Skip to main content

TRP Channels in Transduction for Responses to Odorants and Pheromones

  • Chapter
  • First Online:
TRP Channels in Sensory Transduction

Abstract

Transient receptor potential cation channel, subfamily C, member 2 (TRPC2) is a TRP channel expressed by sensory neurons in the vomeronasal organ. Clearly the TRPC2 channel is critically important for transduction in the vomeronasal sensory neurons. However, it appears that TRPC2 is not the only channel that mediates chemical transduction in the VNO. In addition the transient receptor potential channel M5 (TRPM5) is expressed in approximately 5 % of the olfactory sensory neurons in the main olfactory epithelium where it plays a role in responding to intraspecific semiochemicals (chemicals involved in animal communication of the same species). Interestingly, TRPC2 is expressed in rodents but not in humans, whereas TRPM5 is expressed in the human raising the question for future work whether this TRP channel is involved in human semiochemical transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Axel R (2005) Scents and sensibility: a molecular logic of olfactory perception (Nobel lecture). Angew Chem Int Ed Engl 44:6110–6127

    Article  PubMed  Google Scholar 

  • Bacigalupo J (2014) Chapter this book

    Google Scholar 

  • Bakalyar HA, Reed RR (1990) Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250:1403–1406

    Article  CAS  PubMed  Google Scholar 

  • Baker H, Cummings DM, Munger SD, Margolis JW, Franzen L, Reed RR, Margolis FL (1999) Targeted deletion of a cyclic nucleotide-gated channel subunit (OCNC1): biochemical and morphological consequences in adult mice. J Neurosci 19:9313–9321

    CAS  PubMed  Google Scholar 

  • Barham HP, Cooper SE, Anderson CB, Tizzano M, Kingdom TT, Finger TE, Kinnamon SC, Ramakrishnan VR (2013) Solitary chemosensory cells and bitter taste receptor signaling in human sinonasal mucosa. Int Forum Allergy Rhinol 3:450–457

    Google Scholar 

  • Baum MJ (2012) Contribution of pheromones processed by the main olfactory system to mate recognition in female mammals. Front Neuroanat 6:20

    PubMed  Google Scholar 

  • Baum MJ, Bakker J (2013) Roles of sex and gonadal steroids in mammalian pheromonal communication. Front Neuroendocrinol 34:268–284

    Article  CAS  PubMed  Google Scholar 

  • Bellringer JF, Pratt HP, Keverne EB (1980) Involvement of the vomeronasal organ and prolactin in pheromonal induction of delayed implantation in mice. J Reprod Fertil 59:223–228

    Article  CAS  PubMed  Google Scholar 

  • Berghard A, Buck LB (1996) Sensory transduction in vomeronasal neurons: evidence for G alpha o, G alpha i2, and adenylyl cyclase II as major components of a pheromone signaling cascade. J Neurosci 16:909–918

    CAS  PubMed  Google Scholar 

  • Billig GM, Pal B, Fidzinski P, Jentsch TJ (2011) Ca(2+)-activated Cl(−) currents are dispensable for olfaction. Nat Neurosci 14:763–769

    Article  CAS  PubMed  Google Scholar 

  • Breer H, Boekhoff I, Tareilus E (1990) Rapid kinetics of second messenger formation in olfactory transduction. Nature 345:65–68

    Article  CAS  PubMed  Google Scholar 

  • Brennan PA, Keverne EB (2004) Something in the air? New insights into mammalian pheromones. Curr Biol 14:R81–89

    Article  CAS  PubMed  Google Scholar 

  • Brunet LJ, Gold GH, Ngai J (1996) General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 17:681–693

    Article  CAS  PubMed  Google Scholar 

  • Buck LB (2005) Unraveling the sense of smell (Nobel lecture). Angew Chem Int Ed Engl 44:6128–6140

    Article  CAS  PubMed  Google Scholar 

  • Burke SM, Veltman DJ, Gerber J, Hummel T, Bakker J (2012) Heterosexual men and women both show a hypothalamic response to the chemo-signal androstadienone. PLoS One 7:e40993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cinelli AR, Wang D, Chen P, Liu W, Halpern M (2002) Calcium transients in the garter snake vomeronasal organ. J Neurophysiol 87:1449–1472

    CAS  PubMed  Google Scholar 

  • Damak S, Rong M, Yasumatsu K, Kokrashvili Z, Perez CA, Shigemura N, Yoshida R, Mosinger B Jr, Glendinning JI, Ninomiya Y, Margolskee RF (2006) Trpm5 null mice respond to bitter, sweet, and umami compounds. Chem Senses 31:253–264

    Article  CAS  PubMed  Google Scholar 

  • Delgado R, Munoz Y, Pena-Cortez H, Givalisco P, Bacigalupo J (2014) Diacylglycerol activates the light-dependent channels TRP and TRPL in the photosensitive microvilli of Drosophila melanogaster photoreceptors. J Neurosci 34:6679–6686

    Google Scholar 

  • Dorries KM, Adkins-Regan E, Halpern BP (1995) Olfactory sensitivity to the pheromone, androstenone, is sexually dimorphic in the pig. Physiol Behav 57:255–259

    Article  CAS  PubMed  Google Scholar 

  • Dulac C, Torello AT (2003) Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat Rev Neurosci 4:551–562

    Article  CAS  PubMed  Google Scholar 

  • Finger TE, Bottger B, Hansen A, Anderson KT, Alimohammadi H, Silver WL (2003) Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci U S A 100:8981–8986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frings S, Seifert R, Godde M, Kaupp UB (1995) Profoundly different calcium permeation and blockage determine the specific function of distinct cyclic nucleotide-gated channels. Neuron 15:169–179

    Article  CAS  PubMed  Google Scholar 

  • Gelstein S, Yeshurun Y, Rozenkrantz L, Shushan S, Frumin I, Roth Y, Sobel N (2011) Human tears contain a chemosignal. Science 331:226–230

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Silva C, Vera J, Bono MR, Gonzalez-Billault C, Baxter B, Hansen A, Lopez R, Gibson EA, Restrepo D, Bacigalupo J (2013) Ca2+ -activated Cl− channels of the ClCa family express in the cilia of a subset of rat olfactory sensory neurons. PLoS One 8:e69295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halpern M, Martinez-Marcos A (2003) Structure and function of the vomeronasal system: an update. Prog Neurobiol 70:245–318

    Article  CAS  PubMed  Google Scholar 

  • Hardie RC (2007) Vision: dynamic platforms. Nature 450:37–39

    Article  CAS  PubMed  Google Scholar 

  • Hardie RC, Postma PM (2008) Phototransduction in microvillar photoreceptors of Drosophila and other invertebrates. Elsevier, Cambridge

    Book  Google Scholar 

  • Hasen NS, Gammie SC (2009) Trpc2 gene impacts on maternal aggression, accessory olfactory bulb anatomy and brain activity. Genes Brain Behav 8:639–649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inamura K, Kashiwayanagi M, Kurihara K (1997) Blockage of urinary responses by inhibitors for IP3-mediated pathway in rat vomeronasal sensory neurons. Neurosci Lett 233:129–132

    Article  CAS  PubMed  Google Scholar 

  • Iwata T, Nakada T, Toyoda F, Yada T, Shioda S, Kikuyama S (2013) Responsiveness of vomeronasal cells to a newt peptide pheromone, sodefrin as monitored by changes of intracellular calcium concentrations. Peptides 45:15–21

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Reed RR (1989) Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science 244:790–795

    Article  CAS  PubMed  Google Scholar 

  • Jungnickel MK, Marrero H, Birnbaumer L, Lemos JR, Florman HM (2001) Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat Cell Biol 3:499–502

    Article  CAS  PubMed  Google Scholar 

  • Kang N, Baum MJ, Cherry JA (2009) A direct main olfactory bulb projection to the ‘vomeronasal’ amygdala in female mice selectively responds to volatile pheromones from males. Eur J Neurosci 29:624–634

    Article  PubMed Central  PubMed  Google Scholar 

  • Kang N, Baum MJ, Cherry JA (2011) Different profiles of main and accessory olfactory bulb mitral/tufted cell projections revealed in mice using an anterograde tracer and a whole-mount, flattened cortex preparation. Chem Senses 36:251–260

    Article  PubMed Central  PubMed  Google Scholar 

  • Karlson P, Luscher M (1959) Pheromones’: a new term for a class of biologically active substances. Nature 183:55–56

    Article  CAS  PubMed  Google Scholar 

  • Kaske S, Krasteva G, Konig P, Kummer W, Hofmann T, Gudermann T, Chubanov V (2007) TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells. BMC Neurosci 8:49

    Article  PubMed Central  PubMed  Google Scholar 

  • Keller A, Zhuang H, Chi Q, Vosshall LB, Matsunami H (2007) Genetic variation in a human odorant receptor alters odour perception. Nature 449:468–472

    Article  CAS  PubMed  Google Scholar 

  • Kelliher KR, Spehr M, Li XH, Zufall F, Leinders-Zufall T (2006) Pheromonal recognition memory induced by TRPC2-independent vomeronasal sensing. Eur J Neurosci 23:3385–3390

    Article  PubMed  Google Scholar 

  • Kim S, Ma L, Yu CR (2011) Requirement of calcium-activated chloride channels in the activation of mouse vomeronasal neurons. Nat Commun 2:365

    Article  PubMed Central  PubMed  Google Scholar 

  • Kimchi T, Xu J, Dulac C (2007) A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Kiselyov K, van Rossum DB, Patterson RL (2010) TRPC channels in pheromone sensing. Vitam Horm 83:197–213

    Article  CAS  PubMed  Google Scholar 

  • Kleene SJ, Gesteland RC (1991) Calcium-activated chloride conductance in frog olfactory cilia. J Neurosci 11:3624–3629

    CAS  PubMed  Google Scholar 

  • Kusumakshi S, Voigt A, Hubner S, Hermans-Borgmeyer I, Ortalli A, Pyrski M et al. (2015) A binary genetic approach to characterize TRPM5 cells in mice. Chem Senses e-pub ahead of print.

    Google Scholar 

  • Kurahashi T, Yau KW (1993) Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells. Nature 363:71–74

    Article  CAS  PubMed  Google Scholar 

  • Leypold BG, Yu CR, Leinders-Zufall T, Kim MM, Zufall F, Axel R (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci U S A 99:6376–6381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liberles SD, Buck LB (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature 442:645–650

    Article  CAS  PubMed  Google Scholar 

  • Liman ER (2003) Regulation by voltage and adenine nucleotides of a Ca2+ -activated cation channel from hamster vomeronasal sensory neurons. J Physiol 548:777–787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liman ER (2007) TRPM5 and taste transduction. Handb Exp Pharmacol 179:287–298

    Google Scholar 

  • Liman ER, Corey DP (1996) Electrophysiological characterization of chemosensory neurons from the mouse vomeronasal organ. J Neurosci 16:4625–4637

    CAS  PubMed  Google Scholar 

  • Liman ER, Innan H (2003) Relaxed selective pressure on an essential component of pheromone transduction in primate evolution. Proc Natl Acad Sci U S A 100:3328–3332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liman ER, Corey DP, Dulac C (1999) TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci U S A 96:5791–5796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin W, Margolskee R, Donnert G, Hell SW, Restrepo D (2007) Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals. Proc Natl Acad Sci U S A 104:2471–2476

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Ezekwe EA Jr, Zhao Z, Liman ER, Restrepo D (2008a) TRPM5-expressing microvillous cells in the main olfactory epithelium. BMC Neurosci 9:114

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin W, Ogura T, Margolskee RF, Finger TE, Restrepo D (2008b) TRPM5-expressing solitary chemosensory cells respond to odorous irritants. J Neurophysiol 99:1451–1460

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Luo W, Restrepo D (2014) Lethal phenotype in newborns with knockout of both TRPM5 and CNGA2. Open Biology

    Google Scholar 

  • Lopez F, Delgado R, Lopez R, Bacigalupo J, Restrepo D (2014) Transduction for pheromones in the main olfactory epithelium is mediated by the Ca2+- activated channel TRPM5. J Neurosci 34(9):3268–3278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lowe G, Gold GH (1993) Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature 366:283–286

    Article  CAS  PubMed  Google Scholar 

  • Lowe G, Nakamura T, Gold GH (1989) Adenylate cyclase mediates olfactory transduction for a wide variety of odorants. Proc Natl Acad Sci U S A 86:5641–5645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lucas P, Ukhanov K, Leinders-Zufall T, Zufall F (2003) A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40:551–561

    Article  CAS  PubMed  Google Scholar 

  • Ma M (2010) Multiple olfactory subsystems convey various sensory signals. In: Menini A (ed) The neurobiology of olfaction. CRC Press, Boca Raton

    Google Scholar 

  • Ma M (2012) Odor and pheromone sensing via chemoreceptors. Adv Exp Med Biol 739:93–106

    Article  CAS  PubMed  Google Scholar 

  • Menco BP (1997) Ultrastructural aspects of olfactory signaling. Chem Senses 22:295–311

    Article  CAS  PubMed  Google Scholar 

  • Minke B, Parnas M (2006) Insights on TRP channels from in vivo studies in Drosophila. Annu Rev Physiol 68:649–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R (1996) Visualizing an olfactory sensory map. Cell 87:675–686

    Article  CAS  PubMed  Google Scholar 

  • Munger SD, Leinders-Zufall T, Zufall F (2009) Subsystem organization of the mammalian sense of smell. Annu Rev Physiol 71:115–140

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Gold GH (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325:442–444

    Article  CAS  PubMed  Google Scholar 

  • Ogura T, Krosnowski K, Zhang L, Bekkerman M, Lin W (2010) Chemoreception regulates chemical access to mouse vomeronasal organ: role of solitary chemosensory cells. PLoS One 5:e11924

    Article  PubMed Central  PubMed  Google Scholar 

  • Ogura T, Szebenyi SA, Krosnowski K, Sathyanesan A, Jackson J, Lin W (2011) Cholinergic microvillous cells in the mouse main olfactory epithelium and effect of acetylcholine on olfactory sensory neurons and supporting cells. J Neurophysiol 106:1274–1287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oshimoto A, Wakabayashi Y, Garske A, Lopez R, Rolen S, Flowers M et al. (2013) Potential role of transient receptor potential channel M5 in sensing putative pheromones in mouse olfactory sensory neurons. PLoS One 8, e61990.

    Google Scholar 

  • Pro-Sistiaga P, Mohedano-Moriano A, Ubeda-Banon I, Del Mar Arroyo-Jimenez M, Marcos P, Artacho-Perula E, Crespo C, Insausti R, Martinez-Marcos A (2007) Convergence of olfactory and vomeronasal projections in the rat basal telencephalon. J Comp Neurol 504:346–362

    Article  PubMed  Google Scholar 

  • Rasche S, Toetter B, Adler J, Tschapek A, Doerner JF, Kurtenbach S, Hatt H, Meyer H, Warscheid B, Neuhaus EM (2010) Tmem16b is specifically expressed in the cilia of olfactory sensory neurons. Chem Senses 35:239–245

    Article  CAS  PubMed  Google Scholar 

  • Runnenburger K, Breer H, Boekhoff I (2002) Selective G protein beta gamma-subunit compositions mediate phospholipase C activation in the vomeronasal organ. Eur J Cell Biol 81:539–547

    Article  PubMed  Google Scholar 

  • Saxton TK, Lyndon A, Little AC, Roberts SC (2008) Evidence that androstadienone, a putative human chemosignal, modulates women’s attributions of men’s attractiveness. Horm Behav 54:597–601

    Article  CAS  PubMed  Google Scholar 

  • Schild D, Restrepo D (1998) Transduction mechanisms in vertebrate olfactory receptor cells. Physiol Rev 78:429–466

    CAS  PubMed  Google Scholar 

  • Spehr M, Hatt H, Wetzel CH (2002) Arachidonic acid plays a role in rat vomeronasal signal transduction. J Neurosci 22:8429–8437

    CAS  PubMed  Google Scholar 

  • Stephan AB, Shum EY, Hirsh S, Cygnar KD, Reisert J, Zhao H (2009) ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci U S A 106:11776–11781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stohr H, Heisig JB, Benz PM, Schoberl S, Milenkovic VM, Strauss O, Aartsen WM, Wijnholds J, Weber BH, Schulz HL (2009) TMEM16B, a novel protein with calcium-dependent chloride channel activity, associates with a presynaptic protein complex in photoreceptor terminals. J Neurosci 29:6809–6818

    Article  PubMed  Google Scholar 

  • Stowers L, Holy TE, Meister M, Dulac C, Koentges G (2002) Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295:1493–1500

    Article  CAS  PubMed  Google Scholar 

  • Talavera K, Yasumatsu K, Voets T, Droogmans G, Shigemura N, Ninomiya Y, Margolskee RF, Nilius B (2005) Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438:1022–1025

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi M, Kashiwayanagi M, Kurihara K (1995) Intracellular injection of inositol 1,4,5-trisphosphate increases a conductance in membranes of turtle vomeronasal receptor neurons in the slice preparation. Neurosci Lett 188:5–8

    Article  CAS  PubMed  Google Scholar 

  • Teicher MH, Stewart WB, Kauer JS, Shepherd GM (1980) Suckling pheromone stimulation of a modified glomerular region in the developing rat olfactory bulb revealed by the 2-deoxyglucose method. Brain Res 194:530–535

    Article  CAS  PubMed  Google Scholar 

  • Thompson JA, Salcedo E, Restrepo D, Finger TE (2012) Second-order input to the medial amygdala from olfactory sensory neurons expressing the transduction channel TRPM5. J Comp Neurol 520:1819–1830

    Article  PubMed Central  PubMed  Google Scholar 

  • Tizzano M, Finger TE (2013) Chemosensors in the nose: guardians of the airways. Physiology (Bethesda) 28:51–60

    Article  CAS  Google Scholar 

  • Trotier D (2011) Vomeronasal organ and human pheromones. Eur Ann Otorhinolaryngol Head Neck Dis 128:184–190

    Article  CAS  PubMed  Google Scholar 

  • Vannier B, Peyton M, Boulay G, Brown D, Qin N, Jiang M, Zhu X, Birnbaumer L (1999) Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ entry channel. Proc Natl Acad Sci U S A 96:2060–2064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Z, Storm DR (2011) Maternal behavior is impaired in female mice lacking type 3 adenylyl cyclase. Neuropsychopharmacology 36:772–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Witt M, Hummel T (2006) Vomeronasal versus olfactory epithelium: is there a cellular basis for human vomeronasal perception? Int Rev Cytol 248:209–259

    Article  CAS  PubMed  Google Scholar 

  • Wyart C, Webster WW, Chen JH, Wilson SR, McClary A, Khan RM, Sobel N (2007) Smelling a single component of male sweat alters levels of cortisol in women. J Neurosci 27:1261–1265

    Article  CAS  PubMed  Google Scholar 

  • Wysocki CJ, Preti G (2004) Facts, fallacies, fears, and frustrations with human pheromones. Anat Rec A Discov Mol Cell Evol Biol 281:1201–1211

    Article  PubMed  Google Scholar 

  • Yang C, Delay RJ (2010) Calcium-activated chloride current amplifies the response to urine in mouse vomeronasal sensory neurons. J Gen Physiol 135:3–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yildirim E, Birnbaumer L (2007) TRPC2: molecular biology and functional importance. Handb Exp Pharmacol 179:53–57

    Google Scholar 

  • Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5:124–133

    CAS  PubMed  Google Scholar 

  • Zhang X, Firestein S (2009) Genomics of olfactory receptors. Results Probl Cell Differ 47:25–36

    PubMed  Google Scholar 

  • Zhang JJ, Okutani F, Inoue S, Kaba H (2003a) Activation of the cyclic AMP response element-binding protein signaling pathway in the olfactory bulb is required for the acquisition of olfactory aversive learning in young rats. Neuroscience 117:707–713

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ (2003b) Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112:293–301

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Yang C, Delay RJ (2010) Odors activate dual pathways, a TRPC2 and a AA-dependent pathway, in mouse vomeronasal neurons. Am J Physiol Cell Physiol 298:C1253–C1264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao H, Reed RR (2001) X inactivation of the OCNC1 channel gene reveals a role for activity-dependent competition in the olfactory system. Cell 104:651–660

    Article  CAS  PubMed  Google Scholar 

  • Zufall F (2005) The TRPC2 ion channel and pheromone sensing in the accessory olfactory system. Naunyn Schmiedebergs Arch Pharmacol 371:245–250

    Article  CAS  PubMed  Google Scholar 

  • Zufall F, Ukhanov K, Lucas P, Liman ER, Leinders-Zufall T (2005) Neurobiology of TRPC2: from gene to behavior. Pflugers Arch 451:61–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

FONDECYT 1140520 (JB), DC006828 (WL), DC009269 (WL), DC04657 (DR) and DC006070 (DR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Restrepo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Restrepo, D., Delay, R., Lin, W., López, F., Bacigalupo, J. (2015). TRP Channels in Transduction for Responses to Odorants and Pheromones. In: Madrid, R., Bacigalupo, J. (eds) TRP Channels in Sensory Transduction. Springer, Cham. https://doi.org/10.1007/978-3-319-18705-1_5

Download citation

Publish with us

Policies and ethics