Skip to main content

Laboratory Tests for Psoriatic Arthritis

  • Chapter
  • First Online:
Psoriatic Arthritis and Psoriasis

Abstract

Laboratory testing is a key component in the management of psoriatic arthritis (PsA) patients. Baseline laboratory tests have a prognostic value, aid the assessment of a patient’s general health thereby guiding treatment choices, and in the long-term help monitor disease activity, response to, and tolerability of pharmacological therapies. Laboratory testing complements the clinical suspicion of PsA raised by history, examination and imaging. Whilst there is no pathognomic diagnostic laboratory test specific to PsA, several tests help differentiate PsA from other forms of arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McHugh NJ. Progression of peripheral joint disease in psoriatic arthritis: a 5-yr prospective study. Rheumatology. 2003;42(6):778–83.

    Article  PubMed  CAS  Google Scholar 

  2. Punzi L, Pianon M, Rossini P, Schiavon F, Gambari PF. Clinical and laboratory manifestations of elderly onset psoriatic arthritis: a comparison with younger onset disease. Ann Rheum Dis. 1999;58(4):226–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Gladman DD, Farewell VT, Nadeau C. Clinical indicators of progression in psoriatic arthritis: multivariate relative risk model. J Rheumatol. 1995;22(4):675–9.

    PubMed  CAS  Google Scholar 

  4. Bond SJ, Farewell VT, Schentag CT, Gladman DD. Predictors for radiological damage in psoriatic arthritis: results from a single centre. Ann Rheum Dis. 2007;66(3):370–6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Coates LC, Cook R, Lee K-A, Chandran V, Gladman DD. Frequency, predictors, and prognosis of sustained minimal disease activity in an observational psoriatic arthritis cohort. Arthritis Care Res. 2010;62(7):970–6.

    Article  Google Scholar 

  6. Poole CD, Conway P, Currie CJ. An evaluation of the association between C-reactive protein, the change in C-reactive protein over one year, and all-cause mortality in chronic immune-mediated inflammatory disease managed in UK general practice. Rheumatology (Oxford). 2009;48(1):78–82.

    Article  CAS  Google Scholar 

  7. Tam LS, Tomlinson B, Chu TT, Li M, Leung YY, Kwok LW, et al. Cardiovascular risk profile of patients with psoriatic arthritis compared to controls--the role of inflammation. Rheumatology (Oxford). 2008;47(5):718–23.

    Article  Google Scholar 

  8. Gladman DD, Mease PJ, Choy EH, Ritchlin CT, Perdok RJ, Sasso EH. Risk factors for radiographic progression in psoriatic arthritis: subanalysis of the randomized controlled trial ADEPT. Arthritis Res Ther. 2010;12(3):R113.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ridker PM, Morrow DA. C-reactive protein, inflammation, and coronary risk. Cardiol Clin. 2003;21(3):315–25.

    Article  PubMed  Google Scholar 

  10. Chandran V, Cook RJ, Edwin J, Shen H, Pellett FJ, Shanmugarajah S, et al. Soluble biomarkers differentiate patients with psoriatic arthritis from those with psoriasis without arthritis. Rheumatology (Oxford). 2010;49(7):1399–405.

    Article  CAS  Google Scholar 

  11. Gladman DD, Shuckett R, Russell ML, Thorne JC, Schachter RK. Psoriatic arthritis (PSA)--an analysis of 220 patients. Q J Med. 1987;62(238):127–41.

    PubMed  CAS  Google Scholar 

  12. Korendowych E, Owen P, Ravindran J, Carmichael C, McHugh NJ. The clinical and genetic associations of anti-cyclic citrullinated peptide antibodies in psoriatic arthritis. Rheumatology (Oxford). 2005;44(8):1056–60.

    Article  CAS  Google Scholar 

  13. Bogliolo L, Alpini C, Caporali R, Scirè CA, Moratti R, Montecucco C. Antibodies to cyclic citrullinated peptides in psoriatic arthritis. J Rheumatol. 2005;32(3):511–5.

    PubMed  CAS  Google Scholar 

  14. Vander Cruyssen B, Hoffman IE, Zmierczak H, Van den Berghe M, Kruithof E, De Rycke L, et al. Anti-citrullinated peptide antibodies may occur in patients with psoriatic arthritis. Ann Rheum Dis. 2005;64(8):1145–9.

    Article  PubMed  CAS  Google Scholar 

  15. Johnson SR, Schentag CT, Gladman DD. Autoantibodies in biological agent naive patients with psoriatic arthritis. Ann Rheum Dis. 2005;64(5):770–2.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Tan EM, Feltkamp TE, Smolen JS, Butcher B, Dawkins R, Fritzler MJ, et al. Range of antinuclear antibodies in “healthy” individuals. Arthritis Rheum. 1997;40(9):1601–11.

    Article  PubMed  CAS  Google Scholar 

  17. Ogdie A, Schwartzman S, Eder L, Maharaj AB, Zisman D, Raychaudhuri SP, et al. Comprehensive treatment of psoriatic arthritis: managing comorbidities and extraarticular manifestations. J Rheumatol. 2014;41(11):2315–22.

    Article  PubMed  CAS  Google Scholar 

  18. Bruce IN, Schentag C, Gladman DD. Hyperuricaemia in psoriatic arthritis does not reflect the extent of skin involvement. J Clin Rheumatol. 2000;6:6–9.

    Article  PubMed  CAS  Google Scholar 

  19. Chakravarty K, McDonald H, Pullar T, Taggart A, Chalmers R, Oliver S, et al. BSR/BHPR guideline for Disease-Modifying Anti-Rheumatic Drug (DMARD) therapy in consultation with the British Association of Dermatologists. Rheumatology (Oxford). 2008;47(6):924–5.

    Article  CAS  Google Scholar 

  20. Kuijpers AL, van de Kerkhof PC. Risk-benefit assessment of methotrexate in the treatment of severe psoriasis. Am J Clin Dermatol. 2000;1(1):27–39.

    Article  PubMed  CAS  Google Scholar 

  21. Joint Formulary Committee. British National Formulary (BNF). 69th ed. British Medical Association and the Royal Pharmaceutical Society; London, 2014.

    Google Scholar 

  22. Coates LC, Tillett W, Chandler D, Helliwell PS, Korendowych E, Kyle S, et al. 2012 BSR and BHPR guideline for the treatment of psoriatic arthritis with biologics. Rheumatology (Oxford). 2013;52(10):1754–7.

    Article  Google Scholar 

  23. Carmona L, Gomez-Reino JJ, Rodriguez-Valverde V, Montero D, Pascual-Gomez E, Mola EM, et al. Effectiveness of recommendations to prevent reactivation of latent tuberculosis infection in patients treated with tumor necrosis factor antagonists. Arthritis Rheum. 2005;52(6):1766–72.

    Article  PubMed  CAS  Google Scholar 

  24. Ormerod LP. BTS recommendations for assessing risk and for managing mycobacterium tuberculosis infection and disease in patients due to start anti-TNF-alpha treatment. Thorax. 2005;60(10):800–5.

    Article  Google Scholar 

  25. Jadon DR, Nightingale AL, McHugh NJ, Lindsay MA, Korendowych E, Sengupta R. Serum soluble bone turnover biomarkers in psoriatic arthritis and psoriatic spondyloarthropathy. J Rheumatol. 2015;42(1):21–30.

    Article  PubMed  CAS  Google Scholar 

  26. Frediani B, Allegri A, Falsetti P, Storri L, Bisogno S, Baldi F, et al. Bone mineral density in patients with psoriatic arthritis. J Rheumatol. 2001;28(1):138–43.

    PubMed  CAS  Google Scholar 

  27. Pedersen SJ, Hetland ML, Sorensen IJ, Ostergaard M, Nielsen HJ, Johansen JS. Circulating levels of interleukin-6, vascular endothelial growth factor, YKL-40, matrix metalloproteinase-3, and total aggrecan in spondyloarthritis patients during 3 years of treatment with TNF(alpha) inhibitors. Clin Rheumatol. 2010;29(11):1301–9.

    Article  PubMed  Google Scholar 

  28. Chandran V, Shen H, Pollock RA, Pellett FJ, Carty A, Cook RJ, et al. Soluble biomarkers associated with response to treatment with tumor necrosis factor inhibitors in psoriatic arthritis. J Rheumatol. 2013;40(6):866–71.

    Article  PubMed  CAS  Google Scholar 

  29. Wagner CL, Visvanathan S, Elashoff M, McInnes IB, Mease PJ, Krueger GG, et al. Markers of inflammation and bone remodelling associated with improvement in clinical response measures in psoriatic arthritis patients treated with golimumab. Ann Rheum Dis. 2013;72(1):83–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Alenius GM, Eriksson C, Rantapää Dahlqvist S. Interleukin-6 and soluble interleukin-2 receptor alpha-markers of inflammation in patients with psoriatic arthritis? Clin Exp Rheumatol. 2009;27(1):120–3.

    PubMed  Google Scholar 

  31. Elkayam O, Yaron I, Shirazi I, Yaron M, Caspi D. Serum levels of IL-10, IL-6, IL-1ra, and sIL-2R in patients with psoriatic arthritis. Rheumatol Int. 2000;19(3):101–5.

    Article  PubMed  CAS  Google Scholar 

  32. Macchioni P, Boiardi L, Cremonesi T, Battistel B, Casadei-Maldini M, Beltrandi E, et al. The relationship between serum-soluble interleukin-2 receptor and radiological evolution in psoriatic arthritis patients treated with cyclosporin-A. Rheumatol Int. 1998;18(1):27–33.

    Article  PubMed  CAS  Google Scholar 

  33. Anandarajah AP, Schwarz EM, Totterman S, Monu J, Feng CY, Shao T, et al. The effect of etanercept on osteoclast precursor frequency and enhancing bone marrow oedema in patients with psoriatic arthritis. Ann Rheum Dis. 2008;67(3):296–301.

    Article  PubMed  CAS  Google Scholar 

  34. Chiu YG, Ritchlin CT. Characterization of DC-STAMP+ cells in human bone marrow. J Bone Marrow Res. 2013;19:1.

    Google Scholar 

  35. Chiu YH, Mensah KA, Schwarz EM, Ju Y, Takahata M, Feng C, et al. Regulation of human osteoclast development by dendritic cell-specific transmembrane protein (DC-STAMP). J Bone Miner Res Off J Am Soc Bone Miner Res. 2012;27(1):79–92.

    Article  CAS  Google Scholar 

  36. Jadon DR, McHugh NJ. Other seronegative spondyloarthropathies. Medicine. 2014;42(5):257–61.

    Article  Google Scholar 

  37. Cretu D, Prassas I, Saraon P, Batruch I, Gandhi R, Diamandis EP, et al. Identification of psoriatic arthritis mediators in synovial fluid by quantitative mass spectrometry. Clin Proteomics. 2014;11(1):27.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schwab CL, English DP, Roque DM, Pasternak M, Santin AD. Past, present and future targets for immunotherapy in ovarian cancer. Immunotherapy. 2014;6(12):1279–93.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Girdler F, Brotherick I. The oestrogen receptors (ER alpha and ER beta) and their role in breast cancer: a review. Breast (Edinburgh, Scotland). 2000;9(4):194–200.

    Article  CAS  Google Scholar 

  40. Al-Awadhi AM, Olusi SO, Al-Zaid NS, George S, Sugathan TN. Spot urine concentrations of type I collagen cross-linked N-telopeptides and deoxypyridinoline in psoriatic arthritis. Clin Rheumatol. 1999;18(6):450–4.

    Article  PubMed  CAS  Google Scholar 

  41. Hein G, Schmidt F, Barta U, Muller A. Is there a psoriatic osteopathy? – the activity of bone resorption in psoriatics is related to inflammatory joint process. Eur J Med Res. 1999;4(5):187–92.

    PubMed  CAS  Google Scholar 

  42. Clowes JA. Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone. 2002.

    Google Scholar 

  43. Queiro R, Sarasqueta C, Belzunegui J, Gonzalez C, Figueroa M, Torre-Alonso JC. Psoriatic spondyloarthropathy: a comparative study between HLA-B27 positive and HLA-B27 negative disease. Semin Arthritis Rheum. 2002;31(6):413–8.

    Article  PubMed  Google Scholar 

  44. Ho P, Barton A, Worthington J, Plant D, Griffiths CE, Young HS, et al. Investigating the role of the HLA-Cw*06 and HLA-DRB1 genes in susceptibility to psoriatic arthritis: comparison with psoriasis and undifferentiated inflammatory arthritis. Ann Rheum Dis. 2008;67(5):677–82.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Filer C, Ho P, Smith RL, Griffiths C, Young HS, Worthington J, et al. Investigation of association of the IL12B and IL23R genes with psoriatic arthritis. Arthritis Rheum. 2008;58(12):3705–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Jadon D, Tillett W, Wallis D, Cavill C, Bowes J, Waldron N, et al. Exploring ankylosing spondylitis-associated ERAP1, IL23R and IL12B gene polymorphisms in subphenotypes of psoriatic arthritis. Rheumatology (Oxford). 2013;52(2):261–6.

    Article  CAS  Google Scholar 

  47. Rahman P, Inman RD, Maksymowych WP, Reeve JP, Peddle L, Gladman DD. Association of interleukin 23 receptor variants with psoriatic arthritis. J Rheumatol. 2009;36:137–40.

    PubMed  CAS  Google Scholar 

  48. Bowes J, Orozco G, Flynn E, Ho P, Brier R, Marzo-Ortega H, et al. Confirmation of TNIP1 and IL23A as susceptibility loci for psoriatic arthritis. Ann Rheum Dis. 2011;70(9):1641–4.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bowes J, Flynn E, Ho P, Aly B, Morgan AW, Marzo-Ortega H, et al. Variants in linkage disequilibrium with the late cornified envelope gene cluster deletion are associated with susceptibility to psoriatic arthritis. Ann Rheum Dis. 2010;69(12):2199–203.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Huffmeier U, Uebe S, Ekici AB, Bowes J, Giardina E, Korendowych E, et al. Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis. Nat Genet. 2010;42(11):996–9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gladman DD, Farewell VT. The role of HLA antigens as indicators of disease progression in psoriatic arthritis. Multivariate relative risk model. Arthritis Rheum. 1995;38(6):845–50.

    Article  PubMed  CAS  Google Scholar 

  52. Rahman P, Elder JT. Genetic epidemiology of psoriasis and psoriatic arthritis. Ann Rheum Dis. 2005;64 Suppl 2:ii37–9; discussion ii40–1.

    PubMed  PubMed Central  Google Scholar 

  53. Winchester R, Minevich G, Steshenko V, Kirby B, Kane D, Greenberg DA, et al. HLA associations reveal genetic heterogeneity in psoriatic arthritis and in the psoriasis phenotype. Arthritis Rheum. 2012;64(4):1134–44.

    Article  PubMed  CAS  Google Scholar 

  54. Bowes J, Eyre S, Flynn E, Ho P, Salah S, Warren RB, et al. Evidence to support IL-13 as a risk locus for psoriatic arthritis but not psoriasis vulgaris. Ann Rheum Dis. 2011;70(6):1016–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Eder L, Chandran V, Pellet F, Shanmugarajah S, Rosen CF, Bull SB, et al. Human leucocyte antigen risk alleles for psoriatic arthritis among patients with psoriasis. Ann Rheum Dis. 2012;71(1):50–5.

    Article  PubMed  Google Scholar 

  56. Brewerton DA, Caffrey M, Nicholls A, Walters D, James DC. HL- A27 and arthropathies associated with ulcerative colitis and psoriasis. Lancet. 1974;1(7864):956–8.

    Article  PubMed  CAS  Google Scholar 

  57. Haroon M, Winchester R, Giles JT, Heffernan E, FitzGerald O. Certain class I HLA alleles and haplotypes implicated in susceptibility play a role in determining specific features of the psoriatic arthritis phenotype. Ann Rheum Dis. 2014.[epub ahead to print].

    Google Scholar 

  58. Balding J, Kane D, Livingstone W, Mynett-Johnson L, Bresnihan B, Smith O, et al. Cytokine gene polymorphisms: association with psoriatic arthritis susceptibility and severity. Arthritis Rheum. 2003;48(5):1408–13.

    Article  PubMed  CAS  Google Scholar 

  59. Gladman DD, Farewell VT, Kopciuk KA, Cook RJ. HLA markers and progression in psoriatic arthritis. J Rheumatol. 1998;25(4):730–3.

    PubMed  CAS  Google Scholar 

  60. Ho P, Barton A, Worthington J, Thomson W, Silman AJ, Bruce IN. HLA-Cw6 and HLA-DRB1*07 together are associated with less severe joint disease in psoriatic arthritis. Ann Rheum Dis. 2007;66(6):807–11.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Queiro-Silva R, Torre-Alonso JC, Tinturé-Eguren T, López-Lagunas I. A polyarticular onset predicts erosive and deforming disease in psoriatic arthritis. Ann Rheum Dis. 2003;62(1):68–70.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Rahman P, Snelgrove T, Peddle L, Siannis F, Farewell V, Schentag C, et al. A variant of the IL4I50V single-nucleotide polymorphism is associated with erosive joint disease in psoriatic arthritis. Arthritis Rheum. 2008;58(7):2207–8.

    Article  PubMed  Google Scholar 

  63. Gladman DD, Ritchlin C. Clinical manifestations and diagnosis of psoriatic arthritis. In: Romain PL, editor. www.UpToDate.com: UpToDate, Inc.; 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak R. Jadon MBBCh, MRCP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jadon, D.R., McHugh, N.J. (2016). Laboratory Tests for Psoriatic Arthritis. In: Adebajo, A., Boehncke, WH., Gladman, D., Mease, P. (eds) Psoriatic Arthritis and Psoriasis. Springer, Cham. https://doi.org/10.1007/978-3-319-19530-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19530-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19529-2

  • Online ISBN: 978-3-319-19530-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics