Skip to main content

Cardiopulmonary Resuscitation

  • Chapter
Surgical Intensive Care Medicine

Abstract

Survival after cardiac arrest is as low as 15–20 %. Resuscitation starts with advanced cardiac life support, consisting of chest compressions, mechanical ventilation, electrical defibrillation, and drug therapy. Detailed algorithms have been developed and published in international guidelines. After restoration of spontaneous circulation, resuscitation efforts continue on the intensive care unit. Normotension, normoglycemia, normocapnia, normoxemia, and targeted temperature management represent the basic principles of post-cardiac arrest care. Prognostication essentially relies on neurological examination of the patient. However, self-fulfilling prophecy is a risk and must be avoided carefully.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. National Center for Health Statistics. Health, United States, 2012: with special feature on emergency care. Hyattsville; 2013.

    Google Scholar 

  2. Peberdy MA, Kaye W, Ornato JP, Larkin GL, Nadkarni V, Mancini ME, et al. Cardiopulmonary resuscitation of adults in the hospital: a report of 14720 cardiac arrests from the National Registry of Cardiopulmonary Resuscitation. Resuscitation. 2003;58:297–308.

    Article  PubMed  Google Scholar 

  3. Nadkarni VM, Larkin GL, Peberdy MA, Carey SM, Kaye W, Mancini ME, et al. First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. JAMA. 2006;295:50–7.

    Article  CAS  PubMed  Google Scholar 

  4. Gwinnutt CL, Columb M, Harris R. Outcome after cardiac arrest in adults in UK hospitals: effect of the 1997 guidelines. Resuscitation. 2000;47:125–35.

    Article  CAS  PubMed  Google Scholar 

  5. International Liaison Committee on Resuscitation. 2010 International consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation. 2010;81:e1–330.

    Article  Google Scholar 

  6. American Heart Association. 2010 American Heart Association for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122:S640–946.

    Article  Google Scholar 

  7. European Resuscitation Council. European Resuscitation Council guidelines for resuscitation 2010. Resuscitation. 2010;81:1219–451.

    Article  Google Scholar 

  8. Pell JP, Sirel JM, Marsden AK, Ford I, Walker NL, Cobbe SM. Presentation, management, and outcome of out of hospital cardiopulmonary arrest: comparison by underlying aetiology. Heart. 2003;89:839–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zipes DP, Wellens HJJ. Sudden cardiac death. Circulation. 1998;98:2334–51.

    Article  CAS  PubMed  Google Scholar 

  10. Müllner M, Hirschl MM, Herkner H, Sterz F, Leitha T, Exner M, et al. Creatine kinase-MB fraction and cardiac troponin T to diagnose acute myocardial infarction after cardiopulmonary resuscitation. J Am Coll Cardiol. 1996;28:1220–5.

    Article  PubMed  Google Scholar 

  11. Spaulding CM, Joly LM, Rosenberg A, Monchi M, Weber SN, Dhainaut JF, et al. Immediate coronary angiography in survivors of out-of-hospital cardiac arrest. N Engl J Med. 1997;336:1629–33.

    Article  CAS  PubMed  Google Scholar 

  12. Vanbrabant P, Dhondt E, Billen P, Sabbe M. Aetiology of unsuccessful prehospital witnessed cardiac arrest of unclear origin. Eur J Emerg Med. 2006;13:144–7.

    Article  PubMed  Google Scholar 

  13. Kause J, Smith G, Prytherch D, Parr M, Flabouris A, Hillman K. A comparison of antecedents to cardiac arrests, deaths and emergency intensive care admissions in Australia and New Zealand, and the United Kingdom—the ACADEMIA study. Resuscitation. 2004;62:275–82.

    Article  PubMed  Google Scholar 

  14. Berg RA, Sorrell VL, Kern KB, Hilwig RW, Altbach MI, Hayes MM, et al. Magnetic resonance imaging during untreated ventricular fibrillation reveals prompt right ventricular overdistention without left ventricular volume loss. Circulation. 2005;111:1136–40.

    Article  PubMed  Google Scholar 

  15. Schipke JD, Heusch G, Sanii AP, Gams E, Winter J. Static filling pressure in patients during induced ventricular fibrillation. Am J Physiol Heart Circ Physiol. 2003;285:H2510–5.

    Article  CAS  PubMed  Google Scholar 

  16. Steen S, Liao Q, Pierre L, Paskevicius A, Sjöberg T. The critical importance of minimal delay between chest compressions and subsequent defibrillation: a haemodynamic explanation. Resuscitation. 2003;58:249–58.

    Article  PubMed  Google Scholar 

  17. Miyamoto O, Auer RN. Hypoxia, hyperoxia, ischemia, and brain necrosis. Neurology. 2000;54:362–71.

    Article  CAS  PubMed  Google Scholar 

  18. Simon RP. Hypoxia versus ischemia. Neurology. 1999;52:7–8.

    Article  CAS  PubMed  Google Scholar 

  19. Rossen R, Kabat H, Anderson JP. Acute arrest of cerebral circulation in man. Arch Neurol Psychiatry. 1943;50(5):510–28.

    Article  Google Scholar 

  20. Cavus E, Bein B, Dörges V, Stadlbauer KH, Wenzel V, Steinfath M, et al. Brain tissue oxygen pressure and cerebral metabolism in an animal model of cardiac arrest and cardiopulmonary resuscitation. Resuscitation. 2006;71:97–106.

    Article  CAS  PubMed  Google Scholar 

  21. Imberti R, Bellinzona G, Riccardi F, Pagani M, Langer M. Cerebral perfusion pressure and cerebral tissue oxygen tension in a patient during cardiopulmonary resuscitation. Intensive Care Med. 2003;29:1016–9.

    Article  PubMed  Google Scholar 

  22. Corbett RJT, Laptook AR. 31P NMR relaxation does not affect the quantitation of changes in phosphocreatine, inorganic phosphate, and ATP measured in vivo during complete ischemia in swine brain. J Neurochem. 1993;61:144–9.

    Article  CAS  PubMed  Google Scholar 

  23. LaManna JC, Griffith JK, Cordisco BR, Bell HE, Lin CW, Pundik S, et al. Rapid recovery of rat brain intracellular pH after cardiac arrest and resuscitation. Brain Res. 1995;687:175–81.

    Article  CAS  PubMed  Google Scholar 

  24. Winn HR, Rubio R, Berne RM. Brain adenosine production in the rat during 60 seconds of ischemia. Circ Res. 1979;45:486–92.

    Article  CAS  PubMed  Google Scholar 

  25. Hossmann KA, Sakaki S, Zimmerman V. Cation activities in reversible ischemia of the cat brain. Stroke. 1977;8:77–81.

    Article  CAS  PubMed  Google Scholar 

  26. Tanaka E, Yamamoto S, Kudo Y, Mihara S, Higashi H. Mechanisms underlying the rapid depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro. J Neurophysiol. 1997;78:891–902.

    CAS  PubMed  Google Scholar 

  27. Benveniste H, Drejer J, Schousboe A, Diemer NH. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem. 1984;43:1369–74.

    Article  CAS  PubMed  Google Scholar 

  28. Bickler PE, Hansen BM. Causes of calcium accumulation in rat cortical brain slices during hypoxia and ischemia: role of ion channels and membrane damage. Brain Res. 1994;665:269–76.

    Article  CAS  PubMed  Google Scholar 

  29. Silver IA, Erecinska M. Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. J Gen Physiol. 1990;95:837–66.

    Article  CAS  PubMed  Google Scholar 

  30. Kristián T, Siesjö BK. Calcium in ischemic cell death. Stroke. 1998;29:705–18.

    Article  PubMed  Google Scholar 

  31. DeGracia DJ, O’Neil BJ, Neumar RW, Grossman LI, et al. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci. 2000;179:1–33.

    Article  PubMed  Google Scholar 

  32. Kalimo H, Garcia JH, Kamijyo Y, Tanaka J, Trump BF. The ultrastructure of “brain death”. II. Electron microscopy of feline cortex after complete ischemia. Virchows Arch B Cell Pathol. 1977;25:207–20.

    CAS  PubMed  Google Scholar 

  33. Sakamoto A, Ohnishi ST, Ohnishi T, Ogawa R. Relationship between free radical production and lipid peroxidation during ischemia-reperfusion injury in the rat brain. Brain Res. 1991;554:186–92.

    Article  CAS  PubMed  Google Scholar 

  34. Tanaka K, Shirai T, Nagata E, Dembo T, Fukuuchi Y. Immunohistochemical detection of nitrotyrosine in postischemic cerebral cortex in gerbil. Neurosci Lett. 1997;235:85–8.

    Article  CAS  PubMed  Google Scholar 

  35. Watson BD, Busto R, Goldberg WJ, Santiso M, Yoshida S, Ginsberg MD. Lipid peroxidation in vivo induced by reversible global ischemia in rat brain. J Neurochem. 1984;42:268–74.

    Article  CAS  PubMed  Google Scholar 

  36. Böttiger BW, Schmitz B, Wiessner C, Vogel P, Hossmann KA. Neuronal stress response and neuronal cell damage after cardiocirculatory arrest in rats. J Cereb Blood Flow Metab. 1998;18:1077–87.

    Article  PubMed  Google Scholar 

  37. Chen J, Nagayama T, Jin K, Stetler RA, Zhu RL, Graham SH, et al. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci. 1998;18:4914–28.

    CAS  PubMed  Google Scholar 

  38. Lindvall O, Ernfors P, Bengzon J, Kokaia Z, Smith ML, Siesjö BK, et al. Differential regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma. Proc Natl Acad Sci U S A. 1992;89:648–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McGahan L, Hakim AM, Robertson GS. Hippocampal Myc and p53 expression following transient global ischemia. Brain Res Mol Brain Res. 1998;56:133–45.

    Article  CAS  PubMed  Google Scholar 

  40. Padosch SA, Popp E, Vogel P, Böttiger BW. Altered protein expression levels of Fas/CD95 and Fas ligand in differentially vulnerable brain areas in rats after global cerebral ischemia. Neurosci Lett. 2003;338:247–51.

    Article  CAS  PubMed  Google Scholar 

  41. Teschendorf P, Padosch SA, Spöhr F, Albertsmeier M, Schneider A, Vogel P, et al. Time course of caspase activation in selectively vulnerable brain areas following global cerebral ischemia due to cardiac arrest in rats. Neurosci Lett. 2008;448:194–9.

    Article  CAS  PubMed  Google Scholar 

  42. Lim C, Alexander MP, LaFleche G, Schnyer DM, Verfaellie M. The neurological and cognitive sequelae of cardiac arrest. Neurology. 2004;63:1774–8.

    Article  CAS  PubMed  Google Scholar 

  43. Roine RO, Kajaste S, Kaste M. Neuropsychological sequelae of cardiac arrest. JAMA. 1993;269:237–42.

    Article  CAS  PubMed  Google Scholar 

  44. Van Alem AP, de Vos R, Schmand B, Koster RW. Cognitive impairment in survivors of out-of-hospital cardiac arrest. Am Heart J. 2004;148:416–21.

    Article  PubMed  Google Scholar 

  45. Chang WT, Ma MHM, Chien KL, Huang CH, Tsai MS, Shih FY, et al. Postresuscitation myocardial dysfunction: correlated factors and prognostic implications. Intensive Care Med. 2007;33:88–95.

    Article  PubMed  Google Scholar 

  46. Kern KB, Hilwig RW, Rhee KH, Berg RA. Myocardial dysfunction after resuscitation from cardiac arrest: an example of global myocardial stunning. J Am Coll Cardiol. 1996;28:232–40.

    Article  CAS  PubMed  Google Scholar 

  47. Knapp J, Bergmann G, Bruckner T, Russ N, Böttiger BW, Popp E. Pre- and postconditioning effect of sevoflurane on myocardial dysfunction after cardiopulmonary resuscitation in rats. Resuscitation. 2013;84:1450–5.

    Article  CAS  PubMed  Google Scholar 

  48. Müllner M, Domanovits H, Sterz F, Herkner H, Gamper G, Kürkciyan I, et al. Measurement of myocardial contractility following successful resuscitation: quantitated left ventricular systolic function utilising non-invasive wall stress analysis. Resuscitation. 1998;39:51–9.

    Article  PubMed  Google Scholar 

  49. Palmer BS, Hadziahmetovic M, Veci T, Angelos MG. Global ischemic duration and reperfusion function in the isolated perfused rat heart. Resuscitation. 2004;62:97–106.

    Article  PubMed  Google Scholar 

  50. Laurent I, Monchi M, Chiche JD, Joly LM, Spaulding C, Bourgeois B, et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol. 2002;40:2110–6.

    Article  PubMed  Google Scholar 

  51. Gazmuri RJ, Deshmukh S, Shah PR. Myocardial effects of repeated electrical defibrillations in the isolated fibrillating rat heart. Crit Care Med. 2000;28:2690–6.

    Article  CAS  PubMed  Google Scholar 

  52. Wilson CM, Allen JD, Bridges JB, Adgey AAJ. Death and damage caused by multiple direct current shocks: studies in an animal model. Eur Heart J. 1988;9:1257–65.

    CAS  PubMed  Google Scholar 

  53. Yamaguchi H, Weil MH, Tang W, Kamohara T, Jin X, Bisera J. Myocardial dysfunction after electrical defibrillation. Resuscitation. 2002;54:289–96.

    Article  PubMed  Google Scholar 

  54. Tang W, Weil MH, Sun S, Noc M, Yang L, Gazmuri RJ. Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation. 1995;92:3089–93.

    Article  CAS  PubMed  Google Scholar 

  55. Adrie C, Adib-Conquy M, Laurent I, Monchi M, Vinsonneau C, Fitting C, et al. Successful cardiopulmonary resuscitation after cardiac arrest as a “sepsis-like” syndrome. Circulation. 2002;106:562–8.

    Article  PubMed  Google Scholar 

  56. Böttiger BW, Motsch J, Braun V, Martin E, Kirschfink M. Marked activation of complement and leukocytes and an increase in the concentrations of soluble endothelial adhesion molecules during cardiopulmonary resuscitation and early reperfusion after cardiac arrest in humans. Crit Care Med. 2002;30:2473–80.

    Article  PubMed  Google Scholar 

  57. Mussack T, Biberthaler P, Gippner-Steppert C, Kanz KG, Wiedemann E, Mutschler W, et al. Early cellular brain damage and systemic inflammatory response after cardiopulmonary resuscitation or isolated severe head trauma: a comparative pilot study on common pathomechanisms. Resuscitation. 2001;49:193–9.

    Article  CAS  PubMed  Google Scholar 

  58. Adrie C, Monchi M, Laurent I, Um S, Yan SB, Thuong M, et al. Coagulopathy after successful cardiopulmonary resuscitation following cardiac arrest: implication of the protein C anticoagulant pathway. J Am Coll Cardiol. 2005;46:21–8.

    Article  PubMed  Google Scholar 

  59. Böttiger BW, Motsch J, Böhrer H, Böker T, Aulmann M, Nawroth PP, et al. Activation of blood coagulation after cardiac arrest is not balanced adequately by activation of endogenous fibrinolysis. Circulation. 1995;92:2572–8.

    Article  PubMed  Google Scholar 

  60. Boidin MP. Airway patency in the unconscious patient. Br J Anaesth. 1985;57:306–10.

    Article  CAS  PubMed  Google Scholar 

  61. Nandi PR, Charlesworth CH, Taylor SJ, Nunn JF, Doré CJ. Effect of general anaesthesia on the pharynx. Br J Anaesth. 1991;66:157–62.

    Article  CAS  PubMed  Google Scholar 

  62. Ruben HM, Elam JO, Ruben AM, Greene DG. Investigation of upper airway problems in resuscitation. 1. Studies of pharyngeal x-rays and performance by laymen. Anesthesiology. 1961;22:271–9.

    Article  CAS  PubMed  Google Scholar 

  63. Safar P, Escarraga LA, Chang F. Upper airway obstruction in the unconscious patient. J Appl Physiol. 1959;14:760–4.

    CAS  PubMed  Google Scholar 

  64. Guildner CW. Resuscitation—opening the airway. A comparative study of techniques for opening an airway obstructed by the tongue. JACEP. 1976;5:588–90.

    Article  CAS  PubMed  Google Scholar 

  65. Clark JJ, Larsen MP, Culley LL, Graves JR, Eisenberg MS. Incidence of agonal respirations in sudden cardiac arrest. Ann Emerg Med. 1992;21:1464–7.

    Article  CAS  PubMed  Google Scholar 

  66. Ochoa FJ, Ramalle-Gómara E, Carpintero JM, García A, Saralegui I. Competence of health professionals to check the carotid pulse. Resuscitation. 1998;37:173–5.

    Article  CAS  PubMed  Google Scholar 

  67. Ruppert M, Reith MW, Widmann JH, Lackner CK, Kerkmann R, Schweiberer L, et al. Checking for breathing: evaluation of the diagnostic capability of emergency medical services personnel, physicians, medical students, and medical laypersons. Ann Emerg Med. 1999;34:720–9.

    Article  CAS  PubMed  Google Scholar 

  68. Kouwenhoven WB, Jude JR, Knickerbocker GG. Closed-chest cardiac massage. JAMA. 1960;173:1064–7.

    Article  CAS  PubMed  Google Scholar 

  69. Paradis NA, Martin GB, Goetting MG, Rosenberg JM, Rivers EP, Appleton TJ, et al. Simultaneous aortic, jugular bulb, and right atrial pressures during cardiopulmonary resuscitation in humans. Insights into mechanisms. Circulation. 1989;80:361–8.

    Article  CAS  PubMed  Google Scholar 

  70. Redberg RF, Tucker KJ, Cohen TJ, Dutton JP, Callaham ML, Schiller NB. Physiology of blood flow during cardiopulmonary resuscitation. A transesophageal echocardiographic study. Circulation. 1993;88:534–42.

    Article  CAS  PubMed  Google Scholar 

  71. Werner JA, Greene HL, Janko CL, Cobb LA. Visualization of cardiac valve motion in man during external chest compression using two-dimensional echocardiography. Implications regarding the mechanism of blood flow. Circulation. 1981;63:1417–21.

    Article  CAS  PubMed  Google Scholar 

  72. Rivers EP, Lozon J, Enriquez E, Havstad SV, Martin GB, Lewandowski CA, et al. Simultaneous radial, femoral, and aortic arterial pressures during human cardiopulmonary resuscitation. Crit Care Med. 1993;21:878–83.

    Article  CAS  PubMed  Google Scholar 

  73. Swenson RD, Weaver WD, Niskanen RA, Martin J, Dahlberg S. Hemodynamics in humans during conventional and experimental methods of cardiopulmonary resuscitation. Circulation. 1988;78:630–9.

    Article  CAS  PubMed  Google Scholar 

  74. Ornato JP, Gonzalez ER, Garnett AR, Levine RL, McClung BK. Effect of cardiopulmonary resuscitation compression rate on end-tidal carbon dioxide concentration and arterial pressure in man. Crit Care Med. 1988;16:241–5.

    Article  CAS  PubMed  Google Scholar 

  75. Eftestøl T, Sunde K, Steen PA. Effects of interrupting precordial compressions on the calculated probability of defibrillation success during out-of-hospital cardiac arrest. Circulation. 2002;105:2270–3.

    Article  PubMed  Google Scholar 

  76. Kern KB, Hilwig RW, Berg RA, Sanders AB, Ewy GA. Importance of continuous chest compressions during cardiopulmonary resuscitation: improved outcome during a simulated single lay-rescuer scenario. Circulation. 2002;105:645–9.

    Article  PubMed  Google Scholar 

  77. Safar P, Escarraga LA, Elam JO. A comparison of the mouth-to-mouth and mouth-to-airway methods of artificial respiration with the chest-pressure arm-lift methods. N Engl J Med. 1958;258:671–7.

    Article  CAS  PubMed  Google Scholar 

  78. Brenner BE, Van DC, Cheng D, Lazar EJ. Determinants of reluctance to perform CPR among residents and applicants: the impact of experience on helping behavior. Resuscitation. 1997;35:203–11.

    Article  CAS  PubMed  Google Scholar 

  79. Ornato JP, Hallagan LF, McMahan SB, Peeples EH, Rostafinski AG. Attitudes of BCLS instructors about mouth-to-mouth resuscitation during the AIDS epidemic. Ann Emerg Med. 1990;19:151–6.

    Article  CAS  PubMed  Google Scholar 

  80. Campbell TP, Stewart RD, Kaplan RM, DeMichiei RV, Morton R. Oxygen enrichment of bag-valve-mask units during positive-pressure ventilation: a comparison of various techniques. Ann Emerg Med. 1988;17:232–5.

    Article  CAS  PubMed  Google Scholar 

  81. Quintana S, Martínez Pérez J, Alvarez M, Vila JS, Jara F, Nava JM. Maximum FIO2 in minimum time depending on the kind of resuscitation bag and oxygen flow. Intensive Care Med. 2004;30:155–8.

    Article  PubMed  Google Scholar 

  82. Alexander R, Hodgson P, Lomax D, Bullen C. A comparison of the laryngeal mask airway and Guedel airway, bag and facemask for manual ventilation following formal training. Anaesthesia. 1993;48:231–4.

    Article  CAS  PubMed  Google Scholar 

  83. Dörges V, Sauer C, Ocker H, Wenzel V, Schmucker P. Airway management during cardiopulmonary resuscitation—a comparative study of bag-valve-mask, laryngeal mask airway and combitube in a bench model. Resuscitation. 1999;41:63–9.

    Article  Google Scholar 

  84. Redfern D, Rassam S, Stacey MR, Mecklenburgh JS. Comparison of face masks in the bag-mask ventilation of a manikin. Eur J Anaesthesiol. 2006;23:169–72.

    Article  CAS  PubMed  Google Scholar 

  85. Stone BJ, Chantler PJ, Baskett PJF. The incidence of regurgitation during cardiopulmonary resuscitation: a comparison between the bag valve mask and laryngeal mask airway. Resuscitation. 1998;38:3–6.

    Article  CAS  PubMed  Google Scholar 

  86. Katz SH, Falk JL. Misplaced endotracheal tubes by paramedics in an urban emergency medical services system. Ann Emerg Med. 2001;37:32–7.

    Article  CAS  PubMed  Google Scholar 

  87. Timmermann A, Eich C, Russo SG, Natge U, Bräuer A, Rosenblatt WH, et al. Prehospital airway management: a prospective evaluation of anaesthesia trained emergency physicians. Resuscitation. 2006;70:179–85.

    Article  PubMed  Google Scholar 

  88. Heuer JF, Barwing J, Eich C, Quintel M, Crozier TA, Roessler M. Initial ventilation through laryngeal tube instead of face mask in out-of-hospital cardiopulmonary arrest is effective and safe. Eur J Emerg Med. 2010;17:10–5.

    Article  PubMed  Google Scholar 

  89. Aufderheide TP, Lurie KG. Death by hyperventilation: a common and life-threatening problem during cardiopulmonary resuscitation. Crit Care Med. 2004;32:S345–51.

    Article  PubMed  Google Scholar 

  90. Langhelle A, Sunde K, Wik L, Steen PA. Arterial blood-gases with 500- versus 1000-ml tidal volumes during out-of-hospital CPR. Resuscitation. 2000;45:27–33.

    Article  CAS  PubMed  Google Scholar 

  91. Wenzel V, Keller C, Idris AH, Dörges V, Lindner KH, Brimacombe JR. Effects of smaller tidal volumes during basic life support ventilation in patients with respiratory arrest: good ventilation, less risk? Resuscitation. 1999;43:25–9.

    Article  CAS  PubMed  Google Scholar 

  92. Dorph E, Wik L, Strømme TA, Eriksen M, Steen PA. Quality of CPR with three different ventilation:compression ratios. Resuscitation. 2003;58:193–201.

    Article  CAS  PubMed  Google Scholar 

  93. Sanders AB, Kern KB, Berg RA, Hilwig RW, Heidenrich J, Ewy GA. Survival and neurologic outcome after cardiopulmonary resuscitation with four different chest compression-ventilation ratios. Ann Emerg Med. 2002;40:553–62.

    Article  PubMed  Google Scholar 

  94. Babbs CF, Kern KB. Optimum compression to ventilation ratios in CPR under realistic, practical conditions: a physiological and mathematical analysis. Resuscitation. 2002;54:147–57.

    Article  PubMed  Google Scholar 

  95. Abildgaard PC. Tentamina electrica in animalibus instituta. Societatis Medicae Havniensis Collectanea. 1775;2:157–61. As cited in: Driscol TE, Ratnoff OD, Nygaard OF. The remarkable Dr. Abildgaard and countershock. The bicentennial of his electrical experiments on animals. Ann Intern Med. 1975;83:878–82.

    Google Scholar 

  96. Lown B, Amarasingham R, Neuman J. New method for terminating cardiac arrhythmias. Use of synchronized capacitor discharge. JAMA. 1962;182:548–55.

    Article  CAS  PubMed  Google Scholar 

  97. Lown B, Neuman J, Amarasingham R, Berkovits BV. Comparison of alternating current with direct electroshock across the closed chest. Am J Cardiol. 1962;10:223–33.

    Article  CAS  PubMed  Google Scholar 

  98. Chattipakorn N, Banville I, Gray RA, Ideker RE. Mechanism of ventricular defibrillation for near-defibrillation threshold shocks: a whole-heart optical mapping study in swine. Circulation. 2001;104:1313–9.

    Article  CAS  PubMed  Google Scholar 

  99. Chen PS, Shibata N, Dixon EG, Wolf PD, Danieley ND, Sweeney MB, et al. Activation during ventricular defibrillation in open-chest dogs. Evidence of complete cessation and regeneration of ventricular fibrillation after unsuccessful shocks. J Clin Invest. 1986;77:810–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhou X, Daubert JP, Wolf PD, Smith WM, Ideker RE. Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs. Circ Res. 1993;72:145–60.

    Article  CAS  PubMed  Google Scholar 

  101. Valenzuela TD, Roe DJ, Cretin S, Spaite DW, Larsen MP. Estimating effectiveness of cardiac arrest interventions: a logistic regression survival model. Circulation. 1997;96:3308–13.

    Article  CAS  PubMed  Google Scholar 

  102. Waalewijn RA, de Vos R, Tijssen JGP, Koster RW. Survival models for out-of-hospital cardiopulmonary resuscitation from the perspectives of the bystander, the first responder, and the paramedic. Resuscitation. 2001;51:113–22.

    Article  CAS  PubMed  Google Scholar 

  103. Public Access Defibrillation Trial Investigators. Public-access defibrillation and survival after out-of-hospital cardiac arrest. N Engl J Med. 2004;351:637–46.

    Article  Google Scholar 

  104. Van Alem AP, Vrenken RH, de Vos R, Tijssen JGP, Koster RW. Use of automated external defibrillator by first responders in out of hospital cardiac arrest: prospective controlled trial. BMJ. 2003;327:1312.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kitamura T, Iwami T, Kawamura T, Nagao K, Tanaka H, Hiraide A. Nationwide public-access defibrillation in Japan. N Engl J Med. 2010;362:994–1004.

    Article  CAS  PubMed  Google Scholar 

  106. Weisfeldt ML, Sitlani CM, Ornato JP, Rea T, Aufderheide TP, Davis D, et al. Survival after application of automatic external defibrillators before arrival of the emergency medical system: evaluation in the resuscitation outcomes consortium population of 21 million. J Am Coll Cardiol. 2010;55:1713–20.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Grubb NR, Cuthbert D, Cawood P, Flapan AD, Fox KAA. Effect of DC shock on serum levels of total creatine kinase, MB-creatine kinase mass and troponin T. Resuscitation. 1998;36:193–9.

    Article  CAS  PubMed  Google Scholar 

  108. Skulec R, Belohlavek J, Kovarnik T, Kolar J, Gandalovicova J, Dytrych V, et al. Serum cardiac markers response to biphasic and monophasic electrical cardioversion for supraventricular tachyarrhythmia—a randomised study. Resuscitation. 2006;70:423–31.

    Article  PubMed  Google Scholar 

  109. Ambler JJS, Deakin CD. A randomised controlled trial of the effect of biphasic or monophasic waveform on the incidence and severity of cutaneous burns following external direct current cardioversion. Resuscitation. 2006;71:293–300.

    Article  PubMed  Google Scholar 

  110. Pagan-Carlo LA, Stone MS, Kerber RE. Nature and determinants of skin “burns” after transthoracic cardioversion. Am J Cardiol. 1997;79:689–91.

    Article  CAS  PubMed  Google Scholar 

  111. Kudenchuk PJ, Cobb LA, Copass MK, Olsufka M, Maynard C, Nichol G. Transthoracic incremental monophasic versus biphasic defibrillation by emergency responders (TIMBER): a randomized comparison of monophasic with biphasic waveform ascending energy defibrillation for the resuscitation of out-of-hospital cardiac arrest due to ventricular fibrillation. Circulation. 2006;114:2010–8.

    Article  PubMed  Google Scholar 

  112. Martens PR, Russell JK, Wolcke B, Paschen H, Kuisma M, Gliner BE, et al. Optimal Response to Cardiac Arrest study: defibrillation waveform effects. Resuscitation. 2001;49:233–43.

    Article  CAS  PubMed  Google Scholar 

  113. Morrison LJ, Dorian P, Long J, Vermeulen M, Schwartz B, Sawadsky B, et al. Out-of-hospital cardiac arrest rectilinear biphasic to monophasic damped sine defibrillation waveforms with advanced life support intervention trial (ORBIT). Resuscitation. 2005;66:149–57.

    Article  PubMed  Google Scholar 

  114. Schneider T, Martens PR, Paschen H, Kuisma M, Wolcke B, Gliner BE, et al. Multicenter, randomized, controlled trial of 150-J biphasic shocks compared with 200- to 360-J monophasic shocks in the resuscitation of out-of-hospital cardiac arrest victims. Circulation. 2000;102:1780–7.

    Article  CAS  PubMed  Google Scholar 

  115. Van Alem AP, Chapman FW, Lank P, Hart AAM, Koster RW. A prospective, randomised and blinded comparison of first shock success of monophasic and biphasic waveforms in out-of-hospital cardiac arrest. Resuscitation. 2003;58:17–24.

    Article  PubMed  Google Scholar 

  116. Faddy SC, Powell J, Craig JC. Biphasic and monophasic shocks for transthoracic defibrillation: a meta analysis of randomised controlled trials. Resuscitation. 2003;58:9–16.

    Article  PubMed  Google Scholar 

  117. Kern KB, Hilwig R, Ewy GA. Retrograde coronary blood flow during cardiopulmonary resuscitation in swine: intracoronary Doppler evaluation. Am Heart J. 1994;128:490–9.

    Article  CAS  PubMed  Google Scholar 

  118. Michael JR, Guerci AD, Koehler RC, Shi AY, Tsitlik J, Chandra N, et al. Mechanisms by which epinephrine augments cerebral and myocardial perfusion during cardiopulmonary resuscitation in dogs. Circulation. 1984;69:822–35.

    Article  CAS  PubMed  Google Scholar 

  119. Otto CW, Yakaitis RW, Blitt CD. Mechanism of action of epinephrine in resuscitation from asphyxial arrest. Crit Care Med. 1981;9:321–4.

    Article  CAS  PubMed  Google Scholar 

  120. Lindner KH, Ahnefeld FW. Comparison of epinephrine and norepinephrine in the treatment of asphyxial or fibrillatory cardiac arrest in a porcine model. Crit Care Med. 1989;17:437–41.

    Article  CAS  PubMed  Google Scholar 

  121. Neumar RW, Bircher NG, Sim KM, Xiao F, Zadach KS, Radovsky A, et al. Epinephrine and sodium bicarbonate during CPR following asphyxial cardiac arrest in rats. Resuscitation. 1995;29:249–63.

    Article  CAS  PubMed  Google Scholar 

  122. Popp E, Vogel P, Teschendorf P, Böttiger BW. Vasopressors are essential during cardiopulmonary resuscitation in rats: is vasopressin superior to adrenaline? Resuscitation. 2007;72:137–44.

    Article  CAS  PubMed  Google Scholar 

  123. Jacobs IG, Finn JC, Jelinek GA, Oxer HF, Thompson PL. Effect of adrenaline on survival in out-of-hospital cardiac arrest: a randomised double-blind placebo-controlled trial. Resuscitation. 2011;82:1138–43.

    Article  CAS  PubMed  Google Scholar 

  124. Olasveengen TM, Sunde K, Brunborg C, Thowsen J, Steen PA, Wik L. Intravenous drug administration during out-of-hospital cardiac arrest: a randomized trial. JAMA. 2009;302:2222–9.

    Article  PubMed  Google Scholar 

  125. Ditchey RV, Lindenfeld J. Failure of epinephrine to improve the balance between myocardial oxygen supply and demand during closed-chest resuscitation in dogs. Circulation. 1988;78:382–9.

    Article  CAS  PubMed  Google Scholar 

  126. Lindner KH, Ahnefeld FW, Schuermann W, Bowdler IM. Epinephrine and norepinephrine in cardiopulmonary resuscitation. Effects on myocardial oxygen delivery and consumption. Chest. 1990;97:1458–62.

    Article  CAS  PubMed  Google Scholar 

  127. Aung K, Htay T. Vasopressin for cardiac arrest: a systematic review and meta-analysis. Arch Intern Med. 2005;165:17–24.

    Article  CAS  PubMed  Google Scholar 

  128. Callaham M, Madsen CD, Barton CW, Saunders CE, Pointer J. A randomized clinical trial of high-dose epinephrine and norepinephrine vs standard-dose epinephrine in prehospital cardiac arrest. JAMA. 1992;268:2667–72.

    Article  CAS  PubMed  Google Scholar 

  129. Vandycke C, Martens P. High dose versus standard dose epinephrine in cardiac arrest—a meta-analysis. Resuscitation. 2000;45:161–6.

    Article  CAS  PubMed  Google Scholar 

  130. Clemo HF, Wood MA, Gilligan DM, Ellenbogen KA. Intravenous amiodarone for acute heart rate control in the critically ill patient with atrial tachyarrhythmias. Am J Cardiol. 1998;81:594–8.

    Article  CAS  PubMed  Google Scholar 

  131. Levine JH, Massumi A, Scheinman MM, Winkle RA, Platia EV, Chilson DA, et al. Intravenous amiodarone for recurrent sustained hypotensive ventricular tachyarrhythmias. J Am Coll Cardiol. 1996;27:67–75.

    Article  CAS  PubMed  Google Scholar 

  132. Dorian P, Cass D, Schwartz B, Cooper R, Gelaznikas R, Barr A. Amiodarone as compared with lidocaine for shock-resistant ventricular fibrillation. N Engl J Med. 2002;346:884–90.

    Article  CAS  PubMed  Google Scholar 

  133. Kudenchuk PJ, Cobb LA, Copass MK, Cummins RO, Doherty AM, Fahrenbruch CE, et al. Amiodarone for resuscitation after out-of-hospital cardiac arrest due to ventricular fibrillation. N Engl J Med. 1999;341:871–8.

    Article  CAS  PubMed  Google Scholar 

  134. Pollak PT, Wee V, Al-Hazmi A, Martin J, Zarnke KB. The use of amiodarone for in-hospital cardiac arrest at two tertiary care centres. Can J Cardiol. 2006;22:199–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rea RS, Kane-Gill SL, Rudis MI, Seybert AL, Oyen LJ, Ou NN, et al. Comparing intravenous amiodarone or lidocaine, or both, outcomes for inpatients with pulseless ventricular arrhythmias. Crit Care Med. 2006;34:1617–23.

    Article  CAS  PubMed  Google Scholar 

  136. Baraka A, Ayoub C, Kawkabani N. Magnesium therapy for refractory ventricular fibrillation. J Cardiothorac Vasc Anesth. 2000;14:196–9.

    Article  CAS  PubMed  Google Scholar 

  137. Tobey RC, Birnbaum GA, Allegra JR, Horowitz MS, Plosay III JJ. Successful resuscitation and neurologic recovery from refractory ventricular fibrillation after magnesium sulfate administration. Ann Emerg Med. 1992;21:92–6.

    Article  CAS  PubMed  Google Scholar 

  138. Fatovich DM, Prentice DA, Dobb GJ. Magnesium in cardiac arrest (the magic trial). Resuscitation. 1997;35:237–41.

    Article  CAS  PubMed  Google Scholar 

  139. Thel MC, Armstrong AL, McNulty SE, Califf RM, O’Connor CM. Randomised trial of magnesium in in-hospital cardiac arrest. Lancet. 1997;350:1272–6.

    Article  CAS  PubMed  Google Scholar 

  140. Allegra J, Lavery R, Cody R, Birnbaum G, Brennan J, Hartman A, et al. Magnesium sulfate in the treatment of refractory ventricular fibrillation in the prehospital setting. Resuscitation. 2001;49:245–9.

    Article  CAS  PubMed  Google Scholar 

  141. Hassan TB, Jagger C, Barnett DB. A randomised trial to investigate the efficacy of magnesium sulphate for refractory ventricular fibrillation. Emerg Med J. 2002;19:57–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Perticone F, Adinolfi L, Bonaduce D. Efficacy of magnesium sulfate in the treatment of torsade de pointes. Am Heart J. 1986;112:847–9.

    Article  CAS  PubMed  Google Scholar 

  143. Tzivoni D, Banai S, Schuger C, Benhorin J, Keren A, Gottlieb S, et al. Treatment of torsade de pointes with magnesium sulfate. Circulation. 1988;77:392–7.

    Article  CAS  PubMed  Google Scholar 

  144. Bailie DS, Inoue H, Kaseda S, Ben-David J, Zipes DP. Magnesium suppression of early afterdepolarizations and ventricular tachyarrhythmias induced by cesium in dogs. Circulation. 1988;77:1395–402.

    Article  CAS  PubMed  Google Scholar 

  145. Brown DC, Lewis AJ, Criley JM. Asystole and its treatment: the possible role of the parasympathetic nervous system in cardiac arrest. JACEP. 1979;8:448–52.

    Article  CAS  PubMed  Google Scholar 

  146. Gupta K, Lichstein E, Chadda KD. Transient atrioventricular standstill. Etiology and management. JAMA. 1975;234:1038–42.

    Article  CAS  PubMed  Google Scholar 

  147. Coon GA, Clinton JE, Ruiz E. Use of atropine for brady-asystolic prehospital cardiac arrest. Ann Emerg Med. 1981;10:462–7.

    Article  CAS  PubMed  Google Scholar 

  148. Ornato JP, Gonzales ER, Morkunas AR, Coyne MR, Beck CL. Treatment of presumed asystole during pre-hospital cardiac arrest: superiority of electrical countershock. Am J Emerg Med. 1985;3:395–9.

    Article  CAS  PubMed  Google Scholar 

  149. Stueven HA, Tonsfeldt DJ, Thompson BM, Whitcomb J, Kastenson E, Aprahamian C. Atropine in asystole: human studies. Ann Emerg Med. 1984;13:815–7.

    Article  CAS  PubMed  Google Scholar 

  150. Adrogué HJ, Rashad MN, Gorin AB, Yacoub J, Madias NE. Assessing acid-base status in circulatory failure. Differences between arterial and central venous blood. N Engl J Med. 1989;320:1312–6.

    Article  PubMed  Google Scholar 

  151. Weil MH, Rackow EC, Trevino R, Grundler W, Falk JL, Griffel MI. Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N Engl J Med. 1986;315:153–6.

    Article  CAS  PubMed  Google Scholar 

  152. Dybvik T, Strand T, Steen PA. Buffer therapy during out-of-hospital cardiopulmonary resuscitation. Resuscitation. 1995;29:89–95.

    Article  CAS  PubMed  Google Scholar 

  153. Ritter JM, Doktor HS, Benjamin N. Paradoxical effect of bicarbonate on cytoplasmic pH. Lancet. 1990;335:1243–6.

    Article  CAS  PubMed  Google Scholar 

  154. Morrison LJ, Verbeek PR, McDonald AC, Sawadsky BV, Cook DJ. Mortality and prehospital thrombolysis for acute myocardial infarction: a meta-analysis. JAMA. 2000;283:2686–92.

    Article  CAS  PubMed  Google Scholar 

  155. Wan S, Quinlan DJ, Agnelli G, Eikelboom JW. Thrombolysis compared with heparin for the initial treatment of pulmonary embolism: a meta-analysis of the randomized controlled trials. Circulation. 2004;110:744–9.

    Article  CAS  PubMed  Google Scholar 

  156. Fischer M, Böttiger BW, Popov-Cenic S, Hossmann KA. Thrombolysis using plasminogen activator and heparin reduces cerebral no-reflow after resuscitation from cardiac arrest: an experimental study in the cat. Intensive Care Med. 1996;22:1214–23.

    Article  CAS  PubMed  Google Scholar 

  157. Lin SR. The effect of dextran and streptokinase on cerebral function and blood flow after cardiac arrest. An experimental study on the dog. Neuroradiology. 1978;16:340–2.

    Article  CAS  PubMed  Google Scholar 

  158. Böttiger BW, Arntz HR, Chamberlain DA, Bluhmki E, Belmans A, Danays T, et al. Thrombolysis during resuscitation for out-of-hospital cardiac arrest. N Engl J Med. 2008;359:2651–62.

    Article  PubMed  Google Scholar 

  159. Gramann J, Lange-Braun P, Bodemann T, Hochrein H. Der Einsatz von Thrombolytika in der Reanimation als Ultima ratio zur Überwindung des akuten Herztodes. Intensiv- und Notfallbehandlung. 1991;16:135–7.

    Google Scholar 

  160. Janata K, Holzer M, Kürkciyan I, Losert H, Riedmüller E, Pikula B, et al. Major bleeding complications in cardiopulmonary resuscitation: the place of thrombolytic therapy in cardiac arrest due to massive pulmonary embolism. Resuscitation. 2003;57:49–55.

    Article  PubMed  Google Scholar 

  161. Kürkciyan I, Meron G, Sterz F, Janata K, Domanovits H, Holzer M, et al. Pulmonary embolism as a cause of cardiac arrest: presentation and outcome. Arch Intern Med. 2000;160:1529–35.

    Article  PubMed  Google Scholar 

  162. Ruiz-Bailén M, Aguayo-de-Hoyos E, Serrano-Córcoles MC, Díaz-Castellanos MÁ, Fierro-Rosón LJ, Ramos-Cuadra JÁ, et al. Thrombolysis with recombinant tissue plasminogen activator during cardiopulmonary resuscitation in fulminant pulmonary embolism. A case series. Resuscitation. 2001;51:97–101.

    Article  PubMed  Google Scholar 

  163. Abu-Laban RB, Christenson JM, Innes GD, van Beek CA, Wanger KP, McKnight RD, et al. Tissue plasminogen activator in cardiac arrest with pulseless electrical activity. N Engl J Med. 2002;346:1522–8.

    Article  CAS  PubMed  Google Scholar 

  164. Herweling A, Karmrodt J, Stepniak A, Fein A, Baumgardner JE, Eberle B, et al. A novel technique to follow fast PaO2 variations during experimental CPR. Resuscitation. 2005;65:71–8.

    Article  PubMed  Google Scholar 

  165. Tucker KJ, Idris AH, Wenzel V, Orban DJ. Changes in arterial and mixed venous blood gases during untreated ventricular fibrillation and cardiopulmonary resuscitation. Resuscitation. 1994;28:137–41.

    Article  CAS  PubMed  Google Scholar 

  166. Glaeser PW, Hellmich TR, Szewczuga D, Losek JD, Smith DS. Five-year experience in prehospital intraosseous infusions in children and adults. Ann Emerg Med. 1993;22:1119–24.

    Article  CAS  PubMed  Google Scholar 

  167. Orlowski JP, Porembka DT, Gallagher JM, Lockrem JD, VanLente F. Comparison study of intraosseous, central intravenous, and peripheral intravenous infusions of emergency drugs. Am J Dis Child. 1990;144:112–7.

    CAS  PubMed  Google Scholar 

  168. Befeler B. Mechanical stimulation of the heart: its therapeutic value in tachyarrhythmias. Chest. 1978;73:832–8.

    Article  CAS  PubMed  Google Scholar 

  169. Caldwell G, Millar G, Quinn E, Vincent R, Chamberlain DA. Simple mechanical methods for cardioversion: defence of the precordial thump and cough version. Br Med J. 1985;291:627–30.

    Article  CAS  Google Scholar 

  170. Morgera T, Baldi N, Chersevani D, Medugno G, Camerini F. Chest thump and ventricular tachycardia. Pacing Clin Electrophysiol. 1979;2:69–75.

    Article  CAS  PubMed  Google Scholar 

  171. Rea TD, Shah S, Kudenchuk PJ, Copass MK, Cobb LA. Automated external defibrillators: to what extent does the algorithm delay CPR? Ann Emerg Med. 2005;46:132–41.

    Article  PubMed  Google Scholar 

  172. Hess EP, White RD. Ventricular fibrillation is not provoked by chest compression during post-shock organized rhythms in out-of-hospital cardiac arrest. Resuscitation. 2005;66:7–11.

    Article  PubMed  Google Scholar 

  173. Buunk G, van der Hoeven JG, Meinders AE. Cerebrovascular reactivity in comatose patients resuscitated from a cardiac arrest. Stroke. 1997;28:1569–73.

    Article  CAS  PubMed  Google Scholar 

  174. Langhelle A, Tyvold SS, Lexow K, Hapnes SA, Sunde K, Steen PA. In-hospital factors associated with improved outcome after out-of-hospital cardiac arrest. A comparison between four regions in Norway. Resuscitation. 2003;56:247–63.

    Article  CAS  PubMed  Google Scholar 

  175. Müllner M, Sterz F, Binder M, Schreiber W, Deimel A, Laggner AN. Blood glucose concentration after cardiopulmonary resuscitation influences functional neurological recovery in human cardiac arrest survivors. J Cereb Blood Flow Metab. 1997;17:430–6.

    Article  PubMed  Google Scholar 

  176. Sundgreen C, Larsen FS, Herzog TM, Knudsen GM, Boesgaard S, Aldershvile J. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke. 2001;32:128–32.

    Article  CAS  PubMed  Google Scholar 

  177. Sterz F, Leonov Y, Safar P, Radovsky A, Tisherman SA, Oku K. Hypertension with or without hemodilution after cardiac arrest in dogs. Stroke. 1990;21:1178–84.

    Article  CAS  PubMed  Google Scholar 

  178. Gaieski DF, Band RA, Abella BS, Neumar RW, Fuchs BD, Kolansky DM, et al. Early goal-directed hemodynamic optimization combined with therapeutic hypothermia in comatose survivors of out-of-hospital cardiac arrest. Resuscitation. 2009;80:418–24.

    Article  PubMed  Google Scholar 

  179. Capes SE, Hunt D, Malmberg K, Pathak P, Gerstein HC. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke. 2001;32:2426–32.

    Article  CAS  PubMed  Google Scholar 

  180. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–67.

    Article  PubMed  Google Scholar 

  181. Losert H, Sterz F, Roine RO, Holzer M, Martens P, Cerchiari E, et al. Strict normoglycaemic blood glucose levels in the therapeutic management of patients within 12h after cardiac arrest might not be necessary. Resuscitation. 2008;76:214–20.

    Article  PubMed  Google Scholar 

  182. Oksanen T, Skrifvars MB, Varpula T, Kuitunen A, Pettilä V, Nurmi J, et al. Strict versus moderate glucose control after resuscitation from ventricular fibrillation. Intensive Care Med. 2007;33:2093–100.

    Article  CAS  PubMed  Google Scholar 

  183. Roberts BW, Kilgannon JH, Chansky ME, Mittal N, Wooden J, Trzeciak S. Association between postresuscitation partial pressure of arterial carbon dioxide and neurological outcome in patients with post-cardiac arrest syndrome. Circulation. 2013;127:2107–13.

    Article  CAS  PubMed  Google Scholar 

  184. Schneider AG, Eastwood GM, Bellomo R, Bailey M, Lipcsey M, Pilcher D, et al. Arterial carbon dioxide tension and outcome in patients admitted to the intensive care unit after cardiac arrest. Resuscitation. 2013;84:927–34.

    Article  PubMed  Google Scholar 

  185. Balan IS, Fiskum G, Hazelton J, Cotto-Cumba C, Rosenthal RE. Oximetry-guided reoxygenation improves neurological outcome after experimental cardiac arrest. Stroke. 2006;37:3008–13.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Richards EM, Fiskum G, Rosenthal RE, Hopkins I, McKenna MC. Hyperoxic reperfusion after global ischemia decreases hippocampal energy metabolism. Stroke. 2007;38:1578–84.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Vereczki V, Martin E, Rosenthal RE, Hof PR, Hoffman GE, Fiskum G. Normoxic resuscitation after cardiac arrest protects against hippocampal oxidative stress, metabolic dysfunction, and neuronal death. J Cereb Blood Flow Metab. 2006;26:821–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kilgannon JH, Jones AE, Shapiro NI, Angelos MG, Milcarek B, Hunter K, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303:2165–71.

    Article  CAS  PubMed  Google Scholar 

  189. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–63.

    Article  PubMed  Google Scholar 

  190. Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549–56.

    Article  Google Scholar 

  191. Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med. 2013;369:2197–206.

    Article  CAS  PubMed  Google Scholar 

  192. Bro-Jeppesen J, Hassager C, Wanscher M, Søholm H, Thomsen JH, Lippert FK, et al. Post-hypothermia fever is associated with increased mortality after out-of-hospital cardiac arrest. Resuscitation. 2013;84:1734–40.

    Article  PubMed  Google Scholar 

  193. International Liaison Committee on Resuscitation [Internet]. Targeted temperature management following cardiac arrest. An update. 17 Dec 2013 [cited 8 Mar 2014]. Available from: http://www.ilcor.org/data/TTM-ILCOR-update-Dec-2013.pdf.

  194. Holzer M, Müllner M, Sterz F, Robak O, Kliegel A, Losert H, et al. Efficacy and safety of endovascular cooling after cardiac arrest: cohort study and Bayesian approach. Stroke. 2006;37:1792–7.

    Article  PubMed  Google Scholar 

  195. Steinberg GK, Ogilvy CS, Shuer LM, Connolly Jr ES, Solomon RA, Lam A, et al. Comparison of endovascular and surface cooling during unruptured cerebral aneurysm repair. Neurosurgery. 2004;55:307–14.

    Article  PubMed  Google Scholar 

  196. Bernard S, Buist M, Monteiro O, Smith K. Induced hypothermia using large volume, ice-cold intravenous fluid in comatose survivors of out-of-hospital cardiac arrest: a preliminary report. Resuscitation. 2003;56:9–13.

    Article  PubMed  Google Scholar 

  197. Virkkunen I, Yli-Hankala A, Silfvast T. Induction of therapeutic hypothermia after cardiac arrest in prehospital patients using ice-cold Ringer’s solution: a pilot study. Resuscitation. 2004;62:299–302.

    Article  PubMed  Google Scholar 

  198. Kim F, Nichol G, Maynard C, Hallstrom A, Kudenchuk PJ, Rea T, et al. Effect of prehospital induction of mild hypothermia on survival and neurological status among adults with cardiac arrest: a randomized clinical trial. JAMA. 2014;311:45–52.

    Article  CAS  PubMed  Google Scholar 

  199. Sessler DI. Mild perioperative hypothermia. N Engl J Med. 1997;336:1730–7.

    Article  CAS  PubMed  Google Scholar 

  200. Arrich J, Holzer M, Havel C, Müllner M, Herkner H. Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. Cochrane Database Syst Rev. 2012;9:CD004128.

    PubMed  Google Scholar 

  201. Blondin NA, Greer DM. Neurologic prognosis in cardiac arrest patients treated with therapeutic hypothermia. Neurologist. 2011;17:241–8.

    Article  PubMed  Google Scholar 

  202. Kamps MJA, Horn J, Oddo M, Fugate JE, Storm C, Cronberg T, et al. Prognostication of neurologic outcome in cardiac arrest patients after mild therapeutic hypothermia: a meta-analysis of the current literature. Intensive Care Med. 2013;39:1671–82.

    Article  CAS  PubMed  Google Scholar 

  203. Sandroni C, Cavallaro F, Callaway CW, D’Arrigo S, Sanna T, Kuiper MA, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: a systematic review and meta-analysis. Part 2: Patients treated with therapeutic hypothermia. Resuscitation. 2013;84:1324–38.

    Article  PubMed  Google Scholar 

  204. Sandroni C, Cavallaro F, Callaway CW, Sanna T, D’Arrigo S, Kuiper M, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: a systematic review and meta-analysis. Part 1: Patients not treated with therapeutic hypothermia. Resuscitation. 2013;84:1310–23.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schneider MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schneider, A., Popp, E., Böttiger, B.W. (2016). Cardiopulmonary Resuscitation. In: O'Donnell, J., Nácul, F. (eds) Surgical Intensive Care Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-19668-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19668-8_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19667-1

  • Online ISBN: 978-3-319-19668-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics