Skip to main content

Theoretical and Experimental Principles

  • Chapter
  • First Online:
Stable Isotope Geochemistry

Abstract

Isotopes are atoms whose nuclei contain the same number of protons but a different number of neutrons. The term “isotopes” is derived from Greek (meaning equal places) and indicates that isotopes occupy the same position in the periodic table.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelson PH, Hoering TC (1961) Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proc Natl Acad Sci USA 47:623

    Google Scholar 

  • Affek HP, Bar-Matthews M, Ayalon A, Matthews A, Eiler JM (2008) Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by “clumped isotope” thermometry. Geochim Cosmochim Acta 72:5351–5360

    Google Scholar 

  • Affek HP, Eiler JM (2006) Abundance of mass 47 CO2 in urban air, car exhaust and human breath. Geochim Cosmochim Acta 70:1–12

    Google Scholar 

  • Assonov SS, Brenninkmeijer CA (2005) Reporting small Δ17O values: existing definitions and concepts. Rapid Commun Mass Spectrom 19:627–636

    Google Scholar 

  • Baertschi P (1976) Absolute 18O content of standard mean ocean water. Earth Planet Sci Lett 31:341–344

    Google Scholar 

  • Bao H, Thiemens MH, Farquahar J, Campbell DA, Lee CC, Heine K, Loope DB (2000) Anomalous 17O compositions in massive sulphate deposits on the Earth. Nature 406:176–178

    Google Scholar 

  • Bao H, Thiemens MH, Heine K (2001) Oxygen-17 excesses of the Central Namib gypcretes: spatial distribution. Earth Planet Sci Letters 192:125–135

    Google Scholar 

  • Baroni M, Thiemens MH, Delmas RJ, Savarino J (2007) Mass-independent sulfur isotopic composition in stratospheric volcanic eruptions. Science 315:84–87

    Google Scholar 

  • Beard BL, Handler RM, Scherer MM, Wu L, Czaja AD, Heimann A, Johnson CM (2010) Iron isotope fractionationbetween aqueous ferrous iron and goethite. Earth Planet Sci Lett 295:241–250

    Google Scholar 

  • Becker JS (2005) Recent developments in isotopic analysis by advancedmass spectrometric techniques. J Anal At Spectrom 20:1173–1184

    Google Scholar 

  • Bigeleisen J (1965) Chemistry of isotopes. Science 147:463–471

    Google Scholar 

  • Bigeleisen J (1996) Nuclear size and shape effects in chemical reactions. Isotope chemistry of heavy elements. J Am Chem Soc 118:3676–3680

    Google Scholar 

  • Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15:261–267

    Google Scholar 

  • Bigeleisen J, Wolfsberg M (1958) Theoretical and experimental aspects of isotope effects in chemical kinetics. Adv Chem Phys 1:15–76

    Google Scholar 

  • Bindeman I (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev Miner Geochem 69:445–478

    Google Scholar 

  • Blair N, Leu A, Munoz E, Olsen J, Kwong E, Desmarais D (1985) Carbon isotopic fractionation in heterotrophic microbial metabolism. Appl Environ Microbiol 50:996–1001

    Google Scholar 

  • Blanchard M, Poitrasson F, Meheut M, Lazzari M, Mauri F, Balan E (2009) Iron isotope fractionation between pyrite (FeS2), hematite (Fe2O3) and siderite (FeCO3): a first-principles density functional theory study. Geochim Cosmochim Acta 73:6565–6578

    Google Scholar 

  • Blum JD (2011) Applications of stable mercury isotopes to biogeochemistry. In: Baskaran M (Ed) Handbook of environmental isotope geochemistry, Springer, pp 229–246

    Google Scholar 

  • Bottinga Y (1969) Carbon isotope fractionation between graphite, diamond and carbon dioxide. Earth Planet Sci Lett 5:301–307

    Google Scholar 

  • Bottinga Y, Javoy M (1973) Comments on oxygen isotope geothermometry. Earth Planet Sci Lett 20:250–265

    Google Scholar 

  • Brand W (2002) Mass spectrometer hardware for analyzing stable isotope ratios. In: de Groot P (ed) Handbook of stable isotope analytical techniques. Elsevier, New York

    Google Scholar 

  • Bucharenko AI (2001) Magnetic isotope effect: nuclear spin control of chemical reactions. J Phys Chem A 105:9995–10011

    Google Scholar 

  • Cerling TE (1984) The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet Sci Lett 71:229–240

    Google Scholar 

  • Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen and carbon fractionation factors applicable to geologic systems. Rev Miner Geochem 43:1–81

    Google Scholar 

  • Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite and calcite: application to geothermometry. Geochim Cosmochim Acta 53:2985–2995

    Google Scholar 

  • Clayton RN, Goldsmith JR, Karel KJ, Mayeda TK, Newton RP (1975) Limits on the effect of pressure in isotopic fractionation. Geochim Cosmochim Acta 39:1197–1201

    Google Scholar 

  • Clayton RN, Goldsmith JR, Mayeda TK (1989) Oxygen isotope fractionation in quartz, albite, anorthite and calcite. Geochim Cosmochim Acta 53:725–733

    Google Scholar 

  • Clayton RN, Grossman L, Mayeda TK (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science 182:485–488

    Google Scholar 

  • Clayton RN, Kieffer SW (1991) Oxygen isotope thermometer calibrations. In: Taylor HP, O’Neil JR, Kaplan IR (ed) Stable Isotope Geochemistry: a tribute to Sam Epstein. Geochem Soc Spec Publ 3:3–10

    Google Scholar 

  • Cole DR, Chakraborty S (2011) Rates and mechanisms of isotopic exchange. In: Stable isotope geochemistry. Rev Mineral Geochem 43:83–223

    Google Scholar 

  • Coplen TB (1996) New guidelines for the reporting of stable hydrogen, carbon and oxygen isotope ratio data. Geochim Cosmochim Acta 60:3359–3360

    Google Scholar 

  • Coplen TB, Kendall C, Hopple J (1983) Comparison of stable isotope reference samples. Nature 302:236–238

    Google Scholar 

  • Coplen TB, Wa Brand, Gehre M, Gröning M, Meijer HA, Toman B, Verkouteren RM (2006) New guidelines for δ13C measurements. Anal Chem 78:2439–2441

    Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Google Scholar 

  • Craig H (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133:1833–1834

    Google Scholar 

  • Craig H, Keeling CD (1963) The effects of atmospheric N20 on the measured isotopic composition of atmospheric CO2. Geochim Cosmochim Acta 27: 549–551

    Google Scholar 

  • Criss RE (1999) Principles of stable isotope distribution. Oxford University Press

    Google Scholar 

  • Crowe DE, Valley JW, Baker KL (1990) Micro-analysis of sulfur isotope ratios and zonation by laser microprobe. Geochim Cosmochim Acta 54:2075–2092

    Google Scholar 

  • Dansgaard W (1964) Stable isotope in precipitation. Tellus 16:436–468

    Google Scholar 

  • De Groot PA (2004) Handbook of stable isotope analytical techniques. Elsevier Amsterdam, Europe

    Google Scholar 

  • Dennis KJ, Schrag DP (2010) Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. Geochim Cosmochim Acta 74:4110–4122

    Google Scholar 

  • Dominguez G, Wilikins G, Thiemens MH (2011) The Soret effect and isotope fractionation in high-temperature silicate melts. Nature 473:70–73

    Google Scholar 

  • Driesner T (1997) The effect of pressure on deuterium-hydrogen fractionation in high-temperature water. Science 277:791–794

    Google Scholar 

  • Eagle RA, Schauble EA, Tripati AK, Tütken T, Hulbert RC, Eiler JM (2010) Body temperatures of modern and extinct vertebrates from 13C–18O bond abundances in bioapatite. PNAS 107:10377–10382

    Google Scholar 

  • Eiler JM (2007) The study of naturally-occuring multiply-substituted isotopologues. Earth Planet Sci Lett 262:309–327

    Google Scholar 

  • Eiler JM (2013) The isotopic anatomies of molecules and minerals. Ann Rev Earth Planet Sci 41:411–441

    Google Scholar 

  • Eiler JM, Baumgartner LP, Valley JW (1992) Intercrystalline stable isotope diffusion: a fast grain boundary model. Contr Mineral Petrol 112:543–557

    Google Scholar 

  • Eiler JM, Schauble E (2004) 18O13C16O in earth, s atmosphere. Geochim Cosmochim Acta 68:4767–4777

    Google Scholar 

  • Eiler JM, Valley JW, Baumgartner LP (1993) A new look at stable isotope thermometry. Geochim Cosmochim Acta 57:2571–2583

    Google Scholar 

  • Eiler JM et al (2014) Frontiers of stable isotope geoscience. Chem Geol 372: 119–143

    Google Scholar 

  • Ellis AS, Johnson TM, Bullen TD (2004) Using chromium stable isotope ratios to quantify Cr(VI) reduction: lack of sorption effects. Environ Sci Techn 38:3604–3607

    Google Scholar 

  • Elsenheimer D, Valley JW (1992) In situ oxygen isotope analysis of feldspar and quartz by Nd-YAG laser microprobe. Chem Geol 101:21–42

    Google Scholar 

  • Elsner M, Jochmann MA, Hofstetter TB, Hunkeler D, Bernstein A, Schmidt T, Schimmelmann A (2012) Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal Bioanal Chem 403:2471–2491

    Google Scholar 

  • Epov VN, Malinovskiy D, Vanhaecke F, Begue D, Donard OF (2011) Modern mass spectrometry for studying mass-independent fractionation of heavy stable isotopes in environmental and biological sciences. J Anal At Spectrom 26:1142–1156

    Google Scholar 

  • Estrade N, Carignan J, Sonke JE, Donard O (2009) Mercury isotope fractionation during liquid-vapor evaporation experiments. Geochim Cosmochim Acta 73:2693–2711

    Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–759

    Google Scholar 

  • Farquhar J, Johnston DT, Wing BA, Habicht KS, Canfield DE, Airieau S, Thiemens MH (2003) Multiple sulphur isotope interpretations for biosynthetic pathways: implications for biological signatures in the sulphur isotope record. Geobiology 1:27–36

    Google Scholar 

  • Ferry JM, Passey BH, Vasconcelos C, Eiler JM (2011) Formation of dolomite at 40–80°C in the Latemar carbonate buildup, Dolomites, Italy from clumped isotope thermometry. Geology 39:571–574

    Google Scholar 

  • Fiebig J, Wiechert U, Rumble D, Hoefs J (1999) High-precision in-situ oxygen isotope analysis of quartz using an ArF laser. Geochim Cosmochim Acta 63:687–702

    Google Scholar 

  • Fietzke J, Eisenhauer A (2006) Determination of temperature-dependent stable strontium isotope (88Sr/86Sr) fractionation via bracketing standard MC-ICP-MS. Geochem Geophys Geosys 7, p 8. doi: 10.1029/2006GC001243

  • Fitzsimons ICW, Harte B, Clark RM (2000) SIMS stable isotope measurement: counting statistics and analytical precision. Min Mag 64:59–83

    Google Scholar 

  • Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Data of geochemistry, 6th edn. Geological States Geological Survey Professional Paper 440-KK

    Google Scholar 

  • Fujii T, Moynier F, Albarede F (2009) The nuclear field shift effect in chemical exchange reactions. Chem Geol 267:139–156

    Google Scholar 

  • Galimov EM (2006) Isotope organic geochemistry. Org Geochem 37:1200–1262

    Google Scholar 

  • Gao YQ, Marcus RA (2001) Strange and unconventional isotope effects in ozone formation. Science 293:259–263

    Google Scholar 

  • Gelabert A, Pokrovsky OS, Viers J, Schott J, Boudou A, Feurtet-Mazel A (2006) Interaction between zinc and marine diatom species: surface complexation and Zn isotope fractionation. Geochim Cosmochim Acta 70:839–857

    Google Scholar 

  • Ghosh P et al. (2006) 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim Cosmochim Acta 70: 1439–1456

    Google Scholar 

  • Giletti BJ (1986) Diffusion effect on oxygen isotope temperatures of slowly cooled igneous and metamorphic rocks. Earth Planet Sci Lett 77:218–228

    Google Scholar 

  • Gonfiantini R (1978) Standards for stable isotope measurements in natural compounds. Nature 271:534–536

    Google Scholar 

  • Gonfiantini R (1984) Advisory group meeting on stable isotope reference samples for geochemical and hydrological investigations. Report Director General IAEA Vienna

    Google Scholar 

  • Grachev AM, Severinghaus JP (2003) Laboratory determination of thermal diffusion constants for 29N/28N2 in air at temperatures from –60 to 0 °C for reconstruction of magnitudes of abrupt climate changes using the ice core fossil-air paleothermometer. Geochim Cosmochim Acta 67:345–360

    Google Scholar 

  • Hagemann R, Nief G, Roth E (1970) Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW. Tellus 22:712–715

    Google Scholar 

  • Hayes JM (1983) Practice and principles of isotopic measurements in organic geochemistry. In: Organic geochemistry of contemporaneous and ancient sediments, Great Lakes Section, SEPM, Bloomington, Ind, pp 5-1–5-31

    Google Scholar 

  • Henkes GA, Passey BH, Grossman EL, Shenton BJ, Perez-Huerta A, Yancey TE (2014) Temperature limits of preservation of primary calcite clumped isotope paleotemperatures. Geochim Cosmochim Acta 139:362–382

    Google Scholar 

  • Hesterberg R, Siegenthaler U (1991) Production and stable isotopic composition of CO2 in a soil near Bern, Switzerland. Tellus 43B:197–205

    Google Scholar 

  • Heuser A, Eisenhauer A (2009) A pilot study on the use of natural calcium isotope (44Ca/40Ca) fractionation in urine as a proxy for the human body calcium balance. Bone. doi:10.1016/j.bone.2009.11037

    Google Scholar 

  • Hofmann AE, Bourg IC, DePaolo DJ (2013) Ion desolvation as a mechanism for kinetic isotope fractionation in aqueous systems. PNAS (in press)

    Google Scholar 

  • Horita J, Cole DR, Polyakov VB, Driesner T (2002) Experimental and theoretical study of pressure effects on hydrous isotope fractionation in the system brucite-water at elevated temperatures. Geochim Cosmochim Acta 66:3769–3788

    Google Scholar 

  • Horita J, Driesner T, Cole DR (1999) Pressure effect on hydrogen isotope fractionation between brucite and water at elevated temperatures. Science 286:1545–1547

    Google Scholar 

  • Hu G, Clayton RN (2003) Oxygen isotope salt effects at high pressure and high temperature and the calibration of oxygen isotope thermometers. Geochim Cosmochim Acta 67:3227–3246

    Google Scholar 

  • Huberty JM, Kita NT, Kozdon R et al (2010) Crystal orientation effects in δ18O for magnetite and hematite by SIMS. Chem Geol 276:269–283

    Google Scholar 

  • Huntington KW, Budd DA, Wernicke BP, Eiler JM (2011) Use of clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite. J Sediment Res 81:656–669

    Google Scholar 

  • Huntington KW, Wernicke BP, Eiler JM (2010) Influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry. Tectonics 29 TC3005. doi:10.1029/2009TC002449

  • Huntington KW, Eiler JM et al. (2009) Methods and limitations of “clumped” CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry. J Mass Spectrom 44:1318–1329

    Google Scholar 

  • Jensen ML, Nakai N (1962) Sulfur isotope meteorite standards, results and recommendations. In: Jensen ML (ed) Biogeochemistry of sulfur isotopes. NSF Symp Vol, p 31

    Google Scholar 

  • Junk G, Svec H (1958) The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gas from various sources. Geochim Cosmochim Acta 14:234–243

    Google Scholar 

  • Kashiwabara T, Takahashi Y, Tanimizu M, Usui A (2011) Molecular-scale mechanisms of distribution and isotopic fractionation of molybdenum between seawater and ferromanganese oxides. Geochim Cosmochim Acta 75:5762–5784

    Google Scholar 

  • Kelley SP, Fallick AE (1990) High precision spatially resolved analysis of δ34S in sulphides using a laser extraction technique. Geochim Cosmochim Acta 54:883–888

    Google Scholar 

  • Kieffer SW (1982) Thermodynamic and lattice vibrations of minerals: 5. Application to phase equilibria, isotopic fractionation and high-pressure thermodynamic properties. Rev Geophys Space Phys 20:827–849

    Google Scholar 

  • Kita NT, Hyberty JM, Kozdon R, Beard BL, Valley JW (2010) High-precision SIMS oxygen, sulfur and iron stable isotope analyses of geological materials: accuracy, surface topography and crystal orientation. Surf Interface Anal 43:427–431

    Google Scholar 

  • Kitchen NE, Valley JW (1995) Carbon isotope thermometry in marbles of the Adirondack Mountains, New York. J metamorphic Geol 13:577–594

    Google Scholar 

  • Kohn MJ, Valley JW (1998) Obtaining equilibrium oxygen isotope fractionations from rocks: theory and examples. Contr Mineral Petrol 132:209–224

    Google Scholar 

  • Kowalski PM, Jahn S (2011) Prediction of equilibrium Li isotope fractionation between minerals and aqueous solutions at high P and T: an efficient ab initio approach. Geochim Cosmochim Acta 75:6112–6123

    Google Scholar 

  • Kowalski PM, Wunder B, Jahn S (2013) Ab initio prediction of equilibrium boron isotope fractionation between minerals and aqueous fluids at high P and T. Geochim Cosmochim Acta 101:285–301

    Google Scholar 

  • Luz B, Barkan E, Bender ML, Thiemens MH, Boering KA (1999) Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity. Nature 400:547–550

    Google Scholar 

  • Maréchal CN, Télouk P, Albarède F (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol 156:251–273

    Google Scholar 

  • Matsuhisa Y, Goldsmith JR, Clayton RN (1978) Mechanisms of hydrothermal crystallization of quartz at 250 °C and 15 kbar. Geochim Cosmochim Acta 42:173–182

    Google Scholar 

  • Matthews A, Goldsmith JR, Clayton RN (1983) Oxygen isotope fractionation involving pyroxenes: the calibration of mineral-pair geothermometers. Geochim Cosmochim Acta 47:631–644

    Google Scholar 

  • Matthews DE, Hayes JM (1978) Isotope-ratio-monitoring gas chromatography-mass spectrometry. Anal Chem 50:1465–1473

    Google Scholar 

  • Mauersberger K, Erbacher B, Krankowsky D, Günther J, Nickel R (1999) Ozone isotope enrichment: isotopomer-specific rate coefficients. Science 283:370–372

    Google Scholar 

  • McKibben MA, Riciputi LR (1998) Sulfur isotopes by ion microprobe. In: applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7: 121–140

    Google Scholar 

  • Meheut M, Lazzari M, Balan E, Mauri F (2007) Equilibrium isotopic fractionation in the kaolinite, quartz, water system: prediction from first principles calculations density-functional theory. Geochim Cosmochim Acta 71:3170–3181

    Google Scholar 

  • Melander L (1960) Isotope effects on reaction rates. Ronald, New York

    Google Scholar 

  • Melander L, Saunders WH (1980) Reaction rates of isotopic molecules. Wiley, New York

    Google Scholar 

  • Merritt DA, Hayes JM (1994) Nitrogen isotopic analyses of individual amino acids by isotope-ratio-monitoring gas chromatography/mass spectrometry. J Am Soc Mass Spectrom 5:387–397

    Google Scholar 

  • Miller MF (2002) Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance. Geochim Cosmochim Acta 66:1881–1889

    Google Scholar 

  • Möller K, Schoenberg R, Pedersen RB, Weiss D, Dong S (2012) Calibration of new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for zinc isotope amount ratio determinations. Geostand Geoanal Res 36:177–199

    Google Scholar 

  • Nier AO (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon and potassium. Phys Rev 77:789

    Google Scholar 

  • Nier AO, Ney EP, Inghram MG (1947) A null method for the comparison of two ion currents in a mass spectrometer. Rev Sci Instrum 18:294

    Google Scholar 

  • Northrop DA, Clayton RN (1966) Oxygen isotope fractionations in systems containing dolomite. J Geol 74:174–196

    Google Scholar 

  • O’Neil JR (1986) Theoretical and experimental aspects of isotopic fractionation. In: Stable isotopes in high temperature geological processes. Rev Mineral 16:1–40

    Google Scholar 

  • Passey BJ, Henkes GA (2012) Carbonate clumped isotope bond reordering and geospeeedometry. Earth Planet Sci Lett 351-352:223–236

    Google Scholar 

  • Polyakov VB, Clayton RN, Horita J, Mineev SD (2007) Equilibrium iron isotope fractionation factors of minerals: reevaluation from the data of nuclear inelastic resonant X-ray scattering and Mossbauer spectroscopy. Geochim Cosmochim Acta 71:3833–3846

    Google Scholar 

  • Polyakov VB, Horita J, Cole DR (2006) Pressure effects on the reduced partition function ratio for hydrogen isotopes in water. Geochim Cosmochim Acta 70:1904–1913

    Google Scholar 

  • Polyakov VB, Kharlashina NN (1994) Effect of pressure on equilibrium isotope fractionation. Geochim Cosmochim Acta 58:4739–4750

    Google Scholar 

  • Quade J, Breecker DO, Daeron M, Eiler J (2011) The paleoaltimetry of Tibet: an isotopic perspective. Am J Sci 311:77–115

    Google Scholar 

  • Rayleigh JWS (1896) Theoretical considerations respecting the separation of gases by diffusion and similar processes. Philos Mag 42:493

    Google Scholar 

  • Richet P, Bottinga Y, Javoy M (1977) A review of H, C, N, O, S, and Cl stable isotope fractionation among gaseous molecules. Ann Rev Earth Planet Sci 5:65–110

    Google Scholar 

  • Richter FM (2007) Isotopic fingerprints of mass transport processes. Geochim Cosmochim Acta 71:A839

    Google Scholar 

  • Richter FM, Dauphas N, Teng FZ (2009) Non-traditional fractionation of non-traditional isotopes: evaporation, chemical diffusion and Soret diffusion. Chem Geol 258:92–103

    Google Scholar 

  • Richter FM, Davis AM, DePaolo D, Watson BE (2003) Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta 67:3905–3923

    Google Scholar 

  • Richter R, Hoernes S (1988) The application of the increment method in comparison with experimentally derived and calculated O-isotope fractionations. Chem Erde 48:1–18

    Google Scholar 

  • Richter FM, Liang Y, Davis AM (1999) Isotope fractionation by diffusion in molten oxides. Geochim Cosmochim Acta 63:2853–2861

    Google Scholar 

  • Rustad JR, Casey WH, Yin QZ, Bylaska EJ, Felmy AR, Bogatko SA, Jackson VE, Dixon DA (2010) Isotopic fractionation of \( \text{Mg}^{2 + } (\text{aq}) \), \( \text{Ca}^{2 + } (\text{aq}) \) and \( \text{Fe}^{2 + } (\text{aq}) \) with carbonate minerals. Geochim Cosmochim Acta 74: 6301–6323

    Google Scholar 

  • Saenger C, Affek HP, Felis T, Thiagarajan N, Lough JM, Holcomb M (2012) Carbonate clumped isotope variability in shallow water corals: temperature dependence and growth-related vital effects. Geochim Cosmochim Acta 99:224–242

    Google Scholar 

  • Schauble EA (2004) Applying stable isotope fractionation theory to new systems. Rev Mineral Geochem 55:65–111

    Google Scholar 

  • Schauble EA (2007) Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium and other very heavy elements. Geochim Cosmochim Acta 71:2170–2189

    Google Scholar 

  • Schauble EA (2011) First principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2+) crystals. Geochim Cosmochim Acta 75:844–869

    Google Scholar 

  • Schauble EA (2013) Modeling nuclear volume isotope effects in crystals. PNAS 110:17714–17719

    Google Scholar 

  • Schauble EA, Ghosh P, Eiler JM (2006) Preferential formation of 13C-18O bonds in carbonate minerals, estimated using first-principles lattice dynamics. Geochim Cosmochim Acta 70:2510–2519

    Google Scholar 

  • Schauble E, Meheut M, Hill PS (2009) Combining metal stable isotope fractionation theory with experiments. Elements 5:369–374

    Google Scholar 

  • Scheele N, Hoefs J (1992) Carbon isotope fractionation between calcite, graphite and CO2. Contr Mineral Petrol 112:35–45

    Google Scholar 

  • Schütze H (1980) Der Isotopenindex—eine Inkrementmethode zur näherungsweisen Berechnung von Isotopenaustauschgleichgewichten zwischen kristallinen Substanzen. Chemie Erde 39:321–334

    Google Scholar 

  • Severinghaus JP, Bender ML, Keeling RF, Broecker WS (1996) Fractionation of soil gases by diffusion of water vapor, gravitational settling and thermal diffusion. Geochim Cosmochim Acta 60:1005–1018

    Google Scholar 

  • Severinghaus JP, Brook EJ (1999) Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286:930–934

    Google Scholar 

  • Severinghaus JP, Sowers T, Brook EJ, Alley RB, Bender ML (1998) Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391:141–146

    Google Scholar 

  • Sharp ZD (1990) A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim Cosmochim Acta 54:1353–1357

    Google Scholar 

  • Sharp ZD (1995) Oxygen isotope geochemistry of the Al2SiO5 polymorphs. Am J Sci 295:1058–1076

    Google Scholar 

  • Skulan JL, Bullen TD, Anbar AD, Puzas JE, Shackelford L, LeBlanc A, Smith SM (2007) Natural calcium isotope composition of urine as a marker of bone mineral balance. Clin Chem 53:1155–1158

    Google Scholar 

  • Stern MJ, Spindel W, Monse EU (1968) Temperature dependence of isotope effects. J Chem Phys 48:2908

    Google Scholar 

  • Stolper DA, Sessions AL, Ferreira AA, Santos Neto EV, Schimmelmann A, Shusta SS, Valentine DL, Eiler JM (2014) Combined 13C–D and D–D clumping in methane: methods and preliminary results. Geochim Cosmochim Acta 126:169–191

    Google Scholar 

  • Teutsch N, von Gunten U, Hofstetter TB, Halliday AN (2005) Adsorption as a cause for isotope fractionation in reduced groundwater. Geochim Cosmochim Acta 69:4175–4185

    Google Scholar 

  • Thiemens MH (1999) Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283:341–345

    Google Scholar 

  • Thiemens MH, Chakraborty S, Dominguez G (2012) The physical chemistry of mass-independent isotope effects and their observation in nature. Ann Rev Phys Chem 63:155–177

    Google Scholar 

  • Thiemens MH, Heidenreich JE (1983) The mass independent fractionation of oxygen—a novel isotope effect and its cosmochemical implications. Science 219:1073–1075

    Google Scholar 

  • Tripati AK, Eagle RA, Thiagarajan N, Gagnon AC, Bauch H, Halloran PR, Eiler JM (2010) 13C–18O isotope signaturesand “clumped isotope” thermometry in foraminifera and coccoliths. Geochim Cosmochim Acta 74:5697–5717

    Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 1947:562

    Google Scholar 

  • Valley JW, Graham C (1993) Cryptic grain-scale heterogeneity of oxygen isotope ratios in metamorphic magnetite. Science 259:1729–1733

    Google Scholar 

  • Valley J, Graham CM, Harte B, Eiler JM, Kinney PD (1998) Ion microprobe analysis of oxygen, carbon and hydrogen isotope ratios. In: applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7:73–98

    Google Scholar 

  • Vanhaecke F, Balcaen L, Malinovsky D (2009) Use of single-collector and multi-collector ICP-mass spectrometry for isotope analysis. J Anal At Spectrom 24:863–886

    Google Scholar 

  • Vogl J, Pritzkow W (2010) Isotope reference materials for present and future isotope research. J Anal At Spectrom 25:923–932

    Google Scholar 

  • Wacker U, Fiebig J, Tödter J, Schöne BR, Bahr A, Friedrich O, Tütken T, Gischler E, Joachimski MM (2014) Emperical calibration of the clumped isotope paleothermometer using calcites of various origins. Geochim Cosmochim Acta 141:127–144

    Google Scholar 

  • Walczyk T, von Blanckenburg F (2002) Natural iron isotope variation in human blood. Science 295:2065–2066

    Google Scholar 

  • Wang Z, Schauble EA, Eiler JM (2004) Equilibrium thermodynamics of multiply substituted isotopologues of molecular gas. Geochim Cosmochim Acta 68:4779–4797

    Google Scholar 

  • Wasylenki LE, Rolfe BA, Weeks CL, Spiro TB, Anbar AD (2008) Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides. Geochim Cosmochim Acta 72:5997–6005

    Google Scholar 

  • Wasylenki LE, Weeks CL, Bargar JR, Spiro TG, Hein JD, Anbar AD (2011) The molecular mechanism of Mo isotope fractionation during adsorption to birnessite. Geochim Cosmochim Acta 75:5019–5031

    Google Scholar 

  • Weiss DJ, Mason TFD, Zhao FJ, Kirk GJD, Coles BJ, Horstwood MSA (2005) Isotopic discriminationof zinc in higher plants. New Phytol 165:703–710

    Google Scholar 

  • Wiechert U, Fiebig J, Przybilla R, Xiao Y, Hoefs J (2002) Excimer laser isotope-ratio-monitoring mass spectrometry for in situ oxygen isotope analysis. Chem Geol 182:179–194

    Google Scholar 

  • Wiechert U, Hoefs J (1995) An excimer laser-based microanalytical preparation technique for in-situ oxygen isotope analysis of silicate and oxide minerals. Geochim Cosmochim Acta 59:4093–4101

    Google Scholar 

  • Young ED, Galy A, Nagahara H (2002) Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim Cosmochim Acta 66:1095–1104

    Google Scholar 

  • Zheng YF (1991) Calculation of oxygen isotope fractionation in metal oxides. Geochim Cosmochim Acta 55:2299–2307

    Google Scholar 

  • Zheng YF (1993a) Oxygen isotope fractionation in SiO2 and Al2SiO5 polymorphs: effect of crystal structure. Eur J Mineral 5:651–658

    Google Scholar 

  • Zheng YF (1993b) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim Cosmochim Acta 57:1079–1091

    Google Scholar 

  • Zheng YF (1993c) Calculation of oxygen isotope fractionation in hydroxyl-bearing minerals. Earth Planet Sci Lett 120:247–263

    Google Scholar 

  • Zheng YF, Böttcher ME (2015) Oxygen isotope fractionation in double carbonates. Isoto Environ Health Stud (in press)

    Google Scholar 

  • Zhu XK, O’Nions RK, Guo Y, Belshaw NS, Rickard D (2000) Determination of natural Cu-isotope variations by plasma-source mass spectrometry: implications for use as geochemical tracers. Chem Geol 163:139–149

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Hoefs .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoefs, J. (2015). Theoretical and Experimental Principles. In: Stable Isotope Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-19716-6_1

Download citation

Publish with us

Policies and ethics