Skip to main content

Secondary Metabolite Enhancement in Medicinal Climbers Through the Intervention of Abiotic and Biotic Elicitors

  • Chapter
  • First Online:
Biotechnological strategies for the conservation of medicinal and ornamental climbers
  • 952 Accesses

Abstract

The formation of bioactive compounds in plants, in response to the stress caused by physical factors (drought, flood, salinity, alkalinity, radiation, etc.) or wounding caused by insect, pest and microbes, is a natural process. The primary role of accumulated products is the protection of plants from the natural and induced stress, and they play a vital role in ailment healing. Although the presence of secondary metabolites in small quantity is sufficient to protect the plant body, but because of their pharmaceutical importance to deal with human and animal diseases, they warrant a huge availability; hence the ruthless collection of plant parts for the extraction leads to the depletion of plant population, even in some cases where the secondary metabolites are obtained from root or fruit parts endangering their population more severely. Thus, to potentially protect the valuable germplasm, the plant cell culture could be used as an alternative measure. Elicitation is one of the biotechnological strategies which hold the ability of enhancing secondary metabolite accumulation in plant cells and their quality production in cell suspension cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El-Mawla AMA (2012) Influence of certain abiotic elicitors on production of anthraquinones in cell cultures of Rubia tinctorum. Spatula DD 2:89–94

    Article  Google Scholar 

  • Archambault J, Williams RD, Bédard C, Chavarie C (1996) Production of sanguinarine by elicited plant cell culture I. Shake flask suspension cultures. J Biotechnol 46:95–105

    Article  CAS  Google Scholar 

  • Baenas N, García-Viguera C, Moreno DA (2014) Elicitation: a tool for enriching the bioactive composition of foods. Molecules 19:13541–13563

    Article  PubMed  Google Scholar 

  • Bakrudeen AA, Suryanarayanarao A, Venkateswararao M (2009) Methods in molecular biology protocols for in vitro cultures and secondary metabolite. Anal Arom Plants 547:93–105

    Google Scholar 

  • Boka K, Jakab J, Kiraly I (2002) Comparison of the effect of different fungal elicitors on Rubia tinctorum L. suspension culture. Biol Plant 45:281–290

    Article  CAS  Google Scholar 

  • Cartea ME, Velasco P (2008) Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochem Rev 7:213–229

    Article  CAS  Google Scholar 

  • Chaichana N, Dheeranupattana S (2012) Effects of methyl jasmonate and salicylic acid on alkaloid production from in vitro culture of Stemona spp. Int J Biosci Biochem Bioinf 2:146–150

    Google Scholar 

  • Chakraborty D, Sircar D, Mitra A (2008) Phenylalanine ammonia-lyase-mediated biosynthesis of 2-hydroxy-4-methoxybenzaldehydein roots of Hemidesmus indicus. J Plant Physiol 165:1033–1040

    Article  CAS  PubMed  Google Scholar 

  • Charron CS, Saxton AM, Sams CE (2005) Relationship of climate and genotype to seasonal variation in the glucosinolate-myrosinase system. I. Glucosinolate content in ten cultivars of Brassica oleracea grown in fall and spring seasons. J Sci Food Agric 85:671–681

    Article  CAS  Google Scholar 

  • Chodisetti B, Rao K, Gandi S, Giri A (2012) Abiotic elicitation of gymnemic acid in the suspension cultures of Gymnema sylvestre. World J Microbiol Biotechnol 28:741–747

    Article  Google Scholar 

  • Chodisetti B, Rao K, Gandi S, Giri A (2013) Improved gymnemic acid production in the suspension cultures of Gymnema sylvestre through biotic elicitation. Plant Biotechnol Rep 7:519–525

    Article  Google Scholar 

  • Devi CS, Srinivasan VM (2011) In vitro studies on stimulation of Gymnemic acid production using fungal elicitor in suspension and bioreactor based cell cultures of Gymnema sylvestre R.Br. Recent Res Sci Technol 3:101–104

    Google Scholar 

  • DiCosmo F, Tallevi SG (1985) Plant cell cultures and microbial insult: interactions with biotechnological potential. Trends Biotechnol 3:110–111

    Article  Google Scholar 

  • Dixit AK, Vaidya S (2010) Agrobacterium rhizogenes induced hairy root development and its effect on production of glycyrrhizin in Abrus precatorius (L). Int J Curr Res 6:033–038

    Google Scholar 

  • Droillard MJ, Thibivilliers S, Cazale AC, Barbier-Brygoo H, Lauriere C (2000) Protein kinases induced by osmotic stresses and elicitor molecules in tobacco cell suspensions: two crossroad MAP kinases and one osmoregulation-specific protein kinase. FEBS Lett 474:217–222

    Article  CAS  PubMed  Google Scholar 

  • Eilert U (1987) Elicitation: methodology and aspects of application. In: Constabel F, Vasil I (eds) Cell culture and somatic cell genetics of plants, vol 4. Academic Press, San Diego, pp 153–196

    Google Scholar 

  • Felix G, Grosskopf DG, Regenass M, Boller T (1991) Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proc Natl Acad Sci U S A 88:8831–8834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita Y (1988) Shikonin: production by plant (Lithospermum erythrorhizon) cell cultures. Biotechnol Agric For 4:225–236

    Google Scholar 

  • Galneder E, Rueffer M, Wanner G, Tabata M, Zenk MH (1998) Alternative final steps in berberine biosynthesis in Coptis japonica cell cultures. Plant Cell Rep 7:1–4

    Article  Google Scholar 

  • Gandi S, Rao K, Chodisetti B, Giri A (2012) Elicitation of andrographolide in the suspension cultures of Andrographis paniculata. Appl Biochem Biotechnol 168:1729–1738

    Article  CAS  PubMed  Google Scholar 

  • Gelli A, Higgins VJ, Blumwald E (1997) Activation of plasma membrane Ca2+ membrane channels by race specific fungal elicitors. Plant Physiol 113:269–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575–607

    Article  CAS  PubMed  Google Scholar 

  • Ivashikina N, Becker D, Ache P, Meyerhoff O, Felle HH, Hedrich R (2001) K+ channel profile and electrical properties of Arabidopsis root hairs. FEBS Lett 508:463–469

    Article  CAS  PubMed  Google Scholar 

  • Jawahar G, Madhavi D, Amrutha RN, Jogeswar G, Sunitha MSL, Rao S, Kavi Kishor PB (2014) Current approaches for enhancing secondary plant production in vitro. Ann Phytomed 3:26–34

    CAS  Google Scholar 

  • Johnson TS, Madhavi D, SitaKumari P, Sunita MSL, KaviKishor PB (2012) Production of secondary plant products from callus and suspension cultures. In: Pullaiah T (ed) Abiotic stress and biotechnology. Regency Publications, New Delhi, pp 169–189

    Google Scholar 

  • Karl-Hermann N, Kumar A, Imani J (2009) Plant cell and tissue culture: a tool in biotechnology basics and application. Springer, Germany, p 333

    Google Scholar 

  • Karwasara VS, Jain R, Tomar P, Dixit VK (2010) Elicitation as yield enhancement strategy for glycyrrhizin production by cell cultures of Abrus precatorius Linn. In Vitro Cell Dev Biol Plant 46:354–362

    Article  CAS  Google Scholar 

  • Kelly WB, Esser JE, Schroeder JI (1995) Effects of cytosolic calcium and limited, possible dual, effects of G protein modulators on guard cell inward potassium channels. Plant J 8:479–489

    Article  CAS  Google Scholar 

  • Khosroushahi AY, Valizadeh M, Ghasempour A, Khosrowshahli M, Naghdibadi H, Dadpour MR (2006) Improved Taxol production by combination of inducing factors in suspension cell culture of Taxus baccata. Cell Biol Int 30:262–269

    Article  CAS  PubMed  Google Scholar 

  • Komaraiah P, Jogeswar G, Ramakrishna SV, KaviKishor PB (2004) Acetylsalicylic acid and ammonium-induced somatic embryogenesis and enhanced plumbagin production in suspension cultures of Plumbago rosea L. In Vitro Cell Dev Biol Plant 40:230–234

    Article  CAS  Google Scholar 

  • Kumar A, Shekhawat NS (2009) Plant tissue culture and molecular markers: their role in improving crop productivity. IK International, New Delhi, p 688

    Google Scholar 

  • Kundu A, Jawali N, Mitra A (2012) Shikimate pathway modulates the elicitor-stimulated accumulation of fragrant 2-hydroxy-4-methoxybenzaldehyde in Hemidesmus indicus roots. Plant Physiol Biochem 56:104–108

    Article  CAS  PubMed  Google Scholar 

  • Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharm Rev 1:69–79

    CAS  Google Scholar 

  • Park YH, Seo WT, Liu JR (1990) Enhanced production of shikonin by Lithospermum e rythrorhizon cells immobilized in polyurethane foam matrices. J Ferment Bioeng 70:317–321

    Article  CAS  Google Scholar 

  • Park GL, Gomez GA, Nieder MH, Adams TL, Aynsley JS (1994) New bioactive taxoids from cell cultures of Taxus baccata. J Nat Prod 57:116–122

    Article  PubMed  Google Scholar 

  • Patel H, Krishnamurthy R (2013) Elicitors in plant tissue culture. J Pharmacogn Phytoch 2:60–65

    CAS  Google Scholar 

  • Perassolo M, Quevedo CV, Busto VD, Giulietti AM, Talou JR (2011) Role of reactive oxygen species and proline cycle in anthraquinone accumulation in Rubia tinctorum cell suspension cultures subjected to methyl jasmonate elicitation. Plant Physiol Biochem 49:758–763

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Balibrea S (2008) Saline stress effect on the biochemistry of edible sprouts of broccoli (Brassica oleracea var italica). J Clin Biochem Nutr 43:1–5

    Google Scholar 

  • Pezzuto J (1996) Taxol production in plant cell culture comes of age. Nat Biotechnol 14:1083

    Article  CAS  PubMed  Google Scholar 

  • Pise M, Rudra J, Begde D, Bundale S, Nashikkar N, Upadhyay A (2013) Elicitor induced production of Shatavarins in the cell cultures of Asparagus racemosus. Indian J Plant Sci 2:100–106

    Google Scholar 

  • Radman R, Saez T, Bucke C, Keshavarz T (2003) Elicitation of plant and microbial systems. Biotechnol Appl Biochem 37:91–102

    Article  CAS  PubMed  Google Scholar 

  • Raghavendra S, Ramesh CK, Kumar V, Khan MHM (2011) Elicitors and precursor induced effect on L-Dopa production in suspension cultures of Mucuna pruriens L. Front Life Sci 5:127–133

    Article  CAS  Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  PubMed  Google Scholar 

  • Roemis T (2001) Protein kinases in the plant defence response. Curr Opin Plant Biol 4:407–414

    Article  Google Scholar 

  • Roja G, Bhangale AS, Juvekar AR, Eapen S, D’Souza SF (2005) Enhanced production of the polysaccharide arabinogalactan using immobilized cultures of Tinospora cordifolia by elicitation and in situ adsorption. Biotechnol Prog 21:1688–1691

    Article  CAS  PubMed  Google Scholar 

  • Rojas R, Alba J, Magaña-Plaza I, Cruz F, Ramos-Valdivia AC (1999) Stimulated production of diosgenin in Dioscorea galeottiana cell suspension cultures by abiotic and biotic factors. Biotechnol Lett 21:907–911

    Article  CAS  Google Scholar 

  • Rokem JS, Schwarzberg J, Goldberg I (1984) Autoclaved fungal mycelia increase production in cell suspension cultures of Dioscorea deltoidea. Plant Cell Rep 3:159–160

    Article  CAS  PubMed  Google Scholar 

  • Sankawa U, Hakamatsuka T, Shinkai K, Yoshida M, Park HH, Ebizuka Y (1995) Changes of secondary metabolism by elicitor treatment in Pueraria lobata cell cultures. Curr Plant Sci Biotechnol Agric 22:595–604

    Article  CAS  Google Scholar 

  • Sharma M, Sharma A, Kumar A, Basu SK (2011) Enhancement of secondary metabolites in cultured plant cell: through stress stimulus. Am J Plant Physiol 6:50–71

    Article  CAS  Google Scholar 

  • Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng Biotechnol 111:187–228

    CAS  PubMed  Google Scholar 

  • Sudha G, Ravishankar GA (2003) Elicitation of anthocyanin production in callus cultures of Daucus carota and involvement of calcium channel modulators. Curr Sci 84:234–256

    Google Scholar 

  • Thiem B, Krawczyk A (2010) Enhanced isoflavones accumulation in methyl jasmonate treated in vitro cultures of kudzu (Pueraria lobata Ohwi). Herba Polonica 56:48–56

    CAS  Google Scholar 

  • Tyler RT, Eilert U, Rijnders COM, Roewer IA, Kurz WGW (1998) Semi-continuous production of sanguinarine and dihydrosanguinarine by Papaver somniferum L. cell suspension cultures treated with fungal homogenate. Plant Cell Rep 7:410–413

    Google Scholar 

  • Vanisree M, Lee CY, Lo SF, Nalawade SM, Lin CY, Tsay HS (2004) Studies on the production of some important metabolites from medicinal plants by plant tissue cultures. Bot Bull Acad Sin 45:1–22

    CAS  Google Scholar 

  • Van-Tegelen LJP, Bongaerts RJM, Croes AF, Verpoorte R, Wullems GJ (1999) Isochorismate synthase isoforms from elicited cell cultures of Rubia tinctorum. Phytochemistry 51:263–269

    Article  CAS  Google Scholar 

  • Vasconsuelo A, Giuletti AM, Picotto G, Rodriguez-Talou J, Boland R (2003) Involvement of the PLC/PKC pathway in Chitosan-induced anthraquinone production by Rubia tinctorum L. cell cultures. Plant Sci 165:429–436

    Article  CAS  Google Scholar 

  • Veerashree V, Anuradha CM, Kumar V (2012) Elicitor-enhanced production of gymnemic acid in cell suspension cultures of Gymnema sylvestre R. Br. Plant Cell Tissue Organ Cult 108:27–35

    Article  CAS  Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    Article  CAS  Google Scholar 

  • Yang J, Yu M, January YN, January LY (1997) Stabilization of ion selectivity alters by pore loop ion pairs in an inwardly rectifying potassium channel. Proc Natl Acad Sci U S A 94:1568–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Verpoorte R (2007) Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: from biochemical processing to metabolic engineering. Phytochem Rev 6:435–457

    Article  CAS  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to the production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Author Rakhshanda Akhtar is thankful to UGC, for providing financial assistance in the form of Maulana Azad National Fellowship-JRF; award no. MANF-2013-14-MUS-BIH-21399

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Shahzad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shahzad, A., Akhtar, R. (2016). Secondary Metabolite Enhancement in Medicinal Climbers Through the Intervention of Abiotic and Biotic Elicitors. In: Shahzad, A., Sharma, S., Siddiqui, S. (eds) Biotechnological strategies for the conservation of medicinal and ornamental climbers. Springer, Cham. https://doi.org/10.1007/978-3-319-19288-8_12

Download citation

Publish with us

Policies and ethics