Skip to main content

TRP Channels in Visual Transduction

  • Chapter
  • First Online:
TRP Channels in Sensory Transduction

Abstract

The original members of the superfamily of transient receptor potential channels are the TRP and TRPL channels underlying Drosophila light transduction. Light transduction takes place in the photosensitive microvilli within the photoreceptor cells; it is initiated by photon absorption which leads ultimately to the generation of a depolarizing receptor potential caused by TRP and TRPL channel opening. Channel opening is mediated by a phospholipase C pathway where the membrane second messenger diacylglycerol appears to be the channel activator. TRP is a Ca2+ selective channel responsible for nearly 95 % of the net transduction current, whereas TRPL, a poorly-selective Ca2+ channel, accounts for the difference. The scaffolding protein INAD forms a complex with TRP and other transduction proteins, offering an extremely fast transduction mechanism. TRP and TRPL are also found in the synaptic terminals of the photoreceptors, where they play a role in presynaptic Ca2+ increments during synaptic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arendt D (2008) The evolution of cell types in animals: emerging principles from molecular studies. Nat Rev Genet 9:868–882

    Article  CAS  PubMed  Google Scholar 

  • Arendt D, Wittbrodt J (2001) Reconstructing the eyes of Urbilateria. Philos Trans R Soc Lond B Biol Sci 356:1545–1563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Astorga G, Härtel S, Sanhueza M, Bacigalupo J (2012) TRP, TRPL and cacophony channels mediate Ca2+ influx and exocytosis in photoreceptors axons in Drosophila. PLoS One 7:e44182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bacigalupo J, Johnson EC, Vergara C, Lisman JE (1991) Light-dependent channels from excised patches of Limulus ventral photoreceptors are opened by cGMP. Proc Natl Acad Sci U S A 88:7938–7942

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bloomquist BT, Shortridge RD, Schneuwly S, Perdew M, Montell C, Steller H, Rubin G, Pak WL (1988) Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell 54:723–733

    Article  CAS  PubMed  Google Scholar 

  • Chyb S, Hevers W, Forte M, Wolfgang WJ, Selinger Z, Hardie RC (1999) Modulation of the light response by cAMP in Drosophila photoreceptors. J Neurosci 19:8799–8807

    CAS  PubMed  Google Scholar 

  • Cosens DJ, Manning A (1969) Abnormal electroretinogram from a Drosophila mutant. Nature 224:285–287

    Article  CAS  PubMed  Google Scholar 

  • Delgado R, Bacigalupo J (2009) Unitary recordings of TRP and TRPL channels from isolated Drosophila retinal photoreceptor rhabdomeres: activation by light and lipids. J Neurophysiol 101:2372–2379

    Article  CAS  PubMed  Google Scholar 

  • Delgado R, Muñoz Y, Pena-Cortes H, Giavalisco P, Bacigalupo J (2014) Diacylglycerol activates the light-dependent channel TRP in the photosensitive microvilli of Drosophila melanogaster photoreceptors. J Neurosci 34:6679–6686

    Article  CAS  PubMed  Google Scholar 

  • Estacion M, Sinkins WG, Schilling WP (2001) Regulation of Drosophila transient receptor potential-like (TrpL) channels by phospholipase C-dependent mechanisms. J Physiol 530:1–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Estacion M, Sinkins WG, Jones SW, Applegate MA, Schilling WP (2006) Human TRPC6 expressed in HEK 293 cells forms non-selective cation channels with limited Ca2+ permeability. J Physiol 572:359–377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferrer C, Malagón G, Gomez MP, Nasi E (2012) Dissecting the determinants of light sensitivity in amphioxus microvillar photoreceptors: possible evolutionary implications for melanopsin signaling. J Neurosci 32:17977–17987

    Article  CAS  PubMed  Google Scholar 

  • Garger AV, Richard EA, Lisman JE (2004) The excitation cascade of Limulus ventral photoreceptors: guanylate cyclase as the link between InsP3-mediated Ca2+ release and the opening of cGMP-gated channels. BMC Neurosci 5:7

    Article  PubMed Central  PubMed  Google Scholar 

  • Gomez MP, Nasi E (1994) The light-sensitive conductance of hyperpolarizing invertebrate photoreceptors: a patch-clamp study. J Gen Physiol 103:939–956

    Article  CAS  PubMed  Google Scholar 

  • Hardie RC (2014) Photosensitive TRPs. Handb Exp Pharmacol 223:795–826

    Article  CAS  PubMed  Google Scholar 

  • Hardie RC, Franze K (2012) Photomechanical responses in Drosophila photoreceptors. Science 338:260–263

    Article  CAS  PubMed  Google Scholar 

  • Hardie RC, Minke B (1992) The trp gene is essential for a light activated Ca2+ channel in Drosophila photoreceptors. Neuron 8:643–651

    Article  CAS  PubMed  Google Scholar 

  • Hicks JL, Liu X, Williams DS (1996) Role of the ninaC proteins in photoreceptor cell structure: ultrastructure of ninaC deletion mutants and binding to actin filaments. Cell Motil Cytoskeleton 35:367–379

    Article  CAS  PubMed  Google Scholar 

  • Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Liu CH, Hughes SA, Postma M, Schwiening CJ, Hardie RC (2010) Activation of TRP channels by protons and phosphoinositide depletion in Drosophila photoreceptors. Curr Biol 20:189–197

    Article  CAS  PubMed  Google Scholar 

  • Katz B, Oberacker T, Richter D, Tzadok H, Peters M, Minke B, Huber A (2013) Drosophila TRP and TRPL are assembled as homomultimeric channels in vivo. J Cell Sci 126:3121–3133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lamb TD (2011) Evolution of the eye. Scientists now have a clear vision of how our notoriously complex eye came to be. Sci Am 305:64–69

    Article  PubMed  Google Scholar 

  • Lenzi D, Crum J, Ellisman MH, Roberts WM (2002) Depolarization redistributes synaptic membrane and creates a gradient of vesicles on the synaptic body at a ribbon synapse. Neuron 36:649–659

    Article  CAS  PubMed  Google Scholar 

  • Leung HT, Tseng-Crank J, Kim E, Mahapatra C, Shino S, Zhou Y, An L, Doerge RW, Pak WL (2008) DAG lipase activity is necessary for TRP channel regulation in Drosophila photoreceptors. Neuron 58:884–896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lev S, Katz B, Minke B (2012) The activity of the TRP-like channel depends on its expression system. Channels (Austin) 6:86–93

    Article  CAS  Google Scholar 

  • Lou D-G, Xue T, Yau K-W (2008) How vision begins: an odyssey. Proc Natl Acad Sci U S A 105:9855–9862

    Article  Google Scholar 

  • Lucas P, Ukhanov K, Leinders-Zufall T, Zufall F (2003) A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40:551–561

    Article  CAS  PubMed  Google Scholar 

  • Masai I, Suzuki E, Yoon CS, Kohyama A, Hotta Y (1997) Immunolocalization of Drosophila eye-specific diacylgylcerol kinase, rdgA, which is essential for the maintenance of the photoreceptor. J Neurobiol 32:695–706

    Article  CAS  PubMed  Google Scholar 

  • Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323

    Article  CAS  PubMed  Google Scholar 

  • Muñoz Y, Fuenzalida K, Bronfman M, Gatica A, Sepulveda M, Bacigalupo J, Roth AD, Delgado R (2013) Fatty acid composition of Drosophila photoreceptor light-sensitive microvilli. Biol Res 46:289–294

    Article  PubMed  Google Scholar 

  • Nasi E, Gomez MP (1992) Light-activated ion channels in solitary photoreceptors of the scallop Pecten irradians. J Gen Physiol 99:747–769

    Article  CAS  PubMed  Google Scholar 

  • Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, Mori Y (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca2+ -permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274:27359–27370

    Article  CAS  PubMed  Google Scholar 

  • Parnas M, Katz B, Lev S, Tzarfaty V, Dadon D, Gordon-Shaag A, Metzner H, Yaka R, Minke B (2009) Membrane lipid modulations remove divalent open channel block from TRP-like and NMDA channels. J Neurosci 29:2371–2383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Payne R, Fein A (1986) The initial response of Limulus ventral photoreceptors to bright flashes. Released calcium as a synergist to excitation. J Gen Physiol 87:243–269

    Article  CAS  PubMed  Google Scholar 

  • Perozo EI, Kloda A, Cortes DM, Martinac B (2002) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9:696–703

    Article  CAS  PubMed  Google Scholar 

  • Provencio I, Rollag MD, Castrucci AM (2002) Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415:493

    Article  CAS  PubMed  Google Scholar 

  • Pulido C, Malagón G, Ferrer C, Chen JK, Angueyra JM, Nasi E, Gomez MP (2012) The light-sensitive conductance of melanopsin-expressing Joseph and Hesse cells in amphioxus. J Gen Physiol 139:19–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reuss H, Mojet MH, Chyb S, Hardie RC (1997) In vivo analysis of the Drosophila light-sensitive channels, TRP and TRPL. Neuron 19:1249–1259

    Article  CAS  PubMed  Google Scholar 

  • Scott K, Zuker CS (1998) Assembly of the Drosophila phototransduction cascade into a signalling complex shapes elementary responses. Nature 395:805–808

    Article  CAS  PubMed  Google Scholar 

  • Trebak M, St J Bird G, McKay RR, Birnbaumer L, Putney JW Jr (2003) Signaling mechanism for receptor-activated canonical transient receptor potential 3 (TRPC3) channels. J Biol Chem 278:16244–16252

    Article  CAS  PubMed  Google Scholar 

  • Tsunoda S, Sierralta J, Sun Y, Bodner R, Suzuki E, Becker A, Socolich M, Zuker CS (1997) A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388:243–249

    Article  CAS  PubMed  Google Scholar 

  • Wes PD, Xu XZ, Li HS, Chien F, Doberstein SK, Montell C (1999) Termination of phototransduction requires binding of NINAC myosin III and the PDZ protein INAD. Nat Neurosci 2:447–453

    Article  CAS  PubMed  Google Scholar 

  • Xue T, Do MT, Riccio A, Jiang Z, Hsieh J, Wang HC, Merbs SL, Welsbie DS, Yoshioka T, Weissgerber P, Stolz S, Flockerzi V, Freichel M, Simon MI, Clapham DE, Yau KW (2011) Melanopsin signalling in mammalian iris and retina. Nature 479:67–73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

FONDECYT 1140520 (JB), CONICYT Graduate Fellowship 22110957 (YM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Bacigalupo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bacigalupo, J., Delgado, R., Muñoz, Y., O’Day, P. (2015). TRP Channels in Visual Transduction. In: Madrid, R., Bacigalupo, J. (eds) TRP Channels in Sensory Transduction. Springer, Cham. https://doi.org/10.1007/978-3-319-18705-1_4

Download citation

Publish with us

Policies and ethics