Skip to main content

Synergies Between CogInfoCom and Other Fields

  • Chapter
Cognitive Infocommunications (CogInfoCom)

Abstract

In this chapter, several key points of synergy are discussed from the perspective of existing research fields relevant to the merging process between humans and ICT. It is important to emphasize that while all of these fields have their own motivations and unique set of methodologies, they also incorporate some aspect, or some future potential that makes them relevant to the use and support of cognitive capabilities in infocommunications. In this chapter, we aim to focus primarily on such aspects. However, partly due to the fact that the information concept underlying CogInfoCom—as discussed earlier in Sect. 2.3.3—focuses on functionally relevant by-products of interaction rather than exclusively on the transfer of explicit knowledge, it will not always be possible to draw a clear line between what is relevant and what is not. Nevertheless, those aspects that are already clearly relevant to CogInfoCom are presented in some detail. Modes of usage which focus on long-term co-evolution rather than “episodic” interactions are of particular interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These aspects are strongly relevant to socio-cognitive ICT, a field that was inspired by CogInfoCom as described in Sect. 5.3.

  2. 2.

    http://www.pnl.gov/coginformatics.

  3. 3.

    This means that rather than seeing IoT as a network of objects, it can regarded as humans and objects that matter to them.

  4. 4.

    Through the human aspect, other domains such as affective computing and body area networks—when used for infocommunication purposes—also become particularly relevant.

References

  • Adams R, Hannaford B (1999) Stable haptic interaction with virtual environments. IEEE Trans Robot Autom 15(3):465–474

    Article  Google Scholar 

  • Alpcan T, Bauckhage C, Kotsovinos E (2007) Towards 3D Internet: why, what, and how? In: International conference on cyberworlds, 2007 (CW’07), pp 95–99

    Google Scholar 

  • Ambady N, Rosenthal R (1992) Thin slices of expressive behavior as predictors of interpersonal consequences: a meta-analysis. Psychol Bull 111(2):256

    Article  Google Scholar 

  • Auvray M, Myin E (2009) Perception with compensatory devices: from sensory substitution to sensorimotor extension. Cognit Sci 33:1036–1058

    Article  Google Scholar 

  • Bach-y Rita P, Tyler M, Kaczmarek K (2003) Seeing with the brain. Int J Hum Comput Interact 15(2):285–295

    Article  Google Scholar 

  • Benford S, Bowers J, Fahlen LE, Greenhalgh C, Snowdon D (1997) Embodiments, avatars, clones and agents for multi-user, multi-sensory virtual worlds. Multimedia Systems 5(2):93–104

    Article  Google Scholar 

  • Biocca F, Kim J, Choi Y (2001) Visual touch in virtual environments: an exploratory study of presence, multimodal interfaces and cross-modal sensory illusions. Presence Teleoperators Virtual Environ 10(3):247–265

    Article  Google Scholar 

  • Biocca F, Inoue Y, Polinsky H, Lee A, Tang A (2002) Visual cues and virtual touch: role of visual stimuli and intersensory integration in cross-modal haptic illusions and the sense of presence. In: Gouveia F (ed) Proceedings of presence, Porto

    Google Scholar 

  • Card SK, Moran TP, Newell A (1986) The psychology of human-computer interaction. Lawrence Erlbaum Associates

    Google Scholar 

  • Cassell J, Bickmore T, Billinghurst M, Campbell L, Chang K, Vilhjalmsson H, Yan H (1999) Embodiment in conversational interfaces: REA. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 520–527

    Google Scholar 

  • Chen M, Gonzalez S, Vasilakos A, Cao H, Leung V (2011) Body area networks: a survey. Mobile Netw Appl 16(2):171–193

    Article  Google Scholar 

  • Danyadi Z, Foldesi P, Koczy L (2012) Fuzzy search space for correction of cognitive biases in constructing mathematical models. In: 3rd IEEE international conference on cognitive infocommunications, Kosice, pp 585–589

    Google Scholar 

  • Dobelle W (2000) Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J 46(1):3–9

    Article  Google Scholar 

  • Ekman P (2003) Darwin, deception, and facial expression. Ann N Y Acad Sci 1000(1):205–221

    Article  Google Scholar 

  • Ellis S (1991) Nature and origins of virtual environments: a bibliographical essay. Comput Syst Eng 2(4):321–347

    Article  Google Scholar 

  • Endsley M, Garland D (2000) Situation awareness: analysis and measurement. Routledge, New York

    Google Scholar 

  • Foldesi P, Botzheim J (2012) Computational method for corrective mechanism of cognitive decision-making biases. In: 2012 IEEE 3rd international conference on cognitive infocommunications (CogInfoCom), pp 211–215

    Google Scholar 

  • Fortuna C, Mohorcic M (2009) Trends in the development of communication networks: cognitive networks. Comput Netw 53(9):1354–1376

    Article  Google Scholar 

  • Fuchs S, Hale K, Axellson P (2007) Augmented cognition can increase human performance in the control room. In: 2007 IEEE 8th human factors and power plants and HPRCT 13th annual meeting, Monterey, pp 128–132

    Google Scholar 

  • Galambos P, Baranyi P (2011a) Vibrotactile force feedback for telemanipulation: concept and applications. In: 2011 2nd international conference on cognitive infocommunications (CogInfoCom). IEEE, Budapest, pp 1–6

    Google Scholar 

  • Garriott R (1985) Ultima IV: quest of the avatar. Origin Systems

    Google Scholar 

  • Gilovich T, Griffin D, Kahneman D (2002) Heuristics and biases: the psychology of intuitive judgement. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Greitzer FL, Griffith D (2006) A human-information interaction perspective on augmented cognition. In: Abstract submitted to augmented cognition international, CA[PNNL-SA-49657], San Francisco

    Google Scholar 

  • Griffith D, Greitzer FL (2007) Neo-symbiosis: the next stage in the evolution of human information interaction. Int J Cogn Inform Nat Intell 1(1):39–52

    Article  Google Scholar 

  • Gurkok H, Nijholt A (2012) Brain-computer interfaces for multimodal interaction: a survey and principles. Int J Hum Comput Interact 28(5):292–307

    Article  Google Scholar 

  • Hale KS, Fuchs S, Berka C (2008) Driving EEG cognitive assessment using eye fixations. In: 2nd international conference on applied human factors and ergonomics, Las Vegas

    Google Scholar 

  • Hanson MA, Powell HC Jr, Barth AT, Ringgenberg K, Calhoun BH, Aylor JH, Lach J (2009) Body area sensor networks: challenges and opportunities. Computer (1):58–65

    Article  Google Scholar 

  • Hecht D, Reiner M (2009) Sensory dominance in combinations of audio, visual and haptic stimuli. Exp Brain Res 193:307–314

    Article  Google Scholar 

  • Hochberg L, Donoghue J (2006) Sensors for brain-computer interfaces. IEEE Eng Med Biol Mag 25(5):32–38

    Article  Google Scholar 

  • Hurley S, Noe A (2003) Neural plasticity and consciousness. Biol Philos 18:131–168

    Article  Google Scholar 

  • Kahneman D (2011) Thinking, fast and slow. Farrar, Straus and Giroux

    Google Scholar 

  • Kapahnke P, Liedtke P, Nesbigall S, Warwas S, Klusch M (2010) An open platform for semantic-based 3D simulations in the 3D Internet. Lect Notes Comput Sci 6497:161–176

    Article  Google Scholar 

  • Kitagawa M, Dokko D, Okamura A, Yuh D (2005) Effect of sensory substitution on suture-manipulation forces for robotic surgical systems. J Thorac Cardiovasc Surg 129(1):151–158

    Article  Google Scholar 

  • Latre B, Braem B, Moerman I, Blondia C, Demeester P (2011) A survey on wireless body area networks. Wirel Netw 17(1):1–18

    Article  Google Scholar 

  • Massimino M (1992) Sensory substitution for force feedback in space teleoperation. Ph.D. thesis, MIT, Department of Mechanical Engineering

    Google Scholar 

  • Niitsuma M, Hashimoto H (2009) Observation of human activities based on spatial memory in intelligent space. J Rob Mechatronics 21(4):515–523

    Google Scholar 

  • Niitsuma M, Hashimoto H, Hashimoto H (2007) Spatial memory as an aid system for human activity in intelligent space. IEEE Trans Ind Electron 54(2):1122–1131

    Article  Google Scholar 

  • Nijholt A, Tan D (2008) Brain-computer interfacing for intelligent systems. IEEE Intell Syst 23(3):72–79

    Article  Google Scholar 

  • Ning H, Wang Z (2011) Future Internet of things architecture: like mankind neural system or social organization framework? IEEE Commun Lett 15(4):461–463

    Article  Google Scholar 

  • Pavani F, Spence C, Driver J (2000) Visual capture of touch: out-of-the-body experiences with rubber gloves. Psychol Sci 11(5):353–359

    Article  Google Scholar 

  • Pentland A (2007) Social signal processing. IEEE Signal Process Mag 24(4):108

    Article  Google Scholar 

  • Pentland A (2008) Honest signals: how they shape our world. MIT Press, London

    Google Scholar 

  • Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014) Context aware computing for the Internet of things: a survey. IEEE Commun Surv Tutorials 16(1):414–454

    Article  Google Scholar 

  • Picard RW (1995) Affective computing. The MIT Press, Cambridge

    Google Scholar 

  • Picard R (1997) Affective computing. The MIT Press, Cambridge

    Book  Google Scholar 

  • Picard RW (2003a) Affective computing: challenges. Int J Hum Comput Stud 59(1):55–64

    Article  MathSciNet  Google Scholar 

  • Picard RW (2003b) What does it mean for a computer to “have” emotions. In: Trappl R, Petta P, Payr S (eds) Emotions in humans and artifacts. MIT Press, Cambridge, pp 213–235

    Google Scholar 

  • Preece J, Rogers Y, Sharp H, Benyon D, Holland S, Carey T (1994) Human-computer interaction. Addison-Wesley Longman Ltd

    Google Scholar 

  • Prinz J (2006) Putting the brakes on enactive perception. Psyche 12:1–19

    Google Scholar 

  • Riva G, Davide F (2001) Communications through virtual technologies. Identity, community and technology in the communication age. IOS Press, Amsterdam, pp 124–154

    Google Scholar 

  • Rochlis J (2002) Human factors and telerobotics: tools and approaches for designing remote robotics workstation displays. Ph.D. thesis, Massachusetts Institute of Technology

    Google Scholar 

  • Sayrafian-Pour K, Yang WB, Hagedorn J, Terrill J, Yazdandoost KY, Hamaguchi K (2010) Channel models for medical implant communication. Int J Wireless Inf Networks 17(3–4):105–112

    Article  Google Scholar 

  • Schmorrow D (2005) Foundations of augmented cognition. Lawrence Erlbaum Associates

    Google Scholar 

  • Schmorrow D, Stanney KM, Wilson G, Young P (2006) Augmented cognition in human-system interaction. In: Handbook of human factors and ergonomics, 3rd edn. Wiley, New York, pp 1364–1383

    Google Scholar 

  • Sheridan T (1992) Musings on telepresence and virtual presence. Presence Teleoperators Virtual Environ 1(1):120–126

    Google Scholar 

  • Sheridan T (1994) Human factors considerations for remote manipulation. In: Advanced guidance and control aspects in robotics. NASA

    Google Scholar 

  • Sheth AP (2009) Citizen sensing, social signals, and enriching human experience. IEEE Internet Comput 13(4):87

    Article  MathSciNet  Google Scholar 

  • Skinner A, Long L, Vice J, Blitch J, Fidopiastis CM, Berka C (2013) Augmented interaction: applying the principles of augmented cognition to human-technology and human-human interactions. In: Foundations of augmented cognition. Springer, Berlin, pp 764–773

    Google Scholar 

  • Smith C, Kisiel K, Morrison J (2009) Working through synthetic worlds. Ashgate, London

    Google Scholar 

  • St John M, Kobus DA, Morrison JG, Schmorrow D (2004) Overview of the DARPA augmented cognition technical integration experiment. Int J Hum Comput Interact 17(2):131–149

    Article  Google Scholar 

  • Staal MA, Bolton AE, Yaroush RA, Bourne LE Jr (2008) Cognitive performance and resilience to stress. In: Lukey B, Tepe V (eds) Biobehavioral resilience to stress. Francis & Taylor, London, pp 259–299

    Google Scholar 

  • Stanney KM, Schmorrow DD, Johnston M, Fuchs S, Jones D, Hale KS, Ahmad A, Young P (2009) Augmented cognition: an overview. Rev Hum Factors Ergon 5(1):195–224

    Article  Google Scholar 

  • Stein B, Wallace M, Meredith A (1995) Neural mechanisms mediating attention and orientation to multisensory cues. In: Gazzaniga M (ed) The cognitive neurosciences. MIT Press, Cambridge, pp 683–702

    Google Scholar 

  • Streitz N, Nixon P (2005) The disappearing computer. Commun ACM 48(3):32–35

    Article  Google Scholar 

  • Tan D, Nijholt A (2010) Brain-computer interfaces: applying our minds to human-computer interaction. Springer, Berlin

    Book  Google Scholar 

  • Taylor TL (2002) Living digitally: embodiment in virtual worlds. In: The social life of avatars. Springer, London, pp 40–62

    Google Scholar 

  • Thomas RW, Friend DH, Dasilva LA, Mackenzie AB (2006) Cognitive networks: adaptation and learning to achieve end-to-end performance objectives. IEEE Commun Mag 44(12):51–57

    Article  Google Scholar 

  • Tselentis G, Domingue J, Galis A, Gavras A, Hausheer D, Krco S, Lotz V, Zahariadis T (2010a) Towards the future Internet – a European research perspective. IOS Press, Amsterdam

    Google Scholar 

  • Uckelmann D, Harrisson M, Michahelles F (eds) (2011) Architecting the Internet of things. Springer, Berlin

    Google Scholar 

  • Ullah S, Higgins H, Braem B, Latre B, Blondia C, Moerman I, Saleem S, Rahman Z, Kwak KS (2012) A comprehensive survey of wireless body area networks. J Med Syst 36(3):1065–1094

    Article  Google Scholar 

  • Verner L, Okamura A (2006) Sensor/actuator asymmetries in telemanipulators: implications of partial force feedback. In: Proceedings of 14th symposium on haptic interfaces for virtual environments and teleoperator systems, Arlington, pp 309–314

    Google Scholar 

  • Vidal J (1973) Toward direct brain-computer communication. Ann Rev Biophys Bioeng 2:157–180

    Article  Google Scholar 

  • Vilhjalmsson HH, Cassell J (1998) Bodychat: autonomous communicative behaviors in avatars. In: Proceedings of the 2nd international conference on autonomous agents, pp 269–276

    Google Scholar 

  • Vinciarelli A, Pantic M, Bourlard H, Pentland A (2008) Social signals, their function, and automatic analysis: a survey. In: Proceedings of the 10th international conference on multimodal interfaces, pp 61–68

    Google Scholar 

  • Vinciarelli A, Pantic M, Bourlard H (2009) Social signal processing: survey of an emerging domain. Image Vision Comput 27(12):1743–1759

    Article  Google Scholar 

  • Waggoner Z (2009) My avatar, my self: identity in video role-playing games. McFarland, Jefferson

    Google Scholar 

  • Wang Y (2002) On cognitive informatics (keynote speech). In: 1st IEEE international conference on cognitive informatics, Calgary, pp 34–42

    Google Scholar 

  • Wang Y, Kinsner W (2006) Recent advances in cognitive informatics. IEEE Trans Syst Man Cybern 36(2):121–123

    Article  Google Scholar 

  • Welch R, Warren D (1986) Intersensory interactions. In: Boff L, Thomas J (eds) Handbook of perception and human performance, vol 1. Wiley, New York, pp 25–36

    Google Scholar 

  • Wilson L (2003) Interactivity or interpassivity: a question of agency in digital play. In: Fineart forum, vol 17

    Google Scholar 

  • Yang GZ (2014) Body sensor networks, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Yang WB, Sayrafian-Pour K (2012) Interference mitigation using adaptive schemes in body area networks. Int J Wireless Inf Netw 19(3):193–200

    Article  Google Scholar 

  • Yuce MR (2010) Implementation of wireless body area networks for healthcare systems. Sensors Actuators A Phys 162(1):116–129. doi:10.1016/j.sna.2010.06.004

  • Zander TO, Kothe C (2011) Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general. J Neural Eng 8(2):025005

    Article  Google Scholar 

  • Zhang D, Guo B, Yu Z (2011) The emergence of social and community intelligence. Computer 44(7):21–28

    Article  Google Scholar 

  • Zimmerman T (1996) Personal area networks: near-field intrabody communication. IBM Syst J 35(3):609–617

    Article  Google Scholar 

  • Zimmerman TG (1999) Wireless networked digital devices: a new paradigm for computing and communication. IBM Syst J 38(4):566–574

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baranyi, P., Csapo, A., Sallai, G. (2015). Synergies Between CogInfoCom and Other Fields. In: Cognitive Infocommunications (CogInfoCom). Springer, Cham. https://doi.org/10.1007/978-3-319-19608-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19608-4_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19607-7

  • Online ISBN: 978-3-319-19608-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics