Skip to main content

Optimisation of the High-Risk Surgical Patient

  • Chapter
Surgical Intensive Care Medicine

Abstract

Perioperative haemodynamic optimisation is one of the few interventions in intensive care medicine that actually reduce postoperative mortality and complication rate. This process uses advanced haemodynamic monitoring in order to guide therapies to reach predefined goals. This review aims to summarise recent evidence on perioperative goal-directed therapy (GDT), pointing out some aspects that may merit further investigation.

In summary, GDT must be implemented as early as possible; fluid therapy should be performed in accordance with the response of the preload reserve, goals should be individualised, and adequacy of the intervention should be assessed. Noninvasive or minimally invasive monitoring should be preferred over invasive techniques in order to avoid undesired complications.

New drugs and technologies, particularly those exploring information from the venous side of the circulation, may improve in the future the effectiveness and facilitate the implementation of perioperative optimisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kern JW, Shoemaker WC. Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med. 2002;30:1686–92.

    Article  PubMed  Google Scholar 

  2. Poeze M, Greve JW, Ramsay G. Meta-analysis of hemodynamic optimization: relationship to methodological quality. Crit Care. 2005;9:R771–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Giglio MT, Marucci M, Testini M, Brienza N. Goal-directed haemodynamic therapy and gastrointestinal complications in major surgery: a meta-analysis of randomized controlled trials. Br J Anaesth. 2009;103:637–46.

    Article  CAS  PubMed  Google Scholar 

  4. Brienza N, Giglio MT, Marucci M, Fiore T. Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med. 2009;37:2079–90.

    Article  PubMed  Google Scholar 

  5. Rahbari NN, Zimmermann JB, Schmidt T, Koch M, Weigand MA, Weitz J. Meta-analysis of standard, restrictive and supplemental fluid administration in colorectal surgery. Br J Surg. 2009;96:331–41.

    Article  CAS  PubMed  Google Scholar 

  6. Dalfino L, Giglio MT, Puntillo F, Marucci M, Brienza N. Haemodynamic goal-directed therapy and postoperative infections: earlier is better. A systematic review and meta-analysis. Crit Care. 2011;15:R154.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gurgel ST, do Nascimento Jr P. Maintaining tissue perfusion in high-risk surgical patients: a systematic review of randomized clinical trials. Anesth Analg. 2011;112:1384–91.

    Article  PubMed  Google Scholar 

  8. Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112:1392–402.

    Article  PubMed  Google Scholar 

  9. Corcoran T, Rhodes JE, Clarke S, Myles PS, Ho KM. Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anesth Analg. 2012;114:640–51.

    Article  PubMed  Google Scholar 

  10. Aya HD, Cecconi M, Hamilton M, Rhodes A. Goal-directed therapy in cardiac surgery: a systematic review and meta-analysis. Br J Anaesth. 2013;110:510–7.

    Article  CAS  PubMed  Google Scholar 

  11. Arulkumaran N, Corredor C, Hamilton MA, Ball J, Grounds RM, Rhodes A, et al. Cardiac complications associated with goal-directed therapy in high-risk surgical patients: a meta-analysis. Br J Anaesth. 2014;112:648–59.

    Article  CAS  PubMed  Google Scholar 

  12. Cecconi M, Corredor C, Arulkumaran N, Abuella G, Ball J, Grounds RM, Hamilton M, Rhodes A. Clinical review: goal-directed therapy-what is the evidence in surgical patients? The effect on different risk groups. Crit Care. 2013;17:209.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Grounds R. Reducing mortality and complications in patients undergoing surgery at high risk for post operative complications and death. In: Adams AP, Cashman JN, Grounds RM, editors. Recent advances in anaesthesia and intensive care, vol. 22. 22nd ed. Cambridge: Cambridge University Press; 2003. p. 117–33.

    Google Scholar 

  14. Pearse RM, Moreno RP, Bauer P, Pelosi P, Metnitz P, Spies C, et al. Mortality after surgery in Europe: a 7 day cohort study. Lancet. 2012;380:1059–65.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Noordzij PG, Poldermans D, Schouten O, Bax JJ, Schreiner FA, Boersma E. Postoperative mortality in The Netherlands: a population-based analysis of surgery-specific risk in adults. Anesthesiology. 2010;112:1105–15.

    Article  PubMed  Google Scholar 

  16. Yu PC, Calderaro D, Gualandro DM, Marques AC, Pastana AF, Prandini JC, et al. Non-cardiac surgery in developing countries: epidemiological aspects and economical opportunities-the case of Brazil. PLoS One. 2010;5:e10607.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Glance LG, Lustik SJ, Hannan EL, Osler TM, Mukamel DB, Qian F, et al. The Surgical Mortality Probability Model: derivation and validation of a simple risk prediction rule for noncardiac surgery. Ann Surg. 2012;255:696–702.

    Article  PubMed  Google Scholar 

  18. Pearse RM, Harrison DA, James P, Watson D, Hinds C, Rhodes A, et al. Identification and characterisation of the high-risk surgical population in the United Kingdom. Crit Care. 2006;10:R81.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Goldman L, Caldera DL, Nussbaum SR, Southwick FS, Krogstad D, Murray B, et al. Multifactorial index of cardiac risk in noncardiac surgical procedures. N Engl J Med. 1977;297:845–50.

    Article  CAS  PubMed  Google Scholar 

  20. Copeland GP, Jones D, Walters M. POSSUM: a scoring system for surgical audit. Br J Surg. 1991;78:355–60.

    Article  CAS  PubMed  Google Scholar 

  21. Older P, Smith R, Courtney P, Hone R. Preoperative evaluation of cardiac failure and ischemia in elderly patients by cardiopulmonary exercise testing. Chest. 1993;104:701–4.

    Article  CAS  PubMed  Google Scholar 

  22. Older P, Hall A. Clinical review: how to identify high-risk surgical patients. Crit Care. 2004;8:369–72.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Alhashemi JA, Cecconi M, Hofer CK. Cardiac output monitoring: an integrative perspective. Crit Care. 2011;15(2):214.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Collaborative Study Group on Perioperative ScvO2 Monitoring. Multicentre study on peri- and postoperative central venous oxygen saturation in high-risk surgical patients. Crit Care. 2006;10:R158.

    Article  PubMed Central  Google Scholar 

  25. Donati A, Loggi S, Preiser JC, Orsetti G, Munch C, Gabbanelli V, et al. Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest. 2007;132:1817–24.

    Article  PubMed  Google Scholar 

  26. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED. Changes in central venous saturation after major surgery, and association with outcome. Crit Care. 2005;9:R694–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kapoor PM, Kakani M, Chowdhury U, Choudhury M, Lakshmy, Kiran U. Early goal-directed therapy in moderate to high-risk cardiac surgery patients. Ann Card Anaesth. 2008;11:27–34.

    Article  PubMed  Google Scholar 

  28. Polonen P, Ruokonen E, Hippelainen M, Poyhonen M, Takala J. A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg. 2000;90:1052–9.

    Article  CAS  PubMed  Google Scholar 

  29. Shoemaker WC. Cardiorespiratory patterns of surviving and nonsurviving postoperative patients. Surg Gynecol Obstet. 1972;134:810–4.

    CAS  PubMed  Google Scholar 

  30. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest. 1988;94:1176–86.

    Article  CAS  PubMed  Google Scholar 

  31. Boyd O, Grounds RM, Bennett ED. A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA. 1993;270:2699–707.

    Article  CAS  PubMed  Google Scholar 

  32. Wilson J, Woods I, Fawcett J, Whall R, Dibb W, Morris C, et al. Reducing the risk of major elective surgery: randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ. 1999;318:1099–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sandham JD, Hull RD, Brant RF, Knox L, Pineo GF, Doig CJ, et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med. 2003;348:5–14.

    Article  PubMed  Google Scholar 

  34. Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370:1583–93.

    Article  CAS  PubMed  Google Scholar 

  35. Starling EH, Visscher MB. The regulation of the energy output of the heart. J Physiol. 1927;62:243–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mythen MG, Webb AR. Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg. 1995;130:423–9.

    Article  CAS  PubMed  Google Scholar 

  37. Cecconi M, Parsons AK, Rhodes A. What is a fluid challenge? Curr Opin Crit Care. 2011;17:290–5.

    Article  PubMed  Google Scholar 

  38. Guyton AC, Lindsey AW, Kaufmann BN. Effect of mean circulatory filling pressure and other peripheral circulatory factors on cardiac output. Am J Physiol. 1955;180:463–8.

    CAS  PubMed  Google Scholar 

  39. Cecconi M, Aya HD, Geisen M, Ebm C, Fletcher N, Grounds RM, et al. Changes in the mean systemic filling pressure during a fluid challenge in postsurgical intensive care patients. Intensive Care Med. 2013;39:1299–305.

    Article  PubMed  Google Scholar 

  40. Magder S, De Varennes B. Clinical death and the measurement of stressed vascular volume. Crit Care Med. 1998;26:1061–4.

    Article  CAS  PubMed  Google Scholar 

  41. Pinsky MR. Determinants of pulmonary arterial flow variation during respiration. J Appl Physiol Respir Environ Exerc Physiol. 1984;56:1237–45.

    CAS  PubMed  Google Scholar 

  42. Lopes MR, Oliveira MA, Pereira VO, Lemos IP, Auler Jr JO, Michard F. Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care. 2007;11:R100.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134–8.

    Article  CAS  PubMed  Google Scholar 

  44. Pinsky MR, Payen D. Functional hemodynamic monitoring. Crit Care. 2005;9:566–72.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med. 1995;333:1025–32.

    Article  CAS  PubMed  Google Scholar 

  46. Tuchschmidt J, Fried J, Astiz M, Rackow E. Elevation of cardiac output and oxygen delivery improves outcome in septic shock. Chest. 1992;102:216–20.

    Article  CAS  PubMed  Google Scholar 

  47. Marik PE. Obituary: pulmonary artery catheter 1970 to 2013. Ann Intensive Care. 2013;3:38.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Connors Jr AF, Speroff T, Dawson NV, Thomas C, Harrell Jr FE, Wagner D, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA. 1996;276:889–97.

    Article  PubMed  Google Scholar 

  49. Zion MM, Balkin J, Rosenmann D, Goldbourt U, Reicher-Reiss H, Kaplinsky E, et al. Use of pulmonary artery catheters in patients with acute myocardial infarction. Analysis of experience in 5,841 patients in the SPRINT Registry. SPRINT Study Group. Chest. 1990;98:1331–5.

    Article  CAS  PubMed  Google Scholar 

  50. Williams G, Grounds M, Rhodes A. Pulmonary artery catheter. Curr Opin Crit Care. 2002;8:251–6.

    Article  PubMed  Google Scholar 

  51. Singer M, Bennett ED. Noninvasive optimization of left ventricular filling using esophageal Doppler. Crit Care Med. 1991;19:1132–7.

    Article  CAS  PubMed  Google Scholar 

  52. Abbas SM, Hill AG. Systematic review of the literature for the use of oesophageal Doppler monitor for fluid replacement in major abdominal surgery. Anaesthesia. 2008;63:44–51.

    Article  CAS  PubMed  Google Scholar 

  53. (NICE) NIfHaCE. CardioQ-ODM (oesophageal Doppler monitor) (MTG3). http://guidance.nice.org.uk/MTG3 (2011). Accessed January 2014.

  54. Linton RA, Band DM, Haire KM. A new method of measuring cardiac output in man using lithium dilution. Br J Anaesth. 1993;71:262–6.

    Article  CAS  PubMed  Google Scholar 

  55. Cecconi M, Fawcett J, Grounds RM, Rhodes A. A prospective study to evaluate the accuracy of pulse power analysis to monitor cardiac output in critically ill patients. BMC Anesthesiol. 2008;8:3.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cecconi M, Dawson D, Grounds RM, Rhodes A. Lithium dilution cardiac output measurement in the critically ill patient: determination of precision of the technique. Intensive Care Med. 2009;35:498–504.

    Article  CAS  PubMed  Google Scholar 

  57. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial. Crit Care. 2005;9:R687–93.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Stewart GN. Researches on the circulation time and on the influences which affect it. J Physiol. 1897;22:159–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goepfert MS, Reuter DA, Akyol D, Lamm P, Kilger E, Goetz AE. Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med. 2007;33:96–103.

    Article  PubMed  Google Scholar 

  60. Mayer J, Boldt J, Mengistu AM, Rohm KD, Suttner S. Goal-directed intraoperative therapy based on autocalibrated arterial pressure waveform analysis reduces hospital stay in high-risk surgical patients: a randomized, controlled trial. Crit Care. 2010;14:R18.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cecconi M, Fasano N, Langiano N, Divella M, Costa MG, Rhodes A, et al. Goal-directed haemodynamic therapy during elective total hip arthroplasty under regional anaesthesia. Crit Care. 2011;15:R132.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pearse RM, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett D. The incidence of myocardial injury following post-operative Goal Directed Therapy. BMC Cardiovasc Disord. 2007;7:10.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Katz AM. Potential deleterious effects of inotropic agents in the therapy of chronic heart failure. Circulation. 1986;73:III184–90.

    CAS  PubMed  Google Scholar 

  64. Abhayaratna WP, Marwick TH, Smith WT, Becker NG. Characteristics of left ventricular diastolic dysfunction in the community: an echocardiographic survey. Heart. 2006;92:1259–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Redfield MM, Jacobsen SJ, Burnett Jr JC, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289:194–202.

    Article  PubMed  Google Scholar 

  66. Phillip B, Pastor D, Bellows W, Leung JM. The prevalence of preoperative diastolic filling abnormalities in geriatric surgical patients. Anesth Analg. 2003;97:1214–21.

    Article  PubMed  Google Scholar 

  67. Katsaragakis S, Kapralou A, Drimousis P, Markogiannakis H, Larentzakis A, Kofinas G, et al. Prophylactic preoperative levosimendan administration in heart failure patients undergoing elective non-cardiac surgery: a preliminary report. Hellenic J Cardiol. 2009;50:185–92.

    PubMed  Google Scholar 

  68. Lahtinen P, Pitkanen O, Polonen P, Turpeinen A, Kiviniemi V, Uusaro A. Levosimendan reduces heart failure after cardiac surgery: a prospective, randomized, placebo-controlled trial. Crit Care Med. 2011;39:2263–70.

    Article  PubMed  Google Scholar 

  69. Harrison RW, Hasselblad V, Mehta RH, Levin R, Harrington RA, Alexander JH. Effect of levosimendan on survival and adverse events after cardiac surgery: a meta-analysis. J Cardiothorac Vasc Anesth. 2013;27:1224–32.

    Article  CAS  PubMed  Google Scholar 

  70. Boyd O, Hayes M. The oxygen trail: the goal. Br Med Bull. 1999;55:125–39.

    Article  CAS  PubMed  Google Scholar 

  71. Sinclair S, James S, Singer M. Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ. 1997;315:909–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gan TJ, Soppitt A, Maroof M, el-Moalem H, Robertson KM, Moretti E, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97:820–6.

    Article  PubMed  Google Scholar 

  73. Wakeling HG, McFall MR, Jenkins CS, Woods WG, Miles WF, Barclay GR, et al. Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth. 2005;95:634–42.

    Article  CAS  PubMed  Google Scholar 

  74. Noblett SE, Snowden CP, Shenton BK, Horgan AF. Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection. Br J Surg. 2006;93:1069–76.

    Article  CAS  PubMed  Google Scholar 

  75. McArdle GT, Price G, Lewis A, Hood JM, McKinley A, Blair PH, et al. Positive fluid balance is associated with complications after elective open infrarenal abdominal aortic aneurysm repair. Eur J Vasc Endovasc Surg. 2007;34:522–7.

    Article  CAS  PubMed  Google Scholar 

  76. Evans RG, Naidu B. Does a conservative fluid management strategy in the perioperative management of lung resection patients reduce the risk of acute lung injury? Interact Cardiovasc Thorac Surg. 2012;15:498–504.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Singer M. Catecholamine treatment for shock—equally good or bad? Lancet. 2007;370:636–7.

    Article  PubMed  Google Scholar 

  78. Lyte M, Freestone PP, Neal CP, Olson BA, Haigh RD, Bayston R, et al. Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet. 2003;361:130–5.

    Article  CAS  PubMed  Google Scholar 

  79. Oberbeck R. Catecholamines: physiological immunomodulators during health and illness. Curr Med Chem. 2006;13:1979–89.

    Article  CAS  PubMed  Google Scholar 

  80. Mjos OD, Kjekshus JK, Lekven J. Importance of free fatty acids as a determinant of myocardial oxygen consumption and myocardial ischemic injury during norepinephrine infusion in dogs. J Clin Invest. 1974;53:1290–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Rhodes MD, FRCA, FRCP, FFICM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aya, H.D., Rhodes, A. (2016). Optimisation of the High-Risk Surgical Patient. In: O'Donnell, J., Nácul, F. (eds) Surgical Intensive Care Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-19668-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19668-8_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19667-1

  • Online ISBN: 978-3-319-19668-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics