Skip to main content
  • 968 Accesses

Abstract

Climbers are the perfect example of the economy of nature by using maximum utilization of sunlight, water, and nutrients in minimum expanse of vegetation support. During food scarcity, they serve as the best food source for various animals. Climbers are also the best source of medicine, vegetable, and fruit. They cover a broad range of light through both supported (climbing) and unsupported (creeping) individuals. Due to their broad ecological niche (ranging from forest floor to the forest canopy), they provide a greater exposure to different pollinators that favor the ecological specialization. Climbers show a key innovation in angiosperm evolution because of species richness as compared to the non-climbing sister group. Climbers are found among ancestral groups of dicotyledons (such as the Piperales and Austrobaileyales) and monocotyledons (e.g., Dioscoreaceae, Arecaceae, and Araceae). Their phylogenetic breadth from rosids to asterids strongly supports multiple origins of the climbing habit within the angiosperms. Prior to the angiosperms’ evolution, variations among climbers pose the hypothesis that climbers of the past had an important role in tropical forests, at least in the Paleozoic era. In contrast, small contribution of climbers to Mesozoic ecosystems might be due to few detailed morphological and anatomical studies capable of identifying fossil lianas, as well as because of inhospitable conditions for growth and fossilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avise J (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, p 447

    Google Scholar 

  • Barraclough TG, Nee S, Harvey PH (1998) Sister group analysis in identifying correlates of diversification. Evol Ecol 12:751–754

    Article  Google Scholar 

  • Batenburg LH (1981) Vegetative anatomy and ecology of Sphenophyllum zwickaviense, S. emarginatum, and other “compression species” of Sphenophyllum. Rev Palaeobot Palynol 32:275–313

    Article  Google Scholar 

  • Baxter RW (1949) Some pteridosperm stems and fructifications with particular reference to the Medullosae. Ann Mo Bot Gard 36:287–353

    Article  Google Scholar 

  • Burnham RJ (2009) An overview of the fossil record of climbers: bejucos, sogas, trepadoras, lianas, cipĂłs, and vines. Rev Bras Paleontol 12:149–160

    Article  Google Scholar 

  • CaballĂ© G (1993) Liana structure, function and selection: a comparative study of xylem cylinders of tropical rainforest species in Africa and America. Bot J Linn Soc 113:41–60

    Article  Google Scholar 

  • Carlquist S (1991) Anatomy of vine and liana stems: a review and synthesis. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge/New York, pp 53–72

    Google Scholar 

  • Clark DB, Olivas PC, Oberbauer SF, Clark DA, Ryan MG (2008) First direct landscape-scale measurement of tropical rain forest leaf area index, a key driver of global primary productivity. Ecol Lett 11:163–172

    PubMed  Google Scholar 

  • Clinebell RR II, Phillips OL, Gentry AH, Stark N, Zuuring H (1995) Prediction of neotropical trees and liana species richness from soil and climatic data. Biodivers Conserv 4:56–90

    Article  Google Scholar 

  • Crane P, Friis EM, Pedersen KJ (1995) The origin and early diversification of angiosperms. Nature 374:27–33

    Article  CAS  Google Scholar 

  • Darwin C (1865) On the movements and habits of climbing plants. Bot J Linn Soc 9:1–118

    Article  Google Scholar 

  • DeWalt SJ, Chave J (2004) Structure and biomass of four lowland neotropical forests. Biotropica 36:7–19

    Google Scholar 

  • DiMichele WA, Phillips TL, Pfefferkorn HW (2006) Paleoecology of late Paleozoic pteridosperms from tropical Euramerica. J Torrey Bot Soc 133:83–118

    Article  Google Scholar 

  • Dubuisson J-Y, Hennequin S, Rakotondrainibe F, Schneider H (2003) Ecological diversity and adaptive tendencies in the tropical fern Trichomanes L. (Hymenophyllaceae) with special reference to climbing and epiphytic habits. Bot J Linn Soc 142:41–63

    Article  Google Scholar 

  • Dunn MT, Mapes G, Rothwell GW (2006) The Fayetteville flora of Arkansas (USA): a snapshot of terrestrial vegetation patterns within a clastic swamp at Late Mississippian time. Geol Soc Am Spec Pap 399:127–137

    Google Scholar 

  • Dutta AC (1689) A class book of botany. Oxford University Press, Calcutta

    Google Scholar 

  • Ewers FW, Fisher JB, Fichtner K (1991) Water flux and xylem structure in vines. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 127–160

    Google Scholar 

  • Fearnside PM, Graça PMLA, Leal Filho N, Rodrigues FJA, Robinson JM (1999) Tropical forest burning in Brazilian Amazonia: measurements of biomass loading, burning efficiency and charcoal formation at Altamira, Pará. For Ecol Manag 123:65–79

    Article  Google Scholar 

  • Galtier J (1988) Morphology and phylogenetic relationships of early Pteridosperms. In: Beck CB (ed) Origin and evolution of gymnosperms. Columbia University Press, New York, pp 135–176

    Google Scholar 

  • Galtier J (1997) Coal-ball floras of the Namurian-Westphalian of Europe. Rev Palaeobot Palynol 95:51–72

    Article  Google Scholar 

  • Galtier J, Brown RE, Scott AC, Rex GM, Rowe NP (1993) A late Dinantian flora from Weaklaw, East Lothian, Scotland. Spec Pap Palaeontol 49:57–74

    Google Scholar 

  • Gentry AH (1991) The distribution and evolution of climbing plants. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 3–49

    Google Scholar 

  • Gentry AH, Dodson CH (1987) Contribution of non-trees to species richness of a tropical rain forest. Biotropoca 19:149–156

    Article  Google Scholar 

  • Gerwing JJ, Farias DL (2000) Integrating liana abundance and forest stature into an estimate of total aboveground biomass for an eastern Amazonian forest. J Trop Ecol 16:327–335

    Article  Google Scholar 

  • Ghosh RB, Mitra SN, Banerjee AK (1975) On the preliminary check-list of phanerogamic climbers of the India Botanic Garden, Calcutta

    Google Scholar 

  • Gianoli E (2004) Evolution of a climbing habit promotes diversification in flowering plants. Proc R Soc B Biol Sci 271:2011–2015

    Article  Google Scholar 

  • Grant V (1981) Plant speciation. Columbia University Press, New York, p 514

    Google Scholar 

  • Halle TG (1929) On the habit of Gigantopteris. Geologiska Foreningens I Stockholm Forhandlingar 51:236–242

    Article  Google Scholar 

  • Harris C, Murray BR, Hose GC, Hamilton MA (2007) Introduction history and invasion success in exotic vines introduced to Australia. Divers Distrib 13:467–475

    Article  Google Scholar 

  • Hegarty EE (1991) Vine-host interactions. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 357–375

    Google Scholar 

  • Hegarty EE, CaballĂ© G (1991) Distribution and abundance of vines in forest communities. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 313–335

    Google Scholar 

  • Hilton J, Wang S-J, Galtier J, Glasspool I, Steven L (2004) An Upper Permian permineralized plant assemblage in volcaniclastic tuffs from the Xuanwei Formation, Guizhou Province, China. Geol Mag 114:661–674

    Article  Google Scholar 

  • Hunter JP (1998) Key innovations and the ecology of macroevolution. Trends Ecol Evol 13:31–36

    Article  CAS  PubMed  Google Scholar 

  • Ichihashi R, Nagashima H, Tateno M (2009) Morphological differentiation of current-year shoots of deciduous and evergreen lianas in temperate forests in Japan. Ecol Res 24:393–403

    Article  Google Scholar 

  • Jacobs M (1988) The tropical rain forest. Springer, Berlin

    Book  Google Scholar 

  • Jaffe MJ, Galston AW (1968) The physiology of tendrils. Annu Rev Plant Physiol 19:417–434

    Article  Google Scholar 

  • Jongkind CCH, Hawthorne WD (2005) A botanical synopsis of the lianes and other forest climbers. In: Bongers F, Parren MPE, Traore D (eds) Forest climbing plants of West Africa: diversity, ecology and management. CABI Publishing, Oxfordshire, pp 19–39

    Google Scholar 

  • Krings M, Kerp H (2000) A contribution to the knowledge of pteridosperm genera Pseudomariopteris DanzĂ©-Corsin nov. emend. and Helenopteris nov. gen. Rev Palaeobot Palynol 111:145–195

    Article  CAS  PubMed  Google Scholar 

  • Krings M, Kerp H, Taylor TN, Taylor EL (2001) Reconstruction of Pseudomariopteris busquetti, a vine-like Late carboniferous-early Permian pteridosperm. Am J Bot 88:767–776

    Article  CAS  PubMed  Google Scholar 

  • Krings M, Kerp H, Taylor TN, Taylor EL (2003) How Paleozoic vines and lianas got off the ground: on scrambling and climbing carboniferous early Permian pteridosperms. Bot Rev 69:204–224

    Article  Google Scholar 

  • Laurance WF et al (2001) Rainforest fragmentation and the structure of Amazonian liana communities. Ecology 82:105–116

    Article  Google Scholar 

  • Lee DW, Richards JH (1991) Heteroblastic development in vines. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 205–244

    Google Scholar 

  • Levin D (2000) The origin, expansion and demise of plant species. Oxford University Press, London, p 230

    Google Scholar 

  • Li H, Taylor DW (1998) Aculeovinea yunguiensis gen. et sp. nov., a new taxon of gigantopterid axis from the Upper Permian of Guizhou province, China. Int J Plant Sci 159:1023–1033

    Article  Google Scholar 

  • Li H, Taylor DW (1999) Vessel-bearing stems of Vasovinea tianii gen. et sp. nov. (Glossopteridales) from the Upper Permian of Guizhou Province, China. Am J Bot 86:1563–1575

    Article  CAS  PubMed  Google Scholar 

  • Li H, Tian B, Taylor EL, Taylor TN (1994) Foliar anatomy of Gigantonoclea guizhouensis (Gigantopteridales) from the Upper Permian of Guizhou Province, China. Am J Bot 81:678–689

    Article  Google Scholar 

  • MagallĂłn S, Castillo A (2009) Angiosperm diversification through time. Am J Bot 96:349–365

    Article  PubMed  Google Scholar 

  • Menninger EA (1970) Flowering vines of the world: an encyclopedia of climbing plants. Hearthside Press, New York, p 410

    Google Scholar 

  • Mosbrugger V, Roth A (1996) Biomechanics in fossil plant biology. Rev Palaeobot Palynol 90:195–207

    Article  Google Scholar 

  • Opluštil S, Pšenièka J, Libertin M, Ĺ imĂąnek Z (2007) Vegetation patterns of Westphalian and Lower Stephanian mire assemblages preserved in tuff beds of the continental basins of Czech Republic. Rev Palaeobot Palynol 143:107–154

    Article  Google Scholar 

  • Opluštil S, Pšenièka J, LibertĂ­n M, Bashforth AR, Ĺ imĂąnek Z, Drábková J, Dašková J (2009) A Middle Pennsylvanian (Bolsovian) peat-forming forest preserved in situ in volcanic ash: the Whetstone Horizon in the Radnice Basin, Czech Republic. Rev Palaeobot Palynol 155:234–274

    Article  Google Scholar 

  • Parthasarathy N, Muthuramkumar S, Reddy MS (2004) Patterns of liana diversity in tropical evergreen forests of peninsular India. For Ecol Manag 190:15–31

    Article  Google Scholar 

  • Perez-Salicrup DR, Barker MG (2000) Effect of liana cutting on water potential and growth of adult Senna multijuga (caesalpinioideae) trees in a Bolivian tropical forest. Oecologia 124:469–475

    Article  CAS  PubMed  Google Scholar 

  • Perez-Salicrup DR, Sork VL, Putz FE (2001) Lianas and trees in a liana forest of Amazonian Bolivia. Biotropica 33:34–47

    Article  Google Scholar 

  • Phillips OL, MartĂ­nez RV, Mendoza AM, Baker TR, Vargas PN (2005) Large lianas as hyperdynamic elements of the tropical forest canopy. Ecology 86:1250–1258

    Article  Google Scholar 

  • Putz FE, Holbrook NM (1991) Biomechanical studies of vines. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 73–97

    Google Scholar 

  • Putz FE, Mooney HA (eds) (1991) The biology of vines. Cambridge University Press, New York, p 526

    Google Scholar 

  • Quezada IM, Gianoli E (2011) Crassulacean acid metabolism photosynthesis in Bromeliaceae: an evolutionary key innovation. Biol J Linn Soc 104:480–486

    Article  Google Scholar 

  • Ray TS (1986) Growth correlations within the segment in the Araceae. Am J Bot 73:993–1001

    Article  Google Scholar 

  • Rees PM (2002) Land-plant diversity and the end-Permian mass extinction. Geology 30:827–830

    Article  Google Scholar 

  • Schnitzer SA (2005) A mechanistic explanation for global patterns of liana abundance and distribution. Am Nat 166:262–276

    Article  PubMed  Google Scholar 

  • Schnitzer SA, Bongers A (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17:223–230

    Article  Google Scholar 

  • Selaya NG, Anten NPR (2008) Differences in biomass allocation, light interception and mechanical stability between lianas and trees in early secondary tropical forest. Funct Ecol 22:30–39

    Google Scholar 

  • Simpson GG (1953) The major features of evolution. Columbia University Press, New York

    Google Scholar 

  • Speck T (1994) A biomechanical method to distinguish between self-supporting and non-self supporting fossil plants. Rev Palaeobot Palynol 81:65–82

    Article  Google Scholar 

  • Stebbins GL (1981) Why are there so many species of flowering plants? Bioscience 31:573–577

    Article  Google Scholar 

  • Stevens GC (1987) Lianas as structural parasites: the Bursera simaruba example. Ecology 68:77–81

    Article  Google Scholar 

  • Swaine MD, Hawthorne WD, Bongers F, Toldedo MA (2005) Climbing plants in Ghanaian forest. In: Bongers F, Parren MPE, Trare D (eds) Forest climbing plants of West Africa: diversity, ecology and management. CAB Internat, Wallingford, pp 19–39

    Google Scholar 

  • Taylor TN, Millay MA (1981) Morphologic variability of Pennsylvanian lyginopterid seed ferns. Rev Palaeobot Palynol 32:27–62

    Article  Google Scholar 

  • Teramura AH, Gold WG, Forseth IN (1991) Physiological ecology of mesic, temperate woody vines. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, MA, pp 245–285

    Google Scholar 

  • Tomescu AMF, Rothwell GW, Mapes G (2001) Lyginopteris royalii sp. nov. from the Upper Mississippian of North America. Rev Palaeobot Palynol 116:159–173

    Article  Google Scholar 

  • Uhl G, Buschbacher R, deSilva GHG (1997) Tree and liana enumeration and diversity on a one-hectare plot in Papua New Guinea. Biotropica 29:250–260

    Article  Google Scholar 

  • Wang ZQ (1999) Gigantonoclea: an enigmatic Permian plant from north China. Palaeontology 42:329–373

    Article  Google Scholar 

  • Wright SJ (2002) Plant diversity in tropical forests of the far east, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Wright SJ, CalderĂłn O, HernandĂ©z A, Paton S (2004) Are lianas increasing in importance in tropical forests? A 17-year record from Panama. Ecology 85:484

    Article  Google Scholar 

Download references

Acknowledgment

Dr. Shiwali Sharma is thankful to DST, for the award of Young Scientist under Fast Track Scheme, SERB (vide no. SB/FT/LS-364/2012), for providing research assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwali Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sharma, S., Shahzad, A. (2016). Climbers: Evolution and Diversification in Angiosperm. In: Shahzad, A., Sharma, S., Siddiqui, S. (eds) Biotechnological strategies for the conservation of medicinal and ornamental climbers. Springer, Cham. https://doi.org/10.1007/978-3-319-19288-8_1

Download citation

Publish with us

Policies and ethics