Skip to main content

Line Operators in Supersymmetric Gauge Theories and the 2d-4d Relation

  • Chapter
  • First Online:
New Dualities of Supersymmetric Gauge Theories

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

Four-dimensional gauge theories with \(\mathcal N=2\) supersymmetry admit half-BPS line operators. We review the exact localization methods for analyzing these operators. We also review the roles they play in the relation between four- and two-dimensional field theories, and explain how the two-dimensional CFT can be used to obtain the quantitative results for 4d line operators. This is a contribution to the special LMP volume on the 2d-4d relation, edited by J. Teschner.

A citation of the form [V:x] refers to article number x in this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaiotto, D.: Families of \({N} =\) 2 field theories

    Google Scholar 

  2. Neitzke, A.: Hitchin systems in \({\cal {N}}=2\) field theory

    Google Scholar 

  3. Tachikawa, Y.: A review on instanton counting and W-algebras

    Google Scholar 

  4. Maruyoshi, K.: \(\beta \)-deformed matrix models and the 2d/4d correspondence

    Google Scholar 

  5. Pestun, V.: Localization for \({\cal {N}}=2\) supersymmetric gauge theories in four dimensions

    Google Scholar 

  6. Okuda, T.: Line operators in supersymmetric gauge theories and the 2d-4d relation

    Google Scholar 

  7. Gukov, S.: Surface operators

    Google Scholar 

  8. Rastelli, L., Razamat, S.: The superconformal index of theories of class \({\cal {S}}\)

    Google Scholar 

  9. Hosomichi, K.: A review on SUSY gauge theories on \(S^3\)

    Google Scholar 

  10. Dimofte, T.: 3d superconformal theories from three-manifolds

    Google Scholar 

  11. Teschner, J.: Supersymmetric gauge theories, quantization of \({\cal {M}}_{\rm {flat}}\), and conformal field theory

    Google Scholar 

  12. Aganagic, M., Shakirov, S.: Gauge/vortex duality and AGT

    Google Scholar 

  13. Krefl, D., Walcher, J.: B-model approaches to instanton counting

    Google Scholar 

Other References

  1. ’t Hooft, G.: On the phase transition towards permanent quark confinement. Nucl. Phys. B138, 1 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  2. Maldacena, J.M.: Wilson loops in large N field theories. Phys. Rev. Lett. 80, 4859–4862 (1998). arXiv:hep-th/9803002

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Rey, S.-J., Yee, J.-T.: Macroscopic strings as heavy quarks in large N gauge theory and anti-de sitter supergravity. Eur. Phys. J. C22, 379–394 (2001). arXiv:hep-th/9803001

    Article  MathSciNet  ADS  Google Scholar 

  4. Erickson, J., Semenoff, G., Zarembo, K.: Wilson loops in N \(=\) 4 supersymmetric Yang-Mills theory. Nucl. Phys. B582, 155–175 (2000). arXiv:hep-th/0003055

    Article  MathSciNet  ADS  Google Scholar 

  5. Drukker, N., Gross, D.J.: An Exact prediction of N \(=\) 4 SUSYM theory for string theory. J. Math. Phys. 42, 2896–2914 (2001). arXiv:hep-th/0010274

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Pestun, V.: Localization of gauge theory on a four-sphere and supersymmetric Wilson loops. Commun. Math. Phys. 313, 71–129 (2012). arXiv:0712.2824

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Witten, E.: Topological quantum field theory. Commun. Math. Phys. 117, 353 (1988)

    Article  ADS  MATH  Google Scholar 

  8. Nekrasov, N.A.: Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2004). arXiv:hep-th/0206161

    Article  MathSciNet  Google Scholar 

  9. Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010). arXiv:0906.3219

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Gukov, S., Witten, E.: Gauge theory, ramification, and the geometric Langlands program. arXiv:hep-th/0612073

  11. Dymarsky, A., Pestun, V.: Supersymmetric Wilson loops in N \(=\) 4 SYM and pure spinors. JHEP 1004, 115 (2010). arXiv:0911.1841

    Article  MathSciNet  ADS  Google Scholar 

  12. Kapustin, A.: Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality. Phys. Rev. D74, 025005 (2006). arXiv:hep-th/0501015

    MathSciNet  ADS  Google Scholar 

  13. Witten, E.: Dyons of charge e theta/2 pi. Phys. Lett. B86, 283–287 (1979)

    Article  ADS  Google Scholar 

  14. Drukker, N., Morrison, D.R., Okuda, T.: Loop operators and S-duality from curves on Riemann surfaces. JHEP 0909, 031 (2009). arXiv:0907.2593

    Article  MathSciNet  ADS  Google Scholar 

  15. Penner, R.C.: The action of the mapping class group on curves in surfaces. Enseign. Math. (2) 30(1–2), 39–55 (1984)

    MathSciNet  MATH  Google Scholar 

  16. Gaiotto, D., Moore, G.W., Neitzke, A.: Framed BPS states. arXiv:1006.0146

  17. Aharony, O., Seiberg, N., Tachikawa, Y.: Reading between the lines of four-dimensional gauge theories. JHEP 1308, 115 (2013). arXiv:1305.0318

    Article  MathSciNet  ADS  Google Scholar 

  18. Kapustin, A., Seiberg, N.: Coupling a QFT to a TQFT and duality. JHEP 1404, 001 (2014). arXiv:1401.0740

    Article  ADS  Google Scholar 

  19. Tachikawa, Y.: On the 6d origin of discrete additional data of 4d gauge theories. JHEP 1405, 020 (2014). arXiv:1309.0697

    Article  ADS  Google Scholar 

  20. Gomis, J., Okuda, T., Pestun, V.: Exact results for ’t Hooft loops in gauge theories on \(S^4\). JHEP 1205, 141 (2012). arXiv:1105.2568

    Article  MathSciNet  ADS  Google Scholar 

  21. Kronheimer, P.: Monopoles and Taub-NUT metrics. M.Sc. thesis Oxford University, 1986, available on the author’s home page

    Google Scholar 

  22. Giombi, S., Pestun, V.: The 1/2 BPS ’t Hooft loops in N \(=\) 4 SYM as instantons in 2d Yang-Mills. J. Phys. A46, 095402 (2013). arXiv:0909.4272

    MathSciNet  ADS  Google Scholar 

  23. Ito, Y., Okuda, T., Taki, M.: Line operators on \(\mathbb{S}^1\times \mathbb{R}^3\) and quantization of the Hitchin moduli space. JHEP 1204, 010 (2012). arXiv:1111.4221

    Article  MathSciNet  ADS  Google Scholar 

  24. Romelsberger, C.: Counting chiral primaries in N \(=\) 1, d \(=\) 4 superconformal field theories. Nucl. Phys. B747, 329–353 (2006). arXiv:hep-th/0510060

    Article  MathSciNet  ADS  Google Scholar 

  25. Kinney, J., Maldacena, J.M., Minwalla, S., Raju, S.: An index for 4 dimensional super conformal theories. Commun. Math. Phys. 275, 209–254 (2007). arXiv:hep-th/0510251

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Dimofte, T., Gaiotto, D., Gukov, S.: 3-manifolds and 3d indices. arXiv:1112.5179

  27. Gang, D., Koh, E., Lee, K.: Line operator index on \(S^{1}\times S^{3}\). JHEP 1205, 007 (2012). arXiv:1201.5539

    Article  MathSciNet  ADS  Google Scholar 

  28. Hama, N., Hosomichi, K.: Seiberg-Witten theories on ellipsoids. JHEP 1209, 033 (2012). arXiv:1206.6359

    Article  MathSciNet  ADS  Google Scholar 

  29. Pestun, V.: Localization of the four-dimensional N \(=\) 4 SYM to a two-sphere and 1/8 BPS Wilson loops. JHEP 1212, 067 (2012). arXiv:0906.0638

    Article  MathSciNet  ADS  Google Scholar 

  30. Drukker, N., Giombi, S., Ricci, R., Trancanelli, D.: Wilson loops: from four-dimensional SYM to two-dimensional YM. Phys. Rev. D77, 047901 (2008). arXiv:0707.2699

    MathSciNet  ADS  Google Scholar 

  31. Giombi, S., Pestun, V.: Correlators of local operators and 1/8 BPS Wilson loops on S**2 from 2d YM and matrix models. JHEP 1010, 033 (2010). arXiv:0906.1572

    Article  MathSciNet  ADS  Google Scholar 

  32. Giombi, S., Pestun, V.: Correlators of Wilson loops and local operators from multi-matrix models and strings in AdS. JHEP 1301, 101 (2013). arXiv:1207.7083

    Article  MathSciNet  ADS  Google Scholar 

  33. Verlinde, E.P.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys. B300, 360 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  34. Moore, G.W., Seiberg, N.: Polynomial equations for rational conformal field theories. Phys. Lett. B212, 451 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  35. Moore, G.W., Seiberg, N.: Naturality in conformal field theory. Nucl. Phys. B313, 16 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  36. Belavin, A., Polyakov, A.M., Zamolodchikov, A.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B241, 333–380 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  37. Alday, L.F., Gaiotto, D., Gukov, S., Tachikawa, Y., Verlinde, H.: Loop and surface operators in N \(=\) 2 gauge theory and Liouville modular geometry. JHEP 1001, 113 (2010). arXiv:0909.0945

    Article  MathSciNet  ADS  Google Scholar 

  38. Drukker, N., Gomis, J., Okuda, T., Teschner, J.: Gauge theory loop operators and Liouville theory. JHEP 1002, 057 (2010). arXiv:0909.1105

    Article  MathSciNet  ADS  Google Scholar 

  39. Teschner, J., Vartanov, G.: 6j symbols for the modular double, quantum hyperbolic geometry, and supersymmetric gauge theories. Lett. Math. Phys. 104, 527–551 (2014). arXiv:1202.4698

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Vartanov, G., Teschner, J.: Supersymmetric gauge theories, quantization of moduli spaces of flat connections, and conformal field theory. arXiv:1302.3778

  41. Gaiotto, D.: N \(=\) 2 dualities. JHEP 1208, 034 (2012). arXiv:0904.2715

    Article  MathSciNet  ADS  Google Scholar 

  42. Wyllard, N.: A(N-1) conformal Toda field theory correlation functions from conformal N \(=\) 2 SU(N) quiver gauge theories. JHEP 0911, 002 (2009). arXiv:0907.2189

    Article  MathSciNet  ADS  Google Scholar 

  43. Drukker, N., Gaiotto, D., Gomis, J.: The virtue of defects in 4D gauge theories and 2D CFTs. JHEP 1106, 025 (2011). arXiv:1003.1112

    Article  MathSciNet  ADS  Google Scholar 

  44. Passerini, F.: Gauge theory Wilson loops and conformal Toda field theory. JHEP 1003, 125 (2010). arXiv:1003.1151

    Article  MathSciNet  ADS  Google Scholar 

  45. Gomis, J., Le Floch, B.: ’t Hooft operators in gauge theory from Toda CFT. JHEP 1111, 114 (2011). arXiv:1008.4139

    Article  ADS  Google Scholar 

  46. Wu, J.-F., Zhou, Y.: From Liouville to Chern-Simons, alternative realization of Wilson loop operators in AGT duality. arXiv:0911.1922

  47. Petkova, V., Zuber, J.: Generalized twisted partition functions. Phys. Lett. B504, 157–164 (2001). arXiv:hep-th/0011021

    Article  MathSciNet  ADS  Google Scholar 

  48. Sarkissian, G.: Defects and permutation branes in the Liouville field theory. Nucl. Phys. B821, 607–625 (2009). arXiv:0903.4422

    Article  MathSciNet  ADS  Google Scholar 

  49. Petkova, V.: On the crossing relation in the presence of defects. JHEP 1004, 061 (2010). arXiv:0912.5535

    Article  ADS  Google Scholar 

  50. Bullimore, M.: Defect networks and supersymmetric loop operators. arXiv:1312.5001

  51. Johansen, A.: Twisting of \(N=1\) SUSY gauge theories and heterotic topological theories. Int. J. Mod. Phys. A10, 4325–4358 (1995). arXiv:hep-th/9403017

    Article  MathSciNet  ADS  Google Scholar 

  52. Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1, 1–236 (2007). arXiv:hep-th/0604151

    Article  MathSciNet  MATH  Google Scholar 

  53. Kapustin, A.: Holomorphic reduction of N \(=\) 2 gauge theories, Wilson-’t Hooft operators, and S-duality. arXiv:hep-th/0612119

  54. Kapustin, A., Saulina, N.: The algebra of Wilson-’t Hooft operators. Nucl. Phys. B814, 327–365 (2009). arXiv:0710.2097

    Article  MathSciNet  ADS  Google Scholar 

  55. Saulina, N.: A note on Wilson-’t Hooft operators. Nucl. Phys. B857, 153–171 (2012). arXiv:1110.3354

    Article  MathSciNet  ADS  Google Scholar 

  56. Moraru, R., Saulina, N.: OPE of Wilson-’t Hooft operators in N=4 and N=2 SYM with gauge group G=PSU(3). arXiv:1206.6896

  57. Xie, D.: Higher laminations, webs and N \(=\) 2 line operators. arXiv:1304.2390

  58. Xie, D.: Aspects of line operators of class S theories. arXiv:1312.3371

  59. Cirafici, M.: Line defects and (framed) BPS quivers. JHEP 1311, 141 (2013). arXiv:1307.7134

    Article  ADS  Google Scholar 

  60. Saulina, N.: Spectral networks and higher web-like structures. arXiv:1409.2561

  61. Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing, Hitchin systems, and the WKB approximation. arXiv:0907.3987

  62. Bershadsky, M., Johansen, A., Sadov, V., Vafa, C.: Topological reduction of 4-d SYM to 2-d sigma models. Nucl. Phys. B448, 166–186 (1995). arXiv:hep-th/9501096

    Article  MathSciNet  ADS  Google Scholar 

  63. Nekrasov, N., Witten, E.: The omega deformation, branes, integrability, and Liouville theory. JHEP 1009, 092 (2010). arXiv:1002.0888

    Article  MathSciNet  ADS  Google Scholar 

  64. Kapustin, A.: A-branes and noncommutative geometry. arXiv:hep-th/0502212

  65. Cordova, C., Neitzke, A.: Line defects, tropicalization, and multi-centered quiver quantum mechanics. arXiv:1308.6829

Download references

Acknowledgments

I am grateful to my collaborators for enlightening discussions on this subject. I also thank N. Drukker and the referee in this project for useful comments on drafts. This research is supported in part by Grant-in-Aid for Young Scientists (B) No. 23740168 and by Grant-in-Aid for Scientific Research (B) No. 25287049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Okuda .

Editor information

Editors and Affiliations

Appendix: Summary of Relevant Facts

Appendix: Summary of Relevant Facts

1.1 Class \(\mathcal S\) Theories of Type \(A_1\)

The low-energy theory in the world-volume of two M5-branes is a six-dimensional \({\mathcal N}=(0,2)\) supersymmetric theory with no known Lagrangian description. An \(A_1\)-theory of class \(\mathcal S\) is believed to arise by compactifying the six-dimensional theory on the Riemann surface \(C_{g,n}\) of genus g with n punctures, with each puncture carrying a codimension-two defect of the (0, 2) theory ([41, 61], [V:2]). The \(A_1\)-theories of class \(\mathcal S\) provide basic examples of 2d-4d correspondence.

A weakly coupled description of such a theory may be encoded in a choice of decomposition of \(C_{g,n}\) into \(3g-3+n\) pairs of pants, and a trivalent graph \(\Gamma \) drawn on \(C_{g,n}\). Each pair of pants contains one vertex, and three edges come out through distinct boundary components (pants legs). An example is shown in Fig. 1a. We allow a pants leg to degenerate to a puncture. The graph \(\Gamma \) has \(3g-3+n\) internal edges and n external edges ending on the punctures. The field content in this description of the \(\mathcal{N}=2\) theory can be read off from \(\Gamma \) by associating to each internal edge an \(\textit{SU}(2)\) gauge group and to each vertex eight half-hypermultiplets in the trifundamental representation of the \(\textit{SU}(2)^3\) group associated to the three attached edges. When the edge is external the \(\textit{SU}(2)\) symmetry corresponds to a flavor symmetry. A change of pants decomposition and \(\Gamma \) corresponds to a S-duality transformation.

1.2 Liouville Theory

Liouville field theory is formally defined by the path integral over a single real field \(\phi \) weighted by \(e^{-S}\), where

$$\begin{aligned} S=\frac{1}{4\pi } \int _C \left( \partial ^\mu \phi \partial _\mu \phi +4\pi \mu e^{2b\phi }+QR \phi \right) . \end{aligned}$$
(57)

Here R is the scalar curvature, and \(Q=b+1/b\) parametrizes the central charge \(c=1+6Q^2\). The “cosmological constant” \(\mu \) can be absorbed into a shift of \(\phi \), and affects the theory in a very mild way. Liouville theory is a non-rational CFT, meaning that it contains infinitely many representations of the Virasoro algebra. The spectrum of representations is continuous, and the conformal dimension \(\Delta \) is parametrized by the Liouville momentum \(\alpha \in Q/2+i\mathbb R_{\ge 0}\) as \(\Delta =\alpha (Q-\alpha )\). We denote the corresponding primary field by \(V_\alpha \).

Fusion move coefficients \(F_{s_1 s_2}=F_{s_1 s_2} \big [{\begin{matrix} \alpha _3 &{} -b/2\\ \alpha _4 &{} \alpha _1 \end{matrix}}\big ]\) in (39) are explicitly known:

$$\begin{aligned} \begin{aligned} F_{++}&=\frac{\Gamma (b(2\alpha _1-b))\Gamma (b(b-2\alpha _3)+1)}{\Gamma (b(\alpha _1-\alpha _3-\alpha _4+b/2)+1)\Gamma (b(\alpha _1-\alpha _3+\alpha _4-b/2))}, \\&\quad \,\text {etc.} \end{aligned} \end{aligned}$$
(58)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Okuda, T. (2016). Line Operators in Supersymmetric Gauge Theories and the 2d-4d Relation. In: Teschner, J. (eds) New Dualities of Supersymmetric Gauge Theories. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-18769-3_7

Download citation

Publish with us

Policies and ethics