxygen isotope exchange between water and phosphorus. Global Biogeochem Cycles 16–13:1–7

    Google Scholar 

  • Paytan A, Kastner M, Campbell D, Thiemens M (2004) Seawater sulfur isotope fluctuations in the Cretaceous. Science 304:1663–1665

    Google Scholar 

  • Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699

    Google Scholar 

  • Pearson PN, Foster GI, Wade BS (2009) Atmospheric carbon dioxide through the Eocene-Oligocene climate transition. Nature 461:1110–1113

    Google Scholar 

  • Peckmann J, Thiel V (2005) Carbon cycling at ancient methane-seeps. Chem Geol 205:443–467

    Google Scholar 

  • Pedentchouk N, Freeman KH, Harris NB (2006) Different response of δD-values of n-alkanes, isoprenoids and kerogen during thermal maturation. Geochim Cosmochim Acta 70:2063–2072

    Google Scholar 

  • Perry EA, Gieskes JM, Lawrence JR (1976) Mg, Ca and 18O/16O exchange in the sediment-pore water system, Hole 149, DSDP. Geochim Cosmochim Acta 40:413–423

    Google Scholar 

  • Peters MT, Wickham SM (1995) On the causes of 18O depletion and 18O/16O homogenization during regional metamorphism, the east Humboldt Range core complex, Nevada. Contr Mineral Petrol 119:68–82

    Google Scholar 

  • Peters KE, Rohrbach BG, Kaplan IR (1981) Carbon and hydrogen stable isotope variations in kerogen during laboratory-simulated thermal maturation. Am Assoc Petrol Geol Bull 65:501–508

    Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293–320

    Google Scholar 

  • Petit JR et al (1999a) Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Google Scholar 

  • Petit JR et al (1999b) Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Google Scholar 

  • Phillips FM, Bentley HW (1987) Isotopic fractionation during ion filtration: I. Theory. Geochim Cosmochim Acta 51:683–695

    Google Scholar 

  • Philp RP (2007) The emergence of stable isotopes in environmental and forensic geochemistry studies: a review. Eviron Chem Lett 5:57–66

    Google Scholar 

  • Pineau F, Javoy M (1983) Carbon isotopes and concentrations in mid-ocean ridge basalts. Earth Planet Sci Lett 62:239–257

    Google Scholar 

  • Pineau F, Javoy M, Bottinga Y (1976) 13C/12C ratios of rocks and inclusions in popping rocks of the Mid-Atlantic Ridge and their bearing on the problem of isotopic composition of deep-seated carbon. Earth Planet Sci Lett 29:413–421

    Google Scholar 

  • Poage MA, Chamberlain CP (2001) Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change. Am J Sci 301:1–15

    Google Scholar 

  • Poitrasson F, Levasseur S, Teutsch N (2005) Significance of iron isotope mineral fractionation in pallasites and iron meteorites for the core-mantle differentiation of terrestrial planets. Earth Planet Sci Lett 234:151–164

    Google Scholar 

  • Poitrasson F, Roskosz M, Corgne A (2009) No iron isotope fractionation between molten alloys and silicate melt to 2000°C and 7.7 GPa: experimental evidence and implications for planery differentiation and accretion. Earth Planet Sci Lett 278:376–385

    Google Scholar 

  • Popp BN, Takigiku R, Hayes JM, Louda JW, Baker EW (1989) The post Paleozoic chronology and mechanism of 13C depletion in primary organic matter. Am J Sci 289:436–454

    Google Scholar 

  • Popp BN, Laws EA, Bidigare RR, Dore JE, Hanson KL, Wakeham SG (1998) Effect of phytoplankton cell geometry on carbon isotope fractionation. Geochim Cosmochim Acta 62:69–77

    Google Scholar 

  • Popp BN et al (2002) Global Biogeochemical Cycles 16. doi:10.1029/2001GB001806

  • Poreda R (1985) Helium-3 and deuterium in back arc basalts: Lau Basin and the Mariana trough. Earth Planet Sci Lett 73:244–254

    Google Scholar 

  • Poreda R, Schilling JG, Craig H (1986) Helium and hydrogen isotopes in ocean-ridge basalts north and south of Iceland. Earth Planet Sci Lett 78:1–17

    Google Scholar 

  • Price FT, Shieh YN (1979) The distribution and isotopic composition of sulfur in coals from the Illinois Basin. Econ Geol 74:1445–1461

    Google Scholar 

  • Prokoph A, Shields GA, Veizer J (2008) Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Sci Rev 87:113–133

    Google Scholar 

  • Prombo CA, Clayton RN (1985) A striking nitrogen isotope anomaly in the Bencubbin and Weatherford meteorites. Science 230:935–937

    Google Scholar 

  • Puceat E, Joachimski MM et al (2010) Revised phosphate-water fractionation equation reassessing paleotemperatures derived from biogenic apatite. Earth Planet Sci Lett 298:135–142

    Google Scholar 

  • Quade J et al (1992) A 16-Ma record of paleodiet using carbon and oxygen isotopes in fossil teeth from Pakistan. Chem Geol 94:183–192

    Google Scholar 

  • Quade J, Cerling TE (1995) Expansion of C4 grasses in the late Miocene of northern Pakistan: evidence from stable isotopes in paleosols. Palaeo, Palaeo, Palaeo 115:91–116

    Google Scholar 

  • Quade J, Breecker DO, Daeron M, Eiler J (2011) The paleoaltimetry of Tibet: an isotopic perspective. Am J Sci 311:77–115

    Google Scholar 

  • Quast A, Hoefs J, Paul J (2006) Pedogenic carbonates as a proxy for palaeo-CO2 in the Paleozoic atmosphere. Palaeo, Palaeo, Palaeo 242:110–125

    Google Scholar 

  • Quay PD, Tilbrook B, Wong CS (1992) Oceanic uptake of fossil fuel CO2: carbon-13 evidence. Science 256:74–79

    Google Scholar 

  • Quay PD, Emerson S, Wilbur DO, Stump S (1993) The δ18O of dissolved O2 in the surface waters of the subarctic Pacific: a tracer of biological productivity. J Geophys Res 98:8447–8458

    Google Scholar 

  • Quay PD, Wilbur DO, Richey JE, Devol AH, Benner R, Forsberg BR (1995) The 18O/16O of dissolved oxygen in rivers and lakes in the Amazon Basin: determining the ratio of respiration to photosynthesis in freshwaters. Limnol Oceanogr 40:718–729

    Google Scholar 

  • Quay PD, Stutsman J, Wibur D, Snover A, Dlugokencky E, Brown T (1999) The isotopic composition of atmospheric methane. Global Geochemical Cycles 13:445–461

    Google Scholar 

  • Raab M, Spiro B (1991) Sulfur isotopic variations during seawater evaporation with fractional crystallization. Chem Geol 86:323–333

    Google Scholar 

  • Rabinovich AL, Grinenko VA (1979) Sulfate sulfur isotope ratios for USSR river water. Geochemistry 16(2):68–79

    Google Scholar 

  • Radke J, Bechtel A, Gaupp R, Püttmann W, Schwark L, Sachse D, Gleixner D (2005) Correlation between hydrogen isotope ratios of lipid biomarkers and sediment maturity. Geochim Cosmochim Acta 69:5517–5530

    Google Scholar 

  • Rahn T, Wahlen M (1997) Stable isotope enrichment in stratospheric nitrous oxide. Science 278:1776–1778

    Google Scholar 

  • Rahn T et al (2002) The deuterium anomaly in stratospheric molecular hydrogen. Geochim Cosmochim Acta 66:A622 (special supplement)

    Google Scholar 

  • Rai VK, Thiemens MH (2007) Mass independently fractionated sulphur components in chondrites. Geochim Cosmochim Acta 71:1341–1354

    Google Scholar 

  • Rai VK, Jackson TL, Thiemens MH (2005) Photochemical mass-independent sulphur isotopes in achondritic meteorites. Science 309:1062–1065

    Google Scholar 

  • Raiswell R, Berner RA (1985) Pyrite formation in euxinic and semi-euxinic sediments. Am J Sci 285:710–724

    Google Scholar 

  • Raitzsch M, Hönisch B (2014) Cenozoic boron isotope variations in benthic foraminifera. Geology 41:591–594

    Google Scholar 

  • Rau GH, Sweeney RE, Kaplan IR (1982) Plankton 13C/12C ratio changes with latitude: differences between northern and southern oceans. Deep Sea Res 29:1035–1039

    Google Scholar 

  • Rau GH, Takahashi T, DesMarais DJ (1989) Latitudinal variations in plankton 13C: implications for CO2 and productivity in past ocean. Nature 341:516–518

    Google Scholar 

  • Rau GH, Takahashi T, DesMarais DJ, Repeta DJ, Martin JH (1992) The relationship between δ13C of organic matter and ΣCO2(aq) in ocean surface water: data from a JGOFS site in the northeast Atlantic Ocean and a model. Geochim Cosmochim Acta 56:1413–1419

    Google Scholar 

  • Raven MR, Adkins JF, Werne JP, Lyons TW, Sessions AL (2015) Sulfur isotopic composition of individual organic compounds from Cariaco Basin sediments. Org Geochem (in press)

    Google Scholar 

  • Redding CE, Schoell M, Monin JC, Durand B (1980) Hydrogen and carbon isotopic composition of coals and kerogen. In: Douglas AG, Maxwell JR (eds) Phys Chem Earth 12:711–723

    Google Scholar 

  • Rees CE, Jenkins WJ, Monster J (1978) The sulphur isotopic composition of ocean water sulphate. Geochim Cosmochim Acta 42:377–381

    Google Scholar 

  • Rice DD, Claypool GE (1981) Generation, accumulation and resource potential of biogenic gas. Am Assoc Petrol Geol Bull 65:5–25

    Google Scholar 

  • Rice A, Dayalu A, Quay P, Gammon R (2011) Isotopic fractionation during soil uptake of atmospheric hydrogen. Biogeosciences 8:763–769

    Google Scholar 

  • Richet P, Bottinga Y, Javoy M (1977) A review of H, C, N, O, S, and Cl stable isotope fractionation among gaseous molecules. Ann Rev Earth Planet Sci 5:65–110

    Google Scholar 

  • Riciputi LR, Cole DR, Machel HG (1996) Sulfide formation in reservoir carbonates of the Devonian Nishu Formation, Alberta, Canada: an ion microprobe study. Geochim Cosmochim Acta 60:325–336

    Google Scholar 

  • Rindsberger MS, Jaffe S, Rahamin S, Gat JR (1990) Patterns of the isotopic composition of precipitation in time and space; data from the Israeli storm water collection program. Tellus 42B:263–271

    Google Scholar 

  • Ripley EM, Li C (2003) Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu-Ni-(PGE)-deposits. Econ Geol 98:635–641

    Google Scholar 

  • Robert F (2001) The origin of water on Earth. Science 293:1056–1058

    Google Scholar 

  • Robert F, Epstein S (1982) The concentration and isotopic composition of hydrogen, carbon and nitrogen carbonaceous meteorites. Geochim Cosmochim Acta 46(8):1–95

    Google Scholar 

  • Robert F, Merlivat L, Javoy M (1978) Water and deuterium content in ordinary chondrites. Meteoritics 12:349–354

    Google Scholar 

  • Robert F, Gautier D, Dubrulle B (2000) The solar system D/H ratio: observations and theories. Space Sci Rev 92:201–224

    Google Scholar 

  • Röckmann T et al (1998) Mass independent oxygen isotope fractionation in atmospheric CO as a result of the reaction CO + OH. Science 281:544–546

    Google Scholar 

  • Röckmann T, Jöckel P, Gros V, Bräunlich M, Possnert G, Brenninkmeijer CAM (2002) Using 14C, 13C, 18O and 17O isotopic variations to provide insights into the high northern latitude surface CO inventory. Atmos Chem Phys 2:147–159

    Google Scholar 

  • Röckmann T, Kaiser J, Brenninkmeijer CAM, Brand WA (2003) Gas chromatography/isotope ratio mass spectrometry method for high-precision position-dependent 15N and 18O measurements of atmospheric nitrous oxide. Rapid Commun Mass Spectrom 17:1897–1908

    Google Scholar 

  • Röhl U, Norris RD, Bralower TJ, Wefer G (2000) New chronology for the late Paleocene thermal maximum and its environmental implications. Geology 28:927–930

    Google Scholar 

  • Romanek CS et al (1994) Record of fluid-rock interaction on Mars from the meteorite ALH 84001. Nature 372:655–657

    Google Scholar 

  • Rooney MA, Claypool GE, Chung HM (1995) Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chem Geol 126:219–232

    Google Scholar 

  • Rouxel O, Fouquet Y, Ludden JN (2004a) Copper isotope systematics of the Lucky Strike, Rainbow and Logatschev seafloor hydrothermal fields on the Mi-Atlantic Ridge. Econ Geol 99:585–600

    Google Scholar 

  • Rouxel O, Fouquet Y, Ludden JN (2004b) Subsurface processes at the Lucky Strike hydrothermal field, Mid-Atlantic Ridge: evidence from sulfur, selenium and iron isotopes. Geochim Cosmochim Acta 68:2295–2311

    Google Scholar 

  • Rouxel O, Bekker A, Edwards KJ (2005) Iron isotope constraints on the Archean and Proterozoic ocean redox state. Science 307:1088–1091

    Google Scholar 

  • Rouxel O, Ono S, Alt J, Rumble D, Ludden J (2008a) Sulfur isotope evidence for microbial sulfate reduction in altered oceanic basalts at ODP Site 801. Earth Planet Sci Lett 268:110–123

    Google Scholar 

  • Rouxel O, Shanks WC, Bach W, Edwards KJ (2008b) Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9-10°N.Chem Geol 252:214–227

    Google Scholar 

  • Rozanski K, Sonntag C (1982) Vertical distribution of deuterium in atmospheric water vapour. Tellus 34:135–141

    Google Scholar 

  • Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Climate change in continental isotopic records. Geophys Monograph 78:1–36

    Google Scholar 

  • Rumble D, Yui TF (1998) The Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China. Geochim Cosmochim Acta 62:3307–3321

    Google Scholar 

  • Rumble D, Young ED, Shahar A, Guo W (2011) Stable isotope cosmochemistry and the evolution of planetary systems. Elements 7:23–28

    Google Scholar 

  • Russell AK, Kitajima K, Strickland A, Medaris LG, Schulze DJ, Valley JW (2013) Eclogite-facies fluid infiltration: constraints from δ18O zoning in garnet. Contr Mineral Petrol 165:103–116

    Google Scholar 

  • Rye RO (1993) The evolution of magmatic fluids in the epithermal environment: the stable isotope perspective. Econ Geol 88:733–753

    Google Scholar 

  • Rye RO (2005) A review of stable isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chem Geol 215:5–36

    Google Scholar 

  • Rye RO, Schuiling RD, Rye DM, Jansen JBH (1976) Carbon, hydrogen and oxygen isotope studies of the regional metamorphic complex at Naxos, Greece. Geochim Cosmochim Acta 40:1031–1049

    Google Scholar 

  • Rye RO, Bethke PM, Wasserman MD (1992) The stable isotope geochemistry of acid sulfate. Econ Geol 87:227–262

    Google Scholar 

  • Saal AE, Hauri EH, Van Orman JA, Rutherford MJ (2013) Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science 340:1317–1320

    Google Scholar 

  • Saccocia PJ, Seewald JS, Shanks WC (2009) Oxygen and hydrogen isotope fractionation in serpentine-water and talc-water systems from 250 to 450°C, 50 MPa. Geochim Cosmochim Acta 73:6789–6804

    Google Scholar 

  • Sachse D, Billault I et al (2012) Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Ann Rev Earth Planet Sci 40:221–249

    Google Scholar 

  • Sackett WM (1988) Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments. Geochim Cosmochim Acta 42:571–580

    Google Scholar 

  • Sackett WM, Thompson RR (1963) Isotopic organic carbon composition of recent continental derived clastic sediments of Eastern Gulf Coast, Gulf of Mexico. Bull Am Assoc Petrol Geol 47:525

    Google Scholar 

  • Sackett WM, Eadie BJ, Exner ME (1973) Stable isotope composition of organic carbon in recent Antarctic sediments. Adv Org Geochem 1973:661

    Google Scholar 

  • Safarian AR, Nielsen SG, Marschall HR, McCubbin FM, Monteleone BD (2014) Early accretion of water in the inner solar system from a carbonaceous-like source. Science 346:623–626

    Google Scholar 

  • Saino T, Hattori A (1980) 15N natural abundance in oceanic suspended particulate organic matter. Nature 283:752–754

    Google Scholar 

  • Saino T, Hattori A (1987) Geophysical variation of the water column distribution of suspended particulate organic nitrogen and its 15N natural abundance in the Pacific and its marginal seas. Deep Sea Res 34:807–827

    Google Scholar 

  • Sakai H (1968) Isotopic properties of sulfur compounds in hydrothermal processes. Geochem J 2:29–49

    Google Scholar 

  • Sakai H, Casadevall TJ, Moore JG (1982) Chemistry and isotope ratios of sulfur in basalts and volcanic gases at Kilauea volcano, Hawaii. Geochim Cosmochim Acta 46:729–738

    Google Scholar 

  • Sakai H, DesMarais DJ, Ueda A, Moore JG (1984) Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochim Cosmochim Acta 48:2433–2441

    Google Scholar 

  • Sano Y, Marty B (1995) Origin of carbon in fumarolic gas from island arcs. Chem Geol 119:265–274

    Google Scholar 

  • Sarntheim M et al (2001) Fundamental modes and abrupt changes in North Atlantic circulation and climate over the last 60 ky—concepts, reconstruction and numerical modeling. In: Schäfer P, Ritzau W, Schlüter M, Thiede J (eds) The northern North Atlantic, Springer Verlag, Heidelberg, pp 365–410

    Google Scholar 

  • Sass E, Kolodny Y (1972) Stable isotopes, chemistry and petrology of carbonate concretions (Mishash formation, Israel). Chem Geol 10:261–286

    Google Scholar 

  • Savage PS, Georg RB, Williams HM, Turner S, Halliday AN, Chappell BW (2012) The silicon isotope composition of granites. Geochim Cosmochim Acta 92:184–202

    Google Scholar 

  • Savin SM, Epstein S (1970a) The oxygen and hydrogen isotope geochemistry of clay minerals. Geochim Cosmochim Acta 34:25–42

    Google Scholar 

  • Savin SM, Epstein S (1970b) The oxygen and hydrogen isotope geochemistry of ocean sediments and shales. Geochim Cosmochim Acta 34:43–63

    Google Scholar 

  • Savin SM, Lee M (1988) Isotopic studies of phyllosilicates. Rev Mineral 19:189–223

    Google Scholar 

  • Schauble EA (2004) Applying stable isotope fractionation theory to new systems. Rev Mineral Geochem 55: 65-111

    Google Scholar 

  • Schiegl WE, Vogel JV (1970) Deuterium content of organic matter. Earth Planet Sci Lett 7: 307–313

    Google Scholar 

  • Schimmelmann A, Lewan MD, Wintsch RP (1999) D/H ratios of kerogen, bitumen, oil and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS and III. Geochim Cosmochim Acta 63: 3751–3766

    Google Scholar 

  • Schimmelmann A, Sessions AL, Mastalerz M (2006) Hydrogen isotopic (D/H) composition of organic matter during diagenesis and thermal maturation. Ann.Rev Earth Planet Sci 34: 501–533

    Google Scholar 

  • Schmidt M, Botz R, Rickert D, Bohrmann G, Hall SR, Mann S (2001) Oxygen isotopes of marine diatoms and relations to opal-A maturation. Geochim Cosmochim Acta 65: 201–211

    Google Scholar 

  • Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects and future challenges. Anal Bioanal Chem 378:283–300

    Google Scholar 

  • Schmitt J, Schneider R et al (2012) Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 336:711–714

    Google Scholar 

  • Schmitt AD, Stille P, Vennemann T (2003) Variations of the 44Ca/40Ca ratio in seawater during the past 24 million years: evidence from δ44Ca and δ18O values of Miocene phosphates. Geochim Cosmochim Acta 67:2607–2614

    Google Scholar 

  • Schoell M (1980) The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim Cosmochim Acta 44:649–661

    Google Scholar 

  • Schoell M (1983) Genetic characterization of natural gases. Bull Am Assoc Petrol Geol 67:2225–2238

    Google Scholar 

  • Schoell M (1984) Recent advances in petroleum isotope geochemistry. Org Geochem 6:645–663

    Google Scholar 

  • Schoell M (1988) Multiple origins of methane in the Earth. Chem Geol 71:1–10

    Google Scholar 

  • Schoell M, McCaffrey MA, Fago FJ, Moldovan JM (1992) Carbon isotope compositions of 28,30-bisnorhopanes and other biological markers in a Monterey crude oil. Geochim Cosmochim Acta 56:1391–1399

    Google Scholar 

  • Schoell M, Schouten S, Sinninghe Damste JS, de Leeuw JW, Summons RE (1994) A molecular organic carbon isotope record of Miocene climatic changes. Science 263:1122–1125

    Google Scholar 

  • Schoenberg R, von Blanckenburg F (2006) Modes of planetary-scale Fe isotope fractionation. Earth Planet Sci Lett 252:342–359

    Google Scholar 

  • Schoeninger MJ, DeNiro MJ (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim Cosmochim Acta 48:625–639

    Google Scholar 

  • Schrag DP (1999) Effects of diagenesis on the isotopic record of late Paleogene tropical sea surface temperature. Chem Geol 161:2265–2278

    Google Scholar 

  • Schrag DP, Hampt G, Murry DW (1996) Pore fluid constraints on the temperature and oxygen isotopic composition of the Glacial ocean. Science 272:1930–1932

    Google Scholar 

  • Schwalb A, Burns SJ, Kelts k (1999) Holocene environments from stable isotope stratigraphy of ostracods and authigenic carbonate in Chilean Altiplano lakes. Palaeo, Palaeo, Palaeo 148:153–168

    Google Scholar 

  • Schwarcz HP, Melbye J, Katzenberg MA, Knyf M (1985) Stable isotopes in human skeletons of southern Ontario: reconstruction of palaeodiet. J Archaeol Sci 12:187–206

    Google Scholar 

  • Seal RR (2006) Sulfur isotope geochemistry of sulfide minerals. Rev Mineral Geochem 61:633–677

    Google Scholar 

  • Seccombe PK, Spry PG, Ra Both, Jones MT, Schiller JC (1985) Base metal mineralization in the Kaumantoo Group, South Australia: a regional sulfur isotope study. Econ Geol 80:1824–1841

    Google Scholar 

  • Seitz HM, Brey GP, Lahaye Y, Durali S, Weyer S (2004) Lithium isotope signatures of peridotite xenoliths and isotope fractionation at high temperature between olivine and pyroxene. Chem Geol 212:163–177

    Google Scholar 

  • Sessions AL, Sylva SP, Summons RE, Hayes JM (2004) Isotopic exchange of carbon-bound hydrogen over geologic time scales. Geochim Cosmochim Acta 68:1545–1559

    Google Scholar 

  • Severinghaus JP, Brook EJ (1999) Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286:930–934

    Google Scholar 

  • Severinghaus JP, Bender ML, Keeling RF, Broecker WS (1996) Fractionation of soil gases by diffusion of water vapor, gravitational settling and thermal diffusion. Geochim Cosmochim Acta 60:1005–1018

    Google Scholar 

  • Severinghaus JP, Sowers T, Brook EJ, Alley RB, Bender ML (1998) Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391:141–146

    Google Scholar 

  • Severinghaus JP, Beaudette R, Headly MA, Taylor K, Brook EJ (2009) Oxygen-18 of O2 records the impact of abrupt climate change on terrestrial biosphere. Science 324:1431–1434

    Google Scholar 

  • Severmann S, Johnson CM, Beard BL, German CR, Edmonds HN, Chiba H, Green DRH (2004) The effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36° !4 N. Earth Planet Sci Lett 225:63–76

    Google Scholar 

  • Severmann S, Johnson CM, Beard BL, McManus J (2006) The effect of early diagenesis on the Fe isotope composition of porewaters and authigenic minerals in continental margin sediments. Geochim Cosmochim Acta 70:2006–2022

    Google Scholar 

  • Shackleton NJ, Kennett JP (1975) Paleotemperature history of the Cenozoic and initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP sites 277, 279 and 281. Initial Rep DSDP 29:743–755

    Google Scholar 

  • Shackleton NJ, Hall MA, Line J, Cang S (1983) Carbon isotope data in core V19-30 confirm reduced carbon dioxide concentration in the ice age atmosphere. Nature 306:319–322

    Google Scholar 

  • Shahar A, Young ED (2007) Astrophysics of CAI formation as revealed by silicon isotope LA-MC-ICPMS of an igneous CAI. Earth Planet Sci Lett 257:497–510

    Google Scholar 

  • Shahar A, Ziegler K, Young ED, Ricollaeu A, Schauble E, Fei Y (2009) Experimentally determined Si isotope fractionation between silcate and Fe metal and implications for the Earth’s core formation. Earth Planet Sci Lett 288:228–234

    Google Scholar 

  • Shahar A, Hillgren VJ, Young ED, Fei Y, Macris CA, Deng L (2011) High-temperature Si isotope fractionation between iron metal and silicate. Geochim Cosmochim Acta 75:7688–7697

    Google Scholar 

  • Shahar A, Hillgren VJ, Horan MF, Mesa-Garcia J, Kaufman LA, Mock TD (2014) Sulfur-controlled iron isotope fractionation experiments of core formation in planetary bodies. Geochim Cosmochim Acta (in press)

    Google Scholar 

  • Shanks WC (2001) Stable isotopes in seafloor hydrothermal systems: vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. Rev Mineral Geochem 43:469–525

    Google Scholar 

  • Sharp ZD (1995) Oxygen isotope geochemistry of the Al2SiO5 polymorphs. Am J Sci 295:1058–1076

    Google Scholar 

  • Sharp ZD, Shearer CK, McKeegan KD, Barnes JD, Wang YQ (2010) The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science 329:10501053

    Google Scholar 

  • Shaw AM, Hilton DR, Fischer TP, Walker JA, Alvarado GE (2003) Contrasting He-C relationshipsin Nicaragua and Costa Rica: insights into C cycling through subduction zones. Earth Planet Sci Lett 214:499–513

    Google Scholar 

  • Shaw AM, Hauri EH, Fischer TP, Hilton DR, Kelley KA (2008) Hydrogen isotopes in Mariana arc melt inclusions: implications for subduction dehydration and the deep-earth water cycle. Earth Planet Sci Lett 275:138–145

    Google Scholar 

  • Shelton KL, Rye DM (1982) Sulfur isotopic compositions of ores from Mines Gaspe, Quebec: An example of sulfate-sulfide isotopic disequilibria in ore forming fluids with applications to other porphyry type deposits. Econ Geol 77:1688–1709

    Google Scholar 

  • Shemesh A, Kolodny Y, Luz B (1983) Oxygen isotope variations in phosphate of biogenic apatites, II. Phosphorite rocks. Earth Planet Sci Lett 64:405–441

    Google Scholar 

  • Shen Y, Buick R (2004) The antiquity of microbial sulfate reduction. Earth Sci Rev 64:243–272

    Google Scholar 

  • Sheppard SMF (1986) Characterization and isotopic variations in natural waters. In: Stable isotopes in high temperature geological processes. Rev Mineral 16:165–183

    Google Scholar 

  • Sheppard SMF, Epstein S (1970) D/H and O18/O16 ratios of minerals of possible mantle or lower crustal origin. Earth Planet Sci Lett 9:232–239

    Google Scholar 

  • Sheppard SMF, Gilg HA (1996) Stable isotope geochemistry of clay minerals. Clay Mineral 31:1–24

    Google Scholar 

  • Sheppard SMF, Harris C (1985) Hydrogen and oxygen isotope geochemistry of Ascension Island lavas and granites: variation with crystal fractionation and interaction with sea water. Contrib Mineral Petrol 91:74–81

    Google Scholar 

  • Sheppard SMF, Schwarcz HP (1970) Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite. Contr Mineral Petrol 26:161–198

    Google Scholar 

  • Sheppard SMF, Nielsen RL, Taylor HP (1971) Hydrogen and oxygen isotope ratios in minerals from Porphyry Copper deposits. Econ Geol 66:515–542

    Google Scholar 

  • Sherwood Lollar B, Frape SK, Weise SM, Fritz P, Macko SA, Welhan JA (1993) Abiogenic methanogenesis in crystalline rocks. Geochim Cosmochim Acta 57:5087–5097

    Google Scholar 

  • Sherwood Lollar B, Westgate TD, Ward JA, Slater GF, Lacrampe-Couloume G (2002) Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbons reservoirs. Nature 416:522–524

    Google Scholar 

  • Sherwood Lollar B et al (2006) Unravelling abiogenic and biogenic sources of methane in the earth,s deep subsurface. Chem Geol 226:328–339

    Google Scholar 

  • Shieh YN, Schwarcz HP (1974) Oxygen isotope studies of granite and migmatite, Grenville province of Ontario, Canada. Geochim Cosmochim Acta 38:21–45

    Google Scholar 

  • Shields G, Veizer J (2002) Precambrian marine carbonate isotope database: version 1.1. Geochem Geophys Geosyst 300. doi:10.1029/2001GC000266

  • Shirey et al (2013) RIMG

    Google Scholar 

  • Shmulovich KI, Landwehr D, Simon K, Heinrich W (1999) Stable isotope fractionation between liquid and vapour in water-salt systems up to 600 °C. Chem Geol 157:343–354

    Google Scholar 

  • Simon K (2001) Does δD from fluid inclusions in quartz reflect the original hydrothermal fluid? Chem Geol 177:483–495

    Google Scholar 

  • Simon JI, dePaolo DJ (2010) Stable calcium isotopic composition of meteorites and rocky planets. Earth Planet Sci Lett 289:457–466

    Google Scholar 

  • Simon L, Lecuyer C, Marechal C, Coltice N (2006) Modelling the geochemical cycle of boron: implications for the long-term d11B evolution of seawater and oceanic crust. Chem Geol 225:61–76

    Google Scholar 

  • Skauli H, Boyce AJ, Fallick AE (1992) A sulphur isotope study of the Bleikvassli Zn-Pb-Cu deposit, Nordland, northern Norway. Mineral Deposita 27:284–292

    Google Scholar 

  • Skirrow R, Coleman ML (1982) Origin of sulfur and geothermometry of hydrothermal sulfides from the Galapagos Rift, 86°W. Nature 249:142–144

    Google Scholar 

  • Smith JW, Batts BD (1974) The distribution and isotopic composition of sulfur in coal. Geochim Cosmochim Acta 38:121–123

    Google Scholar 

  • Smith JW, Gould KW, Rigby D (1982) The stable isotope geochemistry of Australian coals. Org Geochem 3:111–131

    Google Scholar 

  • Snyder G, Poreda R, Hunt A, Fehn U (2001) Regional variations in volatile composition: isotopic evidence for carbonate recycling in the Central American volcanic arc. Geochem Geophys Geosystems 2:U1–U32

    Google Scholar 

  • Sofer Z (1984) Stable carbon isotope compositions of crude oils: application to source depositional environments and petroleum alteration. Am Assoc Petrol Geol Bull 68:31–49

    Google Scholar 

  • Sofer Z, Gat JR (1972) Activities and concentrations of oxygen-18 in concentrated aqueous salt solutions: analytical and geophysical implications. Earth Planet Sci Lett 15:232–238

    Google Scholar 

  • Sonnerup RE, Quay PD, McNichol AP, BullisterJL Westby TA, Anderson HL (1999) Reconstructing the oceanic 13C Suess effect. Global Biogeochem Cycles 13:857–872

    Google Scholar 

  • Sowers T (2001) The N2O record spanning the penultimate deglaciation from the Vostok ice core. J Geophys Res 106:31903–31914

    Google Scholar 

  • Sowers T, Bender M, Raynaud D, Korotkevich YS, Orchardo J (1991) The δ18O of atmospheric O2 from air inclusions in the Vostok ice core: timing of CO2 and ice volume changes during the Penultimate deglaciation. Paleoceanography 6:679–696

    Google Scholar 

  • Sowers T, Bender M, Raynaud D, Korotkevich YS (1992) δ15N of N2 in air trapped in polar ice: a tracer of gas transport in the firn and a possible constraint on ice age-gas age differences. J Geophys Res 97:15683–15697

    Google Scholar 

  • Sowers T et al (1993) A 135000 year Vostock-SPECMAP common temporal framework. Paleoceanography 8:737–766

    Google Scholar 

  • Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497–500

    Google Scholar 

  • Spicuzza M, Day J, Taylor L, Valley JW (2007) Oxygen isotope constraints on the origin and differentiation of the Moon. Earth Planet Sci Lett 253:254–265

    Google Scholar 

  • Spivack AJ, Edmond JM (1987) Boron isotope exchange between seawater and the oceanic crust. Geochim Cosmochim Acta 51:1033–1043

    Google Scholar 

  • Stachel T, Harris JW, Muehlenbachs K (2009) Sources of carbon in inclusion bearing diamonds. Lithos 112S:625–637

    Google Scholar 

  • Stahl W (1977) Carbon and nitrogen isotopes in hydrocarbon research and exploration. Chem Geol 20:121–149

    Google Scholar 

  • Steele RC, Elliott T, Coath CD, Regelous M (2011) Confirmation of mass-independent Ni isotopic variability in iron meteorites. Geochim Cosmochim Acta 75:7906–7925

    Google Scholar 

  • Steinhoefel G, Horn I, von Blanckenburg F (2009) Micro-scale tracing of Fe and Si isotope signatues in banded iron formation using femtosecond laser ablation. Geochim Cosmochim Acta 73:5343–5360

    Google Scholar 

  • Steinhoefel G, von Blanckenburg F, Horn I, Konhauser KO, Beukes NJ, Gutzmer J (2010) Deciphering formation processes of banded iron formations from the Transvaal and Hamersley successions by combined Si and Fe isotope analysis using UV femtosecond laser ablation. Geochim Cosmochim Acta 74:2677–2696

    Google Scholar 

  • Stern LA, Chamberlain CP, Reynolds RC, Johnson GD (1997) Oxygen isotope evidence of climate change from pedogenic clay minerals in the Himalayan molasse. Geochim Cosmochim Acta 61:731–744

    Google Scholar 

  • Sternberg LS, Anderson WT, Morrison K (2002) Separating soil and leaf water 18O isotope signals in plant stem cellulose. Geochim Cosmochim Acta 67:2561–2566

    Google Scholar 

  • Steuber T, Buhl D (2006) Calcium-isotope fractionation in selected modern and ancient marine carbonates. Geochim Cosmochim Acta 70:5507–5521

    Google Scholar 

  • Stevens CM (1988) Atmospheric methane. Chem Geol 71:11–21

    Google Scholar 

  • Stevens CM, Krout L, Walling D, Venters A, Engelkemeier A, Ross LE (1972) The isotopic composition of atmospheric carbon monoxide. Earth Planet Sci Lett 16:1457–165

    Google Scholar 

  • Stewart MK (1974) Hydrogen and oxygen isotope fractionation during crystallization of mirabilite and ice. Geochim Cosmochim Acta 38:167–172

    Google Scholar 

  • Stolper DA, Sessions AL, Ferreira AA, Santos Neto EV, Schimmelmann A, Shusta SS, Valentine DL, Eiler JM (2014) Combined 13C-D and D-D clumping in methane: methods and preliminary results. Geochim Cosmochim Acta 126:169–191

    Google Scholar 

  • Strauß H (1997) The isotopic composition of sedimentary sulfur through time. Palaeo, Palaeo, Palaeo 132:97–118

    Google Scholar 

  • Strauß H (1999) Geological evolution from isotope proxy signals—sulfur. Chem Geol 161:89–101

    Google Scholar 

  • Strauß H, Peters-Kottig W (2003) The Phanerozoic carbon cycle revisited: the carbon isotope composition of terrestrial organic matter. Geochem Geophys Geosys 4:1083. doc:10.1029/2003GC000555

    Google Scholar 

  • Stueber AM, Walter LM (1991) Origin and chemical evolution of formation waters from Silurian—Devonian strata in the Illinois basin. Geochim Cosmochim Acta 55:309–325

    Google Scholar 

  • Styrt MM, Brackmann AJ, Holland HD, Clark BC, Pisutha-Arnold U, Eldridge CS, Ohmoto H (1981) The mineralogy and the isotopic composition of sulfur in hydrothermal sulfide/sulfate deposits on the East Pacific Rise, 21°N latitude. Earth Planet Sci Lett 53:382–390

    Google Scholar 

  • Sugawara S, Nakazawa T, Shirakawa Y, Kawamura K, Aoki S, Machida T, Honda H (1998) Vertical profile of the carbon isotope ratio of stratospheric methane over Japan. Geophys Res Lett 24:2989–2992

    Google Scholar 

  • Summons RE, Jahnke LL, Roksandic Z (1994) Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers. Geochim Cosmochim Acta 58:2853–2863

    Google Scholar 

  • Sweeney RE, Kaplan IR (1980) Natural abundance of 15N as a source indicator for near-shore marine sedimentary and dissolved nitrogen. Mar Chem 9:81–94

    Google Scholar 

  • Sweeney RE, Liu KK, Kaplan IR (1978) Oceanic nitrogen isotopes and their use in determining the source of sedimentary nitrogen. In: Robinson BW (ed) DSIR Bull 220:9–26

    Google Scholar 

  • Talbot MR (1990) A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem Geol 80:261–279

    Google Scholar 

  • Tanaka R, Nakamura E (2005) Boron isotopic constraints on the source of Hawaiian shield lavas. Geochim Cosmochim Acta 69:3385–3399

    Google Scholar 

  • Tang Y, Perry JK, Jenden PD, Schoell M (2000) Mathematical modeling of stable carbon isotope ratios in natural gases. Geochim Cosmochim Acta 64:2673–2687

    Google Scholar 

  • Tang Y, Huang Y, Ellis GS, Wang Y, Kralert PG, Gillaizeau B, Ma Q, Hwang R (2005) A kinetic model for thermally induced hydrogen and carbon isotope fractionation of individual n-alkanes in crude oil. Geochim Cosmochim Acta 69:4505–4520

    Google Scholar 

  • Taran YA, Kliger GA, Sevastianov VS (2007) Carbon isotope effect in the open system Fischer Trosch synthesis. Geochim Cosmochim Acta 71:4474–4487

    Google Scholar 

  • Taylor HP (1968) The oxygen isotope geochemistry of igneous rocks. Contr Mineral Petrol 19:1–71

    Google Scholar 

  • Taylor HP (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol 69:843–883

    Google Scholar 

  • Taylor HP (1977) Water/rock interactions and the origin of H2O in granite batholiths. J Geol Soc 133:509

    Google Scholar 

  • Taylor HP (1978) Oxygen and hydrogen isotope studies of plutonic granitic rocks. Earth Planet Sci Lett 38:177–210

    Google Scholar 

  • Taylor HP (1980) The effects of assimilation of country rocks by magmas on 18O/16O and 87Sr/86Sr systematics in igneous rocks. Earth Planet Sci Lett 47:243–254

    Google Scholar 

  • Taylor HP (1986a) Igneous rocks: II. Isotopic case studies of circumpacific magmatism. In: Stable isotopes in high temperature geological processes. Review in Mineralogy, vol 16. pp 273–317

    Google Scholar 

  • Taylor BE (1986b) Magmatic volatiles: isotopic variation of C, H and S. Rev Mineral 16:185–225

    Google Scholar 

  • Taylor BE (1987a) Stable isotope geochemistry of ore-forming fluids. In: Stable isotope geochemistry of low-temperature fluids. Short Course Mineralogical Association Canada, vol 13, pp 337–445

    Google Scholar 

  • Taylor HP (1987b) Comparison of hydrothermal systems in layered gabbros and granites, and the origin of low-δ18O magmas. In: Magmatic processes: physicochemical principles. The Geochemical Society Special Publication, vol 1. pp 337–357

    Google Scholar 

  • Taylor HP (1988) Oxygen, hydrogen and strontium isotope constraints on the origin of granites. Trans Royal Soc Edinburgh: Earth Sci 79:317–338

    Google Scholar 

  • Taylor HP (1997) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley-Interscience p, New York, pp 229–302

    Google Scholar 

  • Taylor BE, Bucher-Nurminen K (1986) Oxygen and carbon isotope and cation geochemistry of metasomatic carbonates and fluids - Bergell aureole, Northern Italy. Geochim Cosmochim Acta 50:1267–1279

    Google Scholar 

  • Taylor HP, Forester RW (1979) An oxygen and hydrogen isotope study of the Skaergaard intrusion and its country rocks: a description of a 55 M.Y. old fossil hydrothermal system. J Petrol 20:355–419

    Google Scholar 

  • Taylor BE, O’Neil JR (1977) Stable isotope studies of metasomatic Ca-Fe-Al-Si skarns and associated metamorphic and igneous rocks, Osgood Mountains, Nevada. Contr Mineral Petrol 63:1–49

    Google Scholar 

  • Taylor HP, Sheppard SMF (1986b) Igneous rocks: I.Processes of isotopic fractionation and isotope systematics. In: Stable isotopes in high temperature geological processes. Review in Mineralogy, vol 16. pp 227–271

    Google Scholar 

  • Taylor BE, Wheeler MC (1994) Sulfur- and oxygen isotope geochemistry of acid mine drainage in the Western United States. In: Environmental geochemistry of sulphide oxidation. American Chemical Society Symposium Series, vol 550. American Chemical Society, Washington, DC, pp 481–514

    Google Scholar 

  • Taylor BE, Eichelberger JC, Westrich HR (1983) Hydrogen isotopic evidence of rhyolitic magma degassing during shallow intrusion and eruption. Nature 306:541–545

    Google Scholar 

  • Taylor HP, Turi B, Cundari A (1984) 18O/16O and chemical relationships in K-rich volcanic rocks from Australia, East Africa, Antarctica and San Venanzo Cupaello, Italy. Earth Planet Sci Lett 69:263–276

    Google Scholar 

  • Teece MA, Fogel ML (2007) Stable carbon isotope biogeochemistry of monosaccharides in aquatic organisms and terrestrial plants. Org Geochem 38:458–473

    Google Scholar 

  • Telmer KH, Veizer J (1999) Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspective. Chem Geol 159:61–86

    Google Scholar 

  • Thiagarajan N, Adkins J, Eiler J (2011) Carbonate clumped isotope thermometry of deep-sea corals and implications for vital effects. Geochim Cosmochim Acta 75:4416–4425

    Google Scholar 

  • Thiel V, Peckmann J, Seifert R, Wehrung P, Reitner J, Michaelis W (1999) Highly isotopically depleted isoprenoids: molecular markers for ancient methane venting. Geochim Cosmochim Acta 63:3959–3966

    Google Scholar 

  • Thiemens MH (1988) Heterogeneity in the nebula: evidence from stable isotopes. In: Kerridge JF, Matthews MS (eds) Meteorites and the early solar system, University of Arizona Press, pp 899–923

    Google Scholar 

  • Thiemens MH (1999) Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283:341–345

    Google Scholar 

  • Thiemens MH (2006) History and applications of mass-independent isotope effects. Annu Rev Earth Planet Sci 34:217–262

    Google Scholar 

  • Thiemens MH, Jackson T, Zipf EC, Erdman PW, van Egmond C (1995) Carbon dioxide and oxygen isotope anomalies in the mesophere and stratosphere. Science 270:969–972

    Google Scholar 

  • Thode HG, Monster J (1964) The sulfur isotope abundances in evaporites and in ancient oceans. In: Vinogradov AP (ed) Proceedings of geochemistry conference commemorating the centenary of V I Vernadskii’s birth, vol 2, 630 p

    Google Scholar 

  • Thomassot E, Cartigny P, Harris JW, Lorand JP, Rollion-Bard C, Chaussidon M (2009) Metasomatic diamond growth: a multi-isotope study (13C, 15N, 33S, 34S) of sulphide inclusions and their host diamonds from Jwaneng (Botswana). Earth Planet Sci Lett 282:79–90

    Google Scholar 

  • Thompson P, Schwarcz HP, Ford DE (1974) Continental Pleistocene climatic variationa from speleothem age and isotopic data. Science 184:893–895

    Google Scholar 

  • Thompson LG, Mosley-Thompson E, Henderson KA (2000) Ice-core palaeoclimate records in tropical South America since the last glacial maximum. J Quat Sci 15:377–394

    Google Scholar 

  • Thompson LG et al (2006) Abrupt tropical climate change: past and present. Proc Nat Acad Sci 103:10536–10543

    Google Scholar 

  • Tiedemann R, Sarntheim M, Shackleton NJ (1994) Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program site 659. Paleoceanography 9:619–638

    Google Scholar 

  • Tilley B, Muehlenbachs K (2013) Isotope reversals and universal stages and trends of gas maturation in sealed self-contained petroleum systems. Chem Geol (in press)

    Google Scholar 

  • Todd CS, Evans BW (1993) Limited fluid-rock interaction at marble-gneiss contacts during Cretaceous granulite-facies metamorphism, Seward Peninsula, Alaska. Contr Mineral Petrol 114:27–41

    Google Scholar 

  • Tripati AK, Eagle RA, Thiagarajan N, Gagnon AC, Bauch H, Halloran PR, Eiler JM (2010) 13C-18O isotope signaturesand “clumped isotope” thermometry in foraminifera and coccoliths. Geochim Cosmochim Acta 74:5697–5717

    Google Scholar 

  • Trudinger PA, Chambers LA, Smith JW (1985) Low temperature sulphate reduction: biological versus abiological. Can J Earth Sci 22:1910–1918

    Google Scholar 

  • Trudinger CM, Enting IG, Francey RJ, Etheridge DM, Rayner PJ (1999) Long-term variability in the global carbon cycle inferred from a high-precision CO2 and δ13C ice-core record. Tellus 51B:233–248

    Google Scholar 

  • Truesdell AH, Hulston JR (1980) Isotopic evidence on environments of geothermal systems. In: Fritz P, Fontes J (eds) Handbook of environmental isotope geochemistry, vol I. Elsevier, New York Amsterdam, pp 179–226

    Google Scholar 

  • Trust BA, Fry B (1992) Stable sulphur isotopes in plants: a review. Plant Cell Environ 15:1105–1110

    Google Scholar 

  • Tucker ME, Wright PV (1990) Carbonate sedimentology. Blackwell Scientific Publishing, London, pp 365–400

    Google Scholar 

  • Tudge AP (1960) A method of analysis of oxygen isotopes in orthophosphate—its use in the measurement of paleotemperatures. Geochim Cosmochim Acta 18:81–93

    Google Scholar 

  • Turchin AV, Schrag DP (2006) Cenozoic evolution of the sulphur cycle: insight from oxygen isotopes in marine sulphate. Earth Planet Sci Lett 241:763–779

    Google Scholar 

  • Turchyn AV, Schrag DP (2004) Oxygen isotope constraints on the sulfur cycle over the past 10 million years. Science 303:2004–2007

    Google Scholar 

  • Uemura R, Abe O, Motoyama H (2010) Determining the 17O/16O ratio of water using a water–CO2 equilibration method: application to glacial-interglacial changes in 17O excess from the Dome Fuji ice core Antarctica. Geochim Cosmochim Acta 74:4919–4936

    Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 1947:562

    Google Scholar 

  • Usui T, Alexander CM, Wang J, Simon JI, Jones JH (2012) Origin of water and mantle-crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites. Earth Planet Sci Lett 357–358:119–129

    Google Scholar 

  • Valdes MC, Moreira M, Foriel J, Moynier F (2014) The nature of Earth’s building blocks as revealed by calcium isotopes. Earth Planet Sci Lett 394:135–145

    Google Scholar 

  • Valley JW (1986) Stable isotope geochemistry of metamorphic rocks. Rev Mineral 16:445–489

    Google Scholar 

  • Valley JW (2001) Stable isotope thermometry at high temperatures. Rev Mineral Geochem 43:365–413

    Google Scholar 

  • Valley JW (2003) Oxygen isotopes in zircon. Rev Mineral Geochem 53:343–385

    Google Scholar 

  • Valley JW, Bohlen SR, Essene EJ, Lamb W (1990) Metamorphism in the Adirondacks. II. J Petrol 31:555–596

    Google Scholar 

  • Valley JW, Eiler JM, Graham CM, Gibson EK, Romanek CS, Stolper EM (1997) Low temperature carbonate concretions in the martian meteorite ALH 84001: evidence from stable isotopes and mineralogy. Science 275:1633–1637

    Google Scholar 

  • Valley JW et al (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios in magmatic zircon. Contr Mineral Petrol 150:561–580

    Google Scholar 

  • Vasconcelos C, Mackenzie JA, Warthmann R, Bernasconi S (2005) Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology 33:317–320

    Google Scholar 

  • Vazquez R, Vennemann TW, Kesler SE, Russell N (1998) Carbon and oxygen isotope halos in the host limestone, El Mochito Zn, Pb (Ag) skarn massive sulfide/oxide deposit, Honduras. Econ Geol 93:15–31

    Google Scholar 

  • Veizer J, Hoefs J (1976) The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta 40:1387–1395

    Google Scholar 

  • Veizer J et al (1997) Oxygen isotope evolution of Phanerozoic seawater. Palaeo, Palaeo, Palaeo 132:159–172

    Google Scholar 

  • Veizer J et al (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:37–57

    Google Scholar 

  • Vennemann TW, Kesler SE, O’Neil JR (1992) Stable isotope composition of quartz pebbles and their fluid inclusions as tracers of sediment provenance: implications for gold- and uranium-bearing quartz pebble conglomerates. Geology 20:837–840

    Google Scholar 

  • Vennemann TW, Kesler SE, Frederickson GC, Minter WEL, Heine RR (1996) Oxygen isotope sedimentology of gold and uranium-bearing Witwatersrand and Huronian Supergroup quartz pebble conglomerates. Econ Geol 91:322–342

    Google Scholar 

  • Vennemann TW, Fricke HC, Blake RE, O’Neil JR, Colman A (2002) Oxygen isotope analysis of phosphates: a comparison of techniques for analysis of Ag3PO4. Chem Geol 185:321–336

    Google Scholar 

  • VennemannTW Smith HS (1992) Stable isotope profile across the orthoamphibole isograd in the Southern Marginal Zone of the Limpopo Belt, S Africa. Precambrian Res 55:365–397

    Google Scholar 

  • Viers J et al (2007) Evidence of Zn isotope fractionation in a soil-plant system of a pristine tropical watershed (Nsimi, Cameroon). Chem Geol 239:124–137

    Google Scholar 

  • Virtasalo JJ, Whitehouse MJ, Kotilainen AT (2013) Iron isotope heterogeneity in pyrite fillings of Holocene worm burrows. Geology 41:39–42

    Google Scholar 

  • Voegelin AR, Nägler TF, Beukes NJ, Lacassie JP (2010) Molybdenum isotopes in late Archean carbonate rocks: implications for early Earth oxygenation. Precambr Res 182:70–82

    Google Scholar 

  • Von Grafenstein U, Erlenkeuser H, Trimborn P (1999) Oxygen and carbon isotopes in fresh-water ostracod valves: assessing vital offsets and autoecological effects of interest for paleoclimate studies. Palaeo, Palaeo, Palaeo 148:133–152

    Google Scholar 

  • Wacker U, Fiebig J, Tödter J, Schöne BR, Bahr A, Friedrich O, Tütken T, Gischler E, Joachimski MM (2014) Emperical calibration of the clumped isotope paleothermometer using calcites of various origins. Geochim Cosmochim Acta 141:127–144

    Google Scholar 

  • Wada E, Hattori A (1976) Natural abundance of 15N in particulate organic matter in North Pacific Ocean. Geochim Cosmochim Acta 40:249–251

    Google Scholar 

  • Wallmann K (2001) The geological water cycle and the evolution of marine δ18O values. Geochim Cosmochim Acta 65:2469–2485

    Google Scholar 

  • Wang Y, Sessions AL, Nielsen RJ, Goddard WA (2009) Equilibrium 2H/1H fractionations in organic molecules. II: Linear alkanes, alkenes, ketones, carboxylic acids, esters, alcohols and ethers. Geochim Cosmochim Acta 73:7076–7086

    Google Scholar 

  • Wang Z, Chapellaz J, Park K, Mak JE (2011) Large variations in southern biomass burning during the last 650 years. Science 330:1663–1666

    Google Scholar 

  • Wanner C, Sonnenthal EL, Liu XM (2014) Seawater δ7Li: a direct proxy for global CO2 consumption by continental silicate weathering? Chem Geol 381:154–167

    Google Scholar 

  • Warren CG (1972) Sulfur isotopes as a clue to the genetic geochemistry of a roll-type uranium deposit. Econ Geol 67:759–767

    Google Scholar 

  • Waterhouse JS, Cheng S, Juchelka D, Loader NJ, McCarroll D, Switsur R, Gautam L (2013) Position-specific measurement of oxygen isotope ratios in cellulose: isotope exchange during heterotrophic cellulose synthesis. Geochim Cosmochim Acta 112:178–192

    Google Scholar 

  • Watson LL, Hutcheon ID, Epstein S, Stolper EM (1994) Water on Mars: clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites. Science 265:86–90

    Google Scholar 

  • Weber JN, Raup DM (1966a) Fractionation of the stable isotopes of carbon and oxygen in marine calcareous organisms-the Echinoidea. I. Variation of 13C and 18O content within individuals. Geochim Cosmochim Acta 30:681–703

    Google Scholar 

  • Weber JN, Raup DM (1966b) Fractionation of the stable isotopes of carbon and oxygen in marine calcareous organisms-the Echinoidea. II. Environmental and genetic factors. Geochim Cosmochim Acta 30:705–736

    Google Scholar 

  • Webster CR, Mahaffy PR et al (2013) Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere. Science 341:260–263

    Google Scholar 

  • Wefer G, Berger WH (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar Geol 100:207–248

    Google Scholar 

  • Welch SA, Beard BL, Johnson CM, Braterman PS (2003) Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III). Geochim Cosmochim Acta 67:4231–4250

    Google Scholar 

  • Welhan JA (1987) Stable isotope hydrology. In: Short course in stable isotope geochemistry of low-temperature fluids. Mineral Assoc Canada, vol 13, pp 129–161

    Google Scholar 

  • Welhan JA (1988) Origins of methane in hydrothermal systems. Chem Geol 71:183–198

    Google Scholar 

  • Well R, Flessa H (2009) Isotopogue enrichment factors of N2O reduction in soils. Rapid Commum Mass Spectrom 23:2996–3002

    Google Scholar 

  • Wenzel B, Lecuyer C, Joachimski MM (2000) Comparing oxygen isotope records of Silurian calcite and phosphate—δ18O composition of brachiopods and conodonts. Geochim Cosmochim Acta 69:1859–1872

    Google Scholar 

  • Westerhausen L, Poynter J, Eglinton G, Erlenkeuser H, Sarntheim M (1993) Marine and terrigenous origin of organic matter in modern sediments of the equatorial East Atlantic: the δ13C and molecular record. Deep Sea Res 40:1087–1121

    Google Scholar 

  • Weyer S, Ionov D (2007) Partial melting and melt percolation in the mantle: the message from Fe isotopes. Earth Planet Sci Lett 259:119–133

    Google Scholar 

  • Weyer S, Anbar AD, Brey GP, Münker C, Mezger K (2005) Iron isotope fractionation during planetary differentiation. Earth Planet Sci Lett 240:251–264

    Google Scholar 

  • White JWC (1989) Stable hydrogen isotope ratios in plants: a review of current theory and some potential applications. In: Stable isotopes in ecological research, Ecological Studies, vol 68. Springer, New York, pp 142–162

    Google Scholar 

  • White JWC, Lawrence JR, Broecker WS (1994) Modeling and interpreting D/H ratios in tree rings: a test case of white pine in the northeastern United States. Geochim Cosmochim Acta 58:851–862

    Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Google Scholar 

  • Whiticar MJ, Faber E, Schoell M (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-Isotopic evidence. Geochim Cosmochim Acta 50:693–709

    Google Scholar 

  • Whittacker SG, Kyser TK (1990) Effects of sources and diagenesis on the isotopic and chemical composition of carbon and sulfur in Cretaceous shales. Geochim Cosmochim Acta 54:2799–2810

    Google Scholar 

  • Wickham SM, Taylor HR (1985) Stable isotope evidence for large-scale seawater infiltration in a regional metamorphic terrane; the Trois Seigneurs Massif, Pyrenees, France. Contrib Mineral Petrol 91:122–137

    Google Scholar 

  • Wickman FE (1952) Variation in the relative abundance of carbon isotopes in plants. Geochim Cosmochim Acta 2:243–254

    Google Scholar 

  • Wiechert U, Halliday AN (2007) Non-chondritic magnesium and the origin of the inner terrestrial planets. Earth Planet Sci Lett 256:360–371

    Google Scholar 

  • Wiechert U, Halliday AN, Lee D-C, Snyder GA, Taylor LA, Rumble D (2001) Oxygen isotopes and the moon forming giant impact. Science 294:345–348

    Google Scholar 

  • Wille M, Kramers JD, Nägler TF, Beukes NJ, Schroder S, Meiser T, Lacassie JP, Voegelin AR (2007) Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim Cosmochim Acta 71:2417–2435

    Google Scholar 

  • Wille M, Nebel O, Van Kranendonk MJ, Schoenberg R, Kleinhans IC, Ellwood MJ (2013) Mo-Cr evidence for a reducing Archean atmosphere in 3.46–2.76 Ga black shales from the Pilbara, western Australia. Chem Geol 340:68–76

    Google Scholar 

  • Williams HM, Archer C (2011) Copper stable isotopes as tracers of metal-sulphide segregation and fractional crystallization processeson iron meteorite parent bodies. Geochim Cosmochim Acta 75:3166–3178

    Google Scholar 

  • Williams HM, Markowski A, Quitte G, Halliday AN, Teutsch N, Levasseur S (2006) Fe isotope fractionations in iron meteorites: new insight into metal-sulphide segregation and planetary accretion. Earth Planet Sci Lett 250:486–500

    Google Scholar 

  • Williams HM, Wood BJ, Wade J, Frost DJ, Tuff J (2012) Isotopic evidence for internal oxidation of the Earth’s mantle during accretion. Earth Planet Sci Lett 321–322:54–63

    Google Scholar 

  • Wong WW, Sackett WM (1978) Fractionation of stable carbon isotopes by marine phytoplankton. Geochim Cosmochim Acta 42:1809–1815

    Google Scholar 

  • Wortmann UG, Chernyavsky B, Bernasconi SM, Brunner B, Böttcher ME, Swart PK (2007) Oxygen isotope biogeochemistry of pore water sulfate in the deep biosphere: dominance of isotope exchange reactions with ambient water during microbial sulfate reduction (ODP Site 1130). Geochim Cosmochim Acta 71:4221–4232

    Google Scholar 

  • Wright I, Grady MM, Pillinger CT (1990) The evolution of atmospheric CO2 on Mars: the perspective from carbon isotope measurements. J Geophys Res 95:14789–14794

    Google Scholar 

  • Wu L, Beard BL, Roden EE, Johnson CM (2011) Stable iron isotope fractionation between aqueous Fe (II) and hydrous ferric oxide. Environ Sci Technol 45:1845–1852

    Google Scholar 

  • Xia J, Ito E, Engstrom DE (1997a) Geochemistry of ostracode calcite: part I. An experimental determination of oxygen isotope fractionation. Geochim Cosmochim Acta 61:377–382

    Google Scholar 

  • Xia J, Engstrom DE, Ito E (1997b) Geochemistry of ostracode calcite: part 2. The effects of water chemistry and seasonal temperature variation on Candona rawsoni. Geochim Cosmochim Acta 61:383–391

    Google Scholar 

  • Xia X, Chen J, Braun R, Tang Y (2013) Isotopic reversals with respect to maturity trends due to mixing of primary and secondary products in source rocks. Chem Geol (in press)

    Google Scholar 

  • Xiao Y, Hoefs J, van den Kerkhof AM, Simon K, Fiebig J, Zheng YF (2002) Fluid evolution during HP and UHP metamorphism in Dabie Shan, China: constraints from mineral chemistry, fluid inclusions and stable isotopes. J Petrol 43:1505–1527

    Google Scholar 

  • Xiao Y, Zhang Z, Hoefs J, van den Kerkhof A (2006) Ultrahigh pressure rocks from the Chinese Continental Scientific Drilling Project: II Oxygen isotope and fluid inclusion distributions through vertical sections. Contr Mineral Petrol 152:443–458

    Google Scholar 

  • Yang J, Epstein S (1984) Relic interstellar grains in Murchison meteorite. Nature 311:544–547

    Google Scholar 

  • Yang C, Telmer K, Veizer J (1996) Chemical dynamics of the “St Lawrence” riverine system: δDH2O, δ18OH2O, δ13CDIC, δ34SSO4 and dissolved 87Sr/86Sr. Geochim Cosmochim Acta 60:851–866

    Google Scholar 

  • Yapp CJ (1983) Stable hydrogen isotopes in iron oxides—isotope effects associated with the dehydration of a natural goethite. Geochim Cosmochim Acta 47:1277–1287

    Google Scholar 

  • Yapp CJ (1987) Oxygen and hydrogen isotope variations among goethites (α-FeOOH) and the determination of paleotemperatures. Geochim Cosmochim Acta 51:355–364

    Google Scholar 

  • Yapp CJ (2007) Oxygen isotopes in synthetic goethite and a model for the apparent pH dependence of goethite-water 18O/16O fractionation. Geochim Cosmochim Acta 71:1115–1129

    Google Scholar 

  • Yapp CJ, Epstein S (1982) Reexamination of cellulose carbon-bound hydrogen δD measurements and some factors affecting plant-water D/H relationships. Geochim Cosmochim Acta 46:955–965

    Google Scholar 

  • Yokochi R, Marty B, Chazot G, Burnard P (2009) Nitrogen in perigotite xenoliths: lithophile behaviour and magmatic isotope fractionation. Geochim Cosmochim Acta 73:4843–4861

    Google Scholar 

  • Yoshida N, Toyoda S (2000) Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers. Nature 405:330–334

    Google Scholar 

  • Yoshida N, Hattori A, Saino T, Matsuo S, Wada E (1984) 15N/14N ratio of dissolved N2O in the eastern tropical Pacific Ocean. Nature 307:442–444

    Google Scholar 

  • Young ED (1993) On the 18O/16O record of reaction progress in open and closed metamorphic systems. Earth Planet Sci Lett 117:147–167

    Google Scholar 

  • Young ED, Rumble D (1993) The origin of correlated variations in in-situ 18O/16O and elemental concentrations in metamorphic garnet from southeastern Vermont, USA. Geochim Cosmochim Acta 57:2585–2597

    Google Scholar 

  • Young ED, Ash RD, England P, Rumble D (1999) Fluid flow in chondritic parent bodies: deciphering the compositions of planetesimals. Science 286:1331–1335

    Google Scholar 

  • Young ED, Tonui E, Manning CE, Schauble E, Macris CA (2009a) Spinel-olivine magnesium isotope thermometry in the mantle and implications for the Mg isotopic composition of Earth. Earth Planet Sci Lett 288:524–533

    Google Scholar 

  • Young MB, McLaughlin K, Kendall C, Stringfellow W, Rollow M, Elsbury K, Donald E, Payton A (2009b) Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems. Environ Sci Techn 43:5190–5196

    Google Scholar 

  • Young ED, Manning CE, Schauble EA, Shahar A, Macris CA, Lazar C, Jordan M (2015) High-temperature equilibrium isotope fractionation of non-traditional isotopes: experiments, theory and applications. Chem Geol 395:176–195

    Google Scholar 

  • Yurimoto A, Krot A, Choi BG, Aléon J, Kunihiro T, Brearly AJ (2008) Oxygen isotopes in chondritic components. Rev Mineral Geochem 68:141–186

    Google Scholar 

  • Yurtsever Y (1975) Worldwide survey of stable isotopes in precipitation. Rep Sect Isotope Hydrol IAEA, November 1975, 40 pp

    Google Scholar 

  • Zaback DA, Pratt LM (1992) Isotopic composition and speciation of sulfur in the Miocene Monterey Formation: reevaluation of sulfur reactions during early diagenesis in marine environments. Geochim Cosmochim Acta 56:763–774

    Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms and aberrations in global climate 65 Ma to present. Science 292:686–693

    Google Scholar 

  • Zeebe RE (1999) An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes. Geochim Cosmochim Acta 63:2001–2007

    Google Scholar 

  • Zeebe RE (2010) A new value for the stable oxygen isotope fractionation between dissolved sulfate ion and water. Geochim Cosmochim Acta 74:818–828

    Google Scholar 

  • Zhang T, Krooss BM (2001) Experimental investigation on the carbon isotope fractionation of methane during gas migration by diffusion through sedimentary rocks at elevated temperature and pressure. Geochim Cosmochim Acta 65:2723–2742

    Google Scholar 

  • Zhang HF et al (2000) Recent fluid processes in the Kapvaal craton, South Africa: coupled oxygen isotope and trace element disequilibrium in polymict peridotites. Earth Planet Sci Lett 176:57–72

    Google Scholar 

  • Zhang R, Schwarcz HP, Ford DC, Schroeder FS, Beddows PA (2008) An absolute paleotemperature record from 10 to 6 ka inferred from fluid inclusion D/H ratios of a stalagmite from Vancouver Island, British Columbia, Canada. Geochim Cosmochim Acta 72:1014–1026

    Google Scholar 

  • Zheng YF, Böttcher ME (2015) Oxygen isotope fractionation in double carbonates. Isotopes Environmental Health Studies (in press)

    Google Scholar 

  • Zheng YF, Hoefs J (1993) Carbon and oxygen isotopic vovariations in hydrothermal calcites. Theoretical modeling on mixing processes and application to Pb-Zn deposits in the Harz Mountains, Germany. Mineral Deposita 28:79–89

    Google Scholar 

  • Zheng YF, Fu B, Li Y, Xiao Y, Li S (1998) Oxygen and hydrogen isotope geochemistry of ultra-high pressure eclogites from the Dabie mountains and the Sulu terrane. Earth Planet Sci Lett 155:113–129

    Google Scholar 

  • Zhu XK, O’Nions RK, Guo Y, Belshaw NS, Rickard D (2000a) Determination of natural Cu-isotope variations by plasma-source mass spectrometry: implications for use as geochemical tracers. Chem Geol 163:139–149

    Google Scholar 

  • Zhu XK, O’Nions K, Guo Y, Reynolds BC (2000b) Secular variations of iron isotopes in North Atlantic Deep Water. Science 287:2000–2002

    Google Scholar 

  • Ziegler K, Young ED, Schauble E, Wasson JT (2010) Metal-silicate silicon isotope fractionationin enstatite meteorites and constraints on Earth’s core formation. Earth Planet Sci Lett 295:487–496

    Google Scholar 

  • Zierenberg RA, Shanks WC, Bischoff JL (1984) Massive sulfide deposit at 21°N, East Pacific Rise: chemical composition, stable isotopes, and phase equilibria. Bull Geol Soc Am 95:922–929

    Google Scholar 

  • Zimmer MM, Fischer TP, Hilton DR, Alvaredo GE, Sharp ZD, Walker JA (2004) Nitrogen systematics and gas fluxes of subduction zones: insights from Costa Rica arc volatiles. Geochem Geophys Geosys 5:Q05J11. doi:10.1029/2003GC000651

  • Zinner E (1998) Stellar nucleosynthesis and the isotopic composition of presolar grains from primitive meteorites. Ann Rev Earth Planet Sci 26:147–188

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Hoefs .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoefs, J. (2015). Variations of Stable Isotope Ratios in Nature. In: Stable Isotope Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-19716-6_3

Download citation

Publish with us

Policies and ethics