Skip to main content

The Directed Dominating Set Problem: Generalized Leaf Removal and Belief Propagation

  • Conference paper
  • First Online:
Frontiers in Algorithmics (FAW 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9130))

Included in the following conference series:

Abstract

A minimum dominating set for a digraph (directed graph) is a smallest set of vertices such that each vertex either belongs to this set or has at least one parent vertex in this set. We solve this hard combinatorial optimization problem approximately by a local algorithm of generalized leaf removal and by a message-passing algorithm of belief propagation. These algorithms can construct near-optimal dominating sets or even exact minimum dominating sets for random digraphs and also for real-world digraph instances. We further develop a core percolation theory and a replica-symmetric spin glass theory for this problem. Our algorithmic and theoretical results may facilitate applications of dominating sets to various network problems involving directed interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fu, Y.: Dominating set and converse dominating set of a directed graph. Amer. Math. Monthly 75, 861–863 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  2. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  3. Garey, M., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  4. Mézard, M., Tarzia, M.: Statistical mechanics of the hitting set problem. Phys. Rev. E 76, 041124 (2007)

    Article  MathSciNet  Google Scholar 

  5. Gutin, G., Jones, M., Yeo, A.: Kernels for below-upper-bound parameterizations of the hitting set and directed dominating set problems. Theor. Comput. Sci. 412, 5744–5751 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Takaguchi, T., Hasegawa, T., Yoshida, Y.: Suppressing epidemics on networks by exploiting observer nodes. Phys. Rev. E 90, 012807 (2014)

    Article  Google Scholar 

  7. Wuchty, S.: Controllability in protein interaction networks. Proc. Natl. Acad. Sci. USA 111, 7156–7160 (2014)

    Article  Google Scholar 

  8. Wang, H., Zheng, H., Browne, F., Wang, C.: Minimum dominating sets in cell cycle specific protein interaction networks. In: Proceedings of International Conference on Bioinformatics and Biomedicine (BIBM 2014), pp. 25–30. IEEE (2014)

    Google Scholar 

  9. Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Observability of complex systems. Proc. Natl. Acad. Sci. USA 110, 2460–2465 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Yang, Y., Wang, J., Motter, A.E.: Network observability transitions. Phys. Rev. Lett. 109, 258701 (2012)

    Article  Google Scholar 

  11. Pang, C., Zhang, R., Zhang, Q., Wang, J.: Dominating sets in directed graphs. Infor. Sci. 180, 3647–3652 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Molnár Jr., F., Sreenivasan, S., Szymanski, B.K., Korniss, K.: Minimum dominating sets in scale-free network ensembles. Sci. Rep. 3, 1736 (2013)

    Article  Google Scholar 

  13. Zhao, J.H., Habibulla, Y., Zhou, H.J.: Statistical mechanics of the minimum dominating set problem. J. Stat, Phys. (2015). doi:10.1007/s10955-015-1220-2

  14. Bauer, M., Golinelli, O.: Core percolation in random graphs: a critical phenomena analysis. Eur. Phys. J. B 24, 339–352 (2001)

    Article  Google Scholar 

  15. Liu, Y.Y., Csóka, E., Zhou, H.J., Pósfai, M.: Core percolation on complex networks. Phys. Rev. Lett. 109, 205703 (2012)

    Article  Google Scholar 

  16. Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1361–1370. ACM, New York (2010)

    Google Scholar 

  18. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: Proceedings of the 19th International Conference on World Wide Web, pp. 641–650. ACM, New York (2010)

    Google Scholar 

  19. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Disc. Data 1, 2 (2007)

    Google Scholar 

  20. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 177–187. ACM, New York (2005)

    Google Scholar 

  21. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6, 29–123 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ripeanu, M., Foster, I., Iamnitchi, A.: Mapping the gnutella network: properties of large-scale peer-to-peer systems and implications for system design. IEEE Internet Comput. 6, 50–57 (2002)

    Google Scholar 

  23. Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford University Press, New York (2009)

    Book  MATH  Google Scholar 

  24. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47, 498–519 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Xiao, J.Q., Zhou, H.J.: Partition function loop series for a general graphical model: free-energy corrections and message-passing equations. J. Phys. A: Math. Theor. 44, 425001 (2011)

    Article  MathSciNet  Google Scholar 

  26. Zhou, H.J., Wang, C.: Region graph partition function expansion and approximate free energy landscapes: theory and some numerical results. J. Stat. Phys. 148, 513–547 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mézard, M., Parisi, G.: The bethe lattice spin glass revisited. Eur. Phys. J. B 20, 217–233 (2001)

    Article  Google Scholar 

  28. Zhao, J.H., Zhou, H.J.: Statistical physics of hard combinatorial optimization: vertex cover problem. Chin. Phys. B 23, 078901 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This research is partially supported by the National Basic Research Program of China (grant number 2013CB932804) and by the National Natural Science Foundations of China (grant numbers 11121403 and 11225526). HJZ conceived research, JHZ and YH performed research, HJZ and JHZ wrote the paper. Correspondence should be addressed to HJZ (zhouhj@itp.ac.cn) or to JHZ (zhaojh@itp.ac.cn).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Jun Zhou .

Editor information

Editors and Affiliations

Appendix: Mean Field Equations for the GLR Process

Appendix: Mean Field Equations for the GLR Process

The mean field theory for the directed GLR process is a simple extension of the same theory presented in [13] for undirected graphs. Therefore here we only list the main equations of this theory but do not give the derivation details. We denote by \(P(k_{+}, k_{-})\) the probability that a randomly chosen vertex of a digraph has in-degree \(k_{+}\) and out-degree \(k_{-}\). Similarly, the in- and out-degree joint probabilities of the predecessor vertex \(i\) and successor vertex \(j\) of a randomly chosen arc \((i, j)\) of the digraph are denoted as \(Q_{+}(k_{+}, k_{-})\) and \(Q_{-}(k_{+}, k_{-})\), respectively. We assume that there is no structural correlation in the digraph, therefore

$$\begin{aligned} Q_{+}(k_{+}, k_{-}) = \frac{ k_{-} P(k_{+}, k_{-})}{\alpha }\,, \quad Q_{-}(k_{+}, k_{-}) = \frac{ k_{+} P(k_{+}, k_{-})}{\alpha }\,, \end{aligned}$$
(5)

where \(\alpha \equiv \sum _{k_{+}, \; k_{-}} k_{+} P(k_{+}, k_{-}) = \sum _{k_{+}, \; k_{-}} k_{-} P(k_{+}, k_{-})\) is the arc density.

Consider a randomly chosen arc \((i, j)\) from vertex \(i\) to vertex \(j\), suppose vertex \(i\) is always unobserved, then we denote by \(\alpha _t\) the probability that vertex \(j\) becomes an unobserved leaf vertex (i.e., it has no unobserved successor and has only a single predecessor) at the \(t\)-th GLR evolution step, and by \(\gamma _{[0,t]}\) the probability that \(j\) has been observed at the end of the \(t\)-th GLR step. Similarly, suppose the successor vertex \(j\) of a randomly chosen arc \((i, j)\) is always unobserved, we denote by \(\beta _{[0,t]}\) the probability that the predecessor vertex \(i\) has been occupied at the end of the \(t\)-th GLR step, and by \(\eta _t\) the probability that at the end of the \(t\)-th GLR step vertex \(i\) becomes observed but unoccupied and having no other unoccupied successors except vertex \(j\). These four set of probabilities are related by the following set of iterative equations:

$$\begin{aligned} \alpha _t&= \delta _{t}^{0} Q_{-}(1, 0) + \sum \limits _{k_{+},\; k_{-}} Q_{-}(k_{+}, k_{-}) \biggl [ \delta _{t}^{1} \Bigl [ (\eta _{0})^{k_{+}-1} (\gamma _{[0,0]})^{k_{-}} -\delta _{k_{+}}^{1} \delta _{k_{-}}^{0}\Bigr ] + \nonumber \\&\quad (1-\delta _{t}^{0} -\delta _{t}^{1}) \Bigl [ \bigl (\sum \limits _{t^\prime =0}^{t-1} \eta _{t^\prime }\bigr )^{k_{+}-1} (\gamma _{[0,t-1]})^{k_{-}} -\bigl (\sum \limits _{t^\prime =0}^{t-2} \eta _{t^\prime }\bigr )^{k_{+}-1} (\gamma _{[0,t-2]})^{k_{-}} \Bigr ] \biggr ]\,, \end{aligned}$$
(6a)
$$\begin{aligned} \beta _{[0,t]}&= 1 - \sum \limits _{k_{+}, \; k_{-}}Q_{+}(k_{+}, k_{-}) \biggl [ \delta _{t}^{0} (1- \delta _{k_{+}}^0) (1-\alpha _0)^{k_{-}-1} + \nonumber \\&\quad \quad \quad \quad \quad \quad \quad \quad (1-\delta _{t}^{0}) \Bigl [ 1- \bigl (\sum \limits _{t^\prime =0}^{t-1} \eta _{t^\prime } \bigr )^{k_{+}} \Bigr ] (1-\sum \limits _{t^\prime = 0}^{t} \alpha _{t^\prime } )^{k_{-}-1} \biggr ]\,, \end{aligned}$$
(6b)
$$\begin{aligned} \gamma _{[0,t]}&= 1 - \sum \limits _{k_{+}, \; k_{-}} Q_{-}(k_{+}, k_{-}) (1-\beta _{[0,t]})^{k_{+}-1} \bigl ( 1-\sum \limits _{t^\prime =0}^{t} \alpha _{t^\prime }\bigr )^{k_{-}} \; , \end{aligned}$$
(6c)
$$\begin{aligned} \eta _t&= \delta _{t}^0 \sum \limits _{k_{+}, \; k_{-}} Q_{+}(k_{+}, k_{-}) \bigl (1- (1-\beta _{[0,0]})^{k_{+}}\bigr ) (\gamma _{[0,0]})^{k_{-}-1} + \nonumber \\&\quad \quad (1-\delta _{t}^0) \sum \limits _{k_{+}, \; k_{-}} Q_{+}(k_{+}, k_{-}) \Bigl [ \bigl (1- (1-\beta _{[0,t]})^{k_{+}} \bigr ) (\gamma _{[0,t]})^{k_{-}-1} \nonumber \\&\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad -\bigl (1- (1-\beta _{[0,t-1]})^{k_{+}} \bigr ) (\gamma _{[0,t-1]})^{k_{-}-1}\Bigr ]\,. \end{aligned}$$
(6d)

Let us define \(\alpha _{cum}\equiv \sum _{t\ge 0}^{+\infty } \alpha _t\), \(\beta _{cum}\equiv \beta _{[0,\infty ]}\), \(\gamma _{cum}\equiv \gamma _{[0,\infty ]}\) and \(\eta _{cum}\equiv \sum _{t\ge 0}^{\infty } \eta _{t}\) as the cumulative probabilities over the whole GLR process. From Eq. (6) we can verify that these four cumulative probabilities satisfy the following self-consistent equations:

$$\begin{aligned} \alpha _{cum}&= \sum \limits _{k_{+},\; k_{-}} Q_{-}(k_{+},\; k_{-}) (\eta _{cum})^{k_{+}-1} (\gamma _{cum})^{k_{-}} \; , \end{aligned}$$
(7a)
$$\begin{aligned} \beta _{cum}&= 1- \sum \limits _{k_{+},\; k_{-}}Q_{+}(k_{+},\; k_{-}) \bigl [1-(\eta _{cum})^{k_{+}} \bigr ] (1-\alpha _{cum})^{k_{-}-1} \; , \end{aligned}$$
(7b)
$$\begin{aligned} \gamma _{cum}&= 1- \sum \limits _{k_{+},\; k_{-}} Q_{-}(k_{+},\; k_{-}) (1-\beta _{cum})^{k_{+}-1} (1-\alpha _{cum})^{k_{-}} \;, \end{aligned}$$
(7c)
$$\begin{aligned} \eta _{cum}&= \sum \limits _{k_{+},\; k_{-}}Q_{+}(k_{+},\; k_{-}) \bigl [1- (1-\beta _{cum})^{k_{+}}\bigr ] (\gamma _{cum})^{k_{-}-1} \; . \end{aligned}$$
(7d)

The fraction \(n_{core}\) of vertices that remain to be unobserved at the end of the GLR process is

$$\begin{aligned} n_{core}= & {} \sum \limits _{k_{+}, \; k_{-}} P(k_{+}, k_{-}) \bigl [ (1-\beta _{cum})^{k_{+}} - (\eta _{cum})^{k_{+}} \bigr ] (1-\alpha _{cum})^{k_{-}} \nonumber \\&- \sum \limits _{k_{+}, \; k_{-}} P(k_{+}, k_{-}) k_{+} (1-\beta _{cum}-\eta _{cum}) (\eta _{cum})^{k_{+}-1} (\gamma _{cum})^{k_{-}} \; . \end{aligned}$$
(8)

The fraction \(w\) of vertices that are occupied during the whole GLR process is evaluated through

$$\begin{aligned} w= & {} 1 - \sum \limits _{k_{+}, \; k_{-}} P(k_{+}, \; k_{-}) \bigl [1- (\eta _{cum})^{k_{+}} \bigr ] (1-\alpha _{cum})^{k_{-}} \nonumber \\&- P(1, 0) \eta _{0} -\sum \limits _{t\ge 1} \sum \limits _{k_{+}, \; k_{-}} P(k_{+},\; k_{-}) k_{+} \eta _t \bigl (\sum _{t^\prime =0}^{t-1} \eta _{t^\prime } \bigr )^{k_{+}-1} \bigl (\sum \limits _{t^\prime =0}^{t-1} \gamma _{t^\prime }\bigr )^{k_{-}} \nonumber \\&-\sum \limits _{t\ge 1} \sum \limits _{k_{+}, \; k_{-}} P(k_{+}, \; k_{-}) k_{-} \alpha _t \bigl ( \sum \limits _{t^\prime =0}^{t-1} \gamma _{t^\prime } \bigr )^{k_{-}-1} \Bigl [1-\bigl (1-\sum \limits _{t^\prime =0}^{t-1} \beta _{t^\prime } \bigr )^{k_{+}} \Bigr ] \; . \end{aligned}$$
(9)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Habibulla, Y., Zhao, JH., Zhou, HJ. (2015). The Directed Dominating Set Problem: Generalized Leaf Removal and Belief Propagation. In: Wang, J., Yap, C. (eds) Frontiers in Algorithmics. FAW 2015. Lecture Notes in Computer Science(), vol 9130. Springer, Cham. https://doi.org/10.1007/978-3-319-19647-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19647-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19646-6

  • Online ISBN: 978-3-319-19647-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics