Skip to main content

Design of a Non-intrusive Augmented Trumpet

  • Conference paper
  • First Online:
Arts and Technology (ArtsIT 2014)

Abstract

This paper describes the design and first prototype implementation of an innovative concept of augmented instruments. The main idea is given by the opportunity offered by cameras and image recognition algorithms, to avoid the use of intrusive and often wired sensors. This latter aspect is indeed one of the main limitations to augmentation since also interested players usually try to avoid “external elements” on their priceless instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is due to the fact that the sum of the length of the two tubes interested where the first two valves are pressed is almost the same of the tube where the air flows when pressing the third valve, see Fig. 1 from [15].

References

  1. http://yamahaden.com/history-of-the-disklavier

  2. Risset, J.-C., Van Duyne, S.: Real-time performance interaction with a computer-controlled acoustic piano. Comput. Music J. 20(1), 62–75 (1996)

    Article  Google Scholar 

  3. Machover, T.: Principal investigator. hyperinstruments - a progress report 1987–1991. MIT Media Laboratory, January 1992

    Google Scholar 

  4. http://www.arts.rpi.edu/~bahnc2/activities/sbass.htm

  5. Burtner, M.: The metasaxophone: concept, implementation and mapping strategies for a new computer music instrument. Organ. Sound J. 7(2), 201–213 (2003)

    Google Scholar 

  6. Miranda, E.R., Wanderley, M.: New Digital Musical Instruments: Control and Interaction Beyond the Keyboard. Computer Music and Digital Audio Series. A-R Editions Inc, Madison, WI, USA (2006)

    Google Scholar 

  7. Lupone, M., Seno, L.: Gran cassa and the adaptive instrument feed-drum. In: Kronland-Martinet, R., Voinier, T., Ystad, S. (eds.) Proceedings of the Third international conference on Computer Music Modeling and Retrieval (CMMR 2005), pp. 149–163. Springer-Verlag, Berlin, Heidelberg (2005)

    Google Scholar 

  8. http://www.crm-music.it

  9. Thibodeau, J., Wanderley, M.M.: Trumpet augmentation and technological symbiosis. Comput. Music J. 37(3), 12–25 (2013)

    Article  Google Scholar 

  10. Cappozzo, A., Catani, F., Croce, U.D., Leardini, A.: Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin. Biomech. 104, 171–178 (1995)

    Article  Google Scholar 

  11. Lähdeoja, O., Wanderley, M.M., Malloch, J.: Instrument Augmentation using ancillary gestures for subtle sonic effects. In: Proceedings of the SMC 2009–6th Sound and Music Computing Conference, 23–25, Porto, Portugal, July 2009

    Google Scholar 

  12. Miriam, K., Sander, K.: Marker-based reconstruction of the kinematics of a chain of segments: a new method that incorporates joint kinematic constraints. J. Biomech. Eng. 132, 074501 (2010). (7 pages)

    Article  Google Scholar 

  13. Barbenel, J.C., Kenny, P., Davies, J.B.: Mouthpiece forces produced while playing the trumpet. J. Biomech. 21(5), 417–419 (1988)

    Article  Google Scholar 

  14. Mayer, A., Bertsch, M.: A new 3D transducer for measuring the trumpet mouthpiece force. In: Proceedings of the 2nd Congress of Alps-Adria Acoustics Association and 1st Congress of Acoustical Society of Croatia, pp. 217–223 (2005)

    Google Scholar 

  15. United States Patent 2181346, Title: Musical Instruments, Inventor: Henri Selmer, 28 November 1939

    Google Scholar 

  16. Freour, V., Scavone, G.: Investigation of the effect of upstream airways impedance on the regeneration of lip oscillations in trombone performance. In: Proceedings of the Acoustics 2012 Nantes Conference, pp. 2225–2230 (2012)

    Google Scholar 

  17. Benoit, D.L., Dan Ramsey, K., Lamontagne, M., Xu, L., Wretenberg, P., Renstrom, P.: Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture 24(2), 152–164 (2006)

    Article  Google Scholar 

  18. Rehg, J.M., Kanade, T.: Model-based tracking of self-occluding articulated objects. In: ICCV, pp. 612–617 (1995)

    Google Scholar 

  19. Rohr, K.: Towards model-based recognition of human movements in image sequences. CVGIP: Image Underst. 74(1), 94–115 (1994)

    Article  Google Scholar 

  20. Microsoft Kinect. http://www.microsoft.com/en-us/kinectforwindows/

  21. Chang, Y.J., Chen, S.F., Huang, J.D.: A Kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. Res. Dev. disabil. 32, 2566–2570 (2011)

    Article  Google Scholar 

  22. Dodge, C., Jerse, T.A.: Computer Music: Synthesis, Composition, and Performance. Schirmer, New York (1997)

    Google Scholar 

  23. Stone, E.E., Skubic, M.: Passive in-home measurement of stride-to-stride gait variability comparing vision and Kinect sensing. In: Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (2011)

    Google Scholar 

  24. Zhang, Z.: Microsoft kinect sensor and its effect. MultiMedia IEEE 19(2), 4–10 (2012)

    Article  Google Scholar 

  25. Synapse for Kinect. http://synapsekinect.tumblr.com/

  26. Fraietta, A.: Open sound control: constraints and limitations. In: Proceedings of NIME 2008, Italy, 5–7 June 2008

    Google Scholar 

  27. Rinaldi, C., Santic, M., Pomante, L., Graziosi, F.: Exploiting latest technologies for rf sounding’s evolution. In: De Michelis, G., Tisato, F., Bene, A., Bernini, D. (eds.) Arts and Technology. LNICST, pp. 33–40. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  28. Max 5. http://cycling74.com/docs/max5/vignettes/intro/docintro.html

  29. Kinect-Via-: Max/MSP Performance Interface Series for Kinect’s User Tracking via OSC. Jon Bellona, University of Oregon Digital Arts Department: LIPAM: Live Interfaces: Performance, Art, Music. Leeds University, Leeds, UK (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Rinaldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Rinaldi, C., Battisti, F., Carli, M., Pomante, L. (2015). Design of a Non-intrusive Augmented Trumpet. In: Brooks, A., Ayiter, E., Yazicigil, O. (eds) Arts and Technology. ArtsIT 2014. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 145. Springer, Cham. https://doi.org/10.1007/978-3-319-18836-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18836-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18835-5

  • Online ISBN: 978-3-319-18836-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics