Skip to main content

Modelling and Forecasting Daily Electricity Load via Curve Linear Regression

  • Conference paper
Modeling and Stochastic Learning for Forecasting in High Dimensions

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 217))

Abstract

In this paper, we discuss the problem of short-term electricity load forecasting by regarding electricity load on each day as a curve. The dependence between successive daily loads and other relevant factors such as temperature, is modelled via curve linear regression where both the response and the regressor are functional (curves). The key ingredient of the proposed method is the dimension reduction based on the singular value decomposition in a Hilbert space, which reduces the curve linear regression problem to several ordinary (i.e. scalar) linear regression problems. This method has previously been adopted in the hybrid approach proposed by Cho et al. (J Am Stat Assoc 108:7–21, 2013) for the same purpose, where the curve linear regression modelling was applied to the data after the trend and the seasonality were removed by a generalised additive model fitted at the weekly level. We show that classifying the successive daily loads prior to curve linear regression removes the necessity of such a two-stage approach as well as resulting in reducing the forecasting error by a great margin. The proposed methodology is illustrated using the electricity load dataset collected between 2007 and mid-2012, on which it is compared to the hybrid approach and other available competitors. Finally, various ways for improving the forecasting performance of the curve linear regression technique are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoniadis, A., Brossat, X., Cugliari, J., & Poggi, J. M. (2013). Functional clustering using wavelets. International Journal of Wavelets, Multiresolution and Information Processing, 11, 1350003(30 pages).

    Article  MathSciNet  Google Scholar 

  2. Bathia, N., Yao, Q., & Ziegelmann, F. (2010). Identifying the finite dimensionality of curve time series. Annals of Statistics, 38, 3352–3386.

    Article  MATH  MathSciNet  Google Scholar 

  3. Bosq, D. (2000). Linear processes in function spaces: Theory and applications (Lecture Notes in Statistics, Vol 149). New York: Springer.

    Book  Google Scholar 

  4. Bruhns, A., Deurveilher, G., & Roy, J. S. (2005). A non linear regression model for mid-term load forecasting and improvements in seasonality. In Proceedings of the 15th power systems computation conference, Liège (pp. 22–26).

    Google Scholar 

  5. Chiou, J. M., & Li, P. L. (2007). Functional clustering and identifying substructures of longitudinal data. Journal of the Royal Statistical Society: Series B, 69, 679–699.

    Article  MathSciNet  Google Scholar 

  6. Cho, H., Goude, Y., Brossat, X., & Yao, Q. (2013). Modelling and forecasting daily electricity load curves: A hybrid approach. Journal of the American Statistical Association, 108, 7–21.

    Article  MATH  MathSciNet  Google Scholar 

  7. Cugliari, J. (2011). Prévision non paramétrique de processus à valeurs fonctionnelles: Application à la consommation d’électricité. PhD thesis. University Paris XI, Paris, France.

    Google Scholar 

  8. Devaine, M., Gaillard, P., Goude, Y., & Stoltz, G. (2013). Forecasting electricity consumption by aggregating specialized experts. Machine Learning, 90, 231–260.

    Article  MATH  MathSciNet  Google Scholar 

  9. Dordonnat, V., Koopman, S. J., Ooms, M., Dessertaine, A., Collet, J. (2008). An hourly periodic state space model for modelling french national electricity load. International Journal of Forecasting, 24, 566–587.

    Article  Google Scholar 

  10. Dordonnat, V., Koopman, S. J., Ooms, M., Dessertaine, A., & Collet, J. (2012). Dynamic factors in periodic time-varying regressions with an application to hourly electricity load modelling. Computational Statistics and Data Analysis, 56, 3134–3152.

    Article  MATH  MathSciNet  Google Scholar 

  11. Fan, S., & Hyndman, R. J. (2012). Short-term load forecasting based on a semi-parametric additive model. IEEE Transactions on Power Systems, 27, 134–141.

    Article  Google Scholar 

  12. Hall, P., & Horowitz, J. L. (2007). Methodology and convergence rates for functional linear regression. Annals of Statistics, 35, 70–91.

    Article  MATH  MathSciNet  Google Scholar 

  13. Hall, P., & Vial, C. (2006). Assessing the finite dimensionality of functional data. Journal of the Royal Statistical Society: Series B, 68, 689–705.

    Article  MATH  MathSciNet  Google Scholar 

  14. Hallin, M., & Liška, R. (2007). Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102, 603–617.

    Article  MATH  MathSciNet  Google Scholar 

  15. He, G., Müller, H. G., Wang, J. L., & Yang, W. (2010). Functional linear regression via canonical analysis. Bernoulli, 16, 705–729.

    Article  MATH  MathSciNet  Google Scholar 

  16. James, G. M., & Sugar, C. A. (2003). Clustering for sparsely sampled functional data. Journal of the American Statistical Association, 98, 397–408.

    Article  MATH  MathSciNet  Google Scholar 

  17. Lam, C., & Yao, Q. (2012). Factor modelling for high-dimensional time series: inference for the number of factors. Annals of Statistics, 40, 694–726.

    Article  MATH  MathSciNet  Google Scholar 

  18. Nedellec, R., Cugliari, J., & Goude, Y. (2014). Gefcom2012: Electricity load forecasting and backcasting with semi-parametric models. International Journal of Forecasting, 30(2), 375–381.

    Article  Google Scholar 

  19. Pierrot, A., & Goude, Y. (2011). Short-term electricity load forecasting with generalized additive models. In Proceedings of the 16th international conference on intelligent system application to power systems, Hersonissos (pp. 22–26)

    Google Scholar 

  20. Ramsay, J. O., & Dalzell, C. J. (1991). Some tools for functional data analysis. Journal of the Royal Statistical Society: Series B, 53, 539–572.

    MATH  MathSciNet  Google Scholar 

  21. Ray, S., & Mallick, B. (2006). Functional clustering by bayesian wavelet methods. Journal of the Royal Statistical Society: Series B, 68, 305–332.

    Article  MATH  MathSciNet  Google Scholar 

  22. Serban, N., & Wasserman, L. (2005). CATS: Clustering after transformation and smoothing. Journal of the American Statistical Association, 100, 990–999.

    Article  MATH  MathSciNet  Google Scholar 

  23. Smithies, F. (1937). The eigenvalues and singular values of integral equations. Proceedings of the London mathematical society, 43(2), 255–279.

    MathSciNet  Google Scholar 

  24. Wood, S., Goude, Y., & Shaw, S. (2015). Generalized additive models for large datasets. Journal of Royal Statistical Society: Series C, 64(1), 139–155.

    Article  Google Scholar 

  25. Yao, F., Müller, H. G., & Wang, J. L. (2005). Functional linear regression analysis for longitudinal data. Annals of Statistics, 33, 2873–2903.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haeran Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cho, H., Goude, Y., Brossat, X., Yao, Q. (2015). Modelling and Forecasting Daily Electricity Load via Curve Linear Regression. In: Antoniadis, A., Poggi, JM., Brossat, X. (eds) Modeling and Stochastic Learning for Forecasting in High Dimensions. Lecture Notes in Statistics(), vol 217. Springer, Cham. https://doi.org/10.1007/978-3-319-18732-7_3

Download citation

Publish with us

Policies and ethics