Skip to main content

Multidimensional Bell Inequalities and Quantum Cryptography

  • Conference paper
Codes, Cryptology, and Information Security (C2SI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9084))

  • 1024 Accesses

Abstract

The laws of quantum physics allow the design of cryptographic protocols for which the security is based on physical principles. The main cryptographic quantum protocols are key distribution schemes, in which two parties generate a shared random secret string. The privacy of the key can be checked using Bell inequalities. However, the Bell inequalities initial purpose was a fundamental one, as they showed how quantum rules are incompatible with our intuition of reality.

This paper begins with an introduction about quantum information theory, Bell inequalities, quantum cryptography. Then it presents the use of qudits for Bell inequalities and cryptography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acín, A., Durt, T., Gisin, N., Latorre, J.L.: Quantum non-locality in two three level systems. Physical Review A 65, 52325 (2002)

    Article  Google Scholar 

  2. Amblard, Z., Arnault, F.: A qutrit quantum key distribution protocol with better noise resistance (Submitted)

    Google Scholar 

  3. Arnault, F.: A complete set of multidimensional Bell inequalities. Journal of Physics A, Mathematical and Theoretical 45, 255304 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  5. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, pp. 175–179 (1984)

    Google Scholar 

  6. Chen, J.-L., Kaszlikowski, D., Kwek, L.C., Oh, C.H.: Wringing out new Bell inequalities for three-dimensional systems (qutrits). Modern Physics Letters A 17, 2231 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, J.L., Kaszlikowski, D., Kwek, L.C., Oh, C.H., Ẑukowski, M.: Entangled three-state systems violate local realism more strongly than qubits: An analytical proof. Physical Review A 64, 052109 (2001)

    Google Scholar 

  8. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden variables theories. Physical Review Letters 23, 880 (1969)

    Article  Google Scholar 

  9. Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Physical Review Letters 88, 040404 (2002)

    Google Scholar 

  10. Durt, T., Cerf, N.J., Gisin, N., Ẑukowski, M.: Security of quantum key distribution with entangled qutrits. Physical Review A 67, 012311 (2003)

    Google Scholar 

  11. Durt, T., Kaszlikowski, K., Ẑukowski, M.: Violations of local realism with quantum systems described by N-dimensional Hilbert spaces up to N = 16. Physical Review A 64, 024101 (2001)

    Google Scholar 

  12. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Physical Review 47, 777 (1935)

    Article  MATH  Google Scholar 

  13. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Physical Review Letters 67, 661 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Feynman, R.: Simulating physics with computers. International Journal of Theoretical Physics 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  15. Fine, A.: Hidden variables, joint probabilities, and the Bell inequalities. Physical Review Letters 48, 291 (1982)

    Article  MathSciNet  Google Scholar 

  16. Fu, L.-B.: General correlation functions of the Clauser-Horne-Shimony-Holt inequality for arbitrarily high-dimensional systems. Physical Review Letters 92, 130404 (2004)

    Article  Google Scholar 

  17. Fu, L.-B., Chen, J.-L., Zhao, X.-G.: Maximal violation of the Clauser-Horne-Shimony-Holt inequality for two qutrits. Physical Review A 68, 022323 (2003)

    Google Scholar 

  18. Ji, S.-W., Lee, J., Lim, J., Nagata, K., Lee, H.-W.: Multisetting Bell inequality for qudits. Physical Review A 78, 052103 (2008)

    Google Scholar 

  19. Kaszlikowski, D., Gnaciński, P., Ẑukowski, M., Miklaszewski, W., Zeilinger, A.: Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits. Physical Review Letters 85, 4418 (2000)

    Google Scholar 

  20. Kaszlikowski, D., Kwek, L.C., Chen, J.L., Ẑukowski, M., Oh, C.H.: Clauser-Horne inequality for three-state systems. Physical Review A 65, 032118 (2002)

    Google Scholar 

  21. Kaszlikowski, D., Oi, D.K.L., Christandl, M., Chang, K., Ekert, A., Kwek, L.C., Oh, C.H.: Quantum cryptography based on qutrit Bell inequalities. Physical Review A 67, 012310 (2003)

    Google Scholar 

  22. Masanes, L., Pironio, S., Acín, A.: Secure device-independent quantum key distribution with causally independent measurement devices. Nature Communications 2, 238, 1244 (2011)

    Google Scholar 

  23. Pironio, S., Acín, A., Massar, S., Boyer de la Giroday, A., Matsukevich, D.N., Maunz, P., Ohmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by Bell’s theorem. Nature 464, 1021 (2010)

    Article  Google Scholar 

  24. Werner, R.F., Wolf, M.M.: All-multipartite Bell-correlation inequalities for two dichotomic observables per site. Physical Review A 64, 032112 (2001)

    Google Scholar 

  25. M. Ẑukowski, Brukner, Č.: Bell’s theorem for general N-qubit states. Physical Review Letters 88, 210401 (2002)

    Google Scholar 

  26. Ẑukowski, M., Zeilinger, A., Horne, M.A.: Realizable higher-dimensional two-particle entanglements via multiport beam splitters. Physical Review A 55, 2564 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Arnault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Arnault, F. (2015). Multidimensional Bell Inequalities and Quantum Cryptography. In: El Hajji, S., Nitaj, A., Carlet, C., Souidi, E. (eds) Codes, Cryptology, and Information Security. C2SI 2015. Lecture Notes in Computer Science(), vol 9084. Springer, Cham. https://doi.org/10.1007/978-3-319-18681-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18681-8_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18680-1

  • Online ISBN: 978-3-319-18681-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics