Skip to main content

Abstract

Through-silicon via requires some unique process technologies. This chapter consists of four sub chapters. First sub chapter descibes deep silicon etching by “Bosch process.” The process adopts high aspect ratio and straight via. Some process paramaters are discussed.

Next sub chapter takes up steady-sate silicon etching process, also know as “non-Bosch process.” Physics and chemistry to realize fast and controlled deep silicon etching are discussed.

Third sub chapter deals with low temperature dielectric deposition. Unique liquid source chemical vapor deposition at low temperature and its properties are introduced.

Finally, electrodeposition of copper to fill high aspect ratio via is described. Electrochemical analysis, mathematical models of via filling, high-speed via filling and reduction of thermal expansion coefficient to avoid “copper pop-up” are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laemer FD, Schilp A (1992) A method for anisotropic etching of silicon. German Patent No. DE4241045

    Google Scholar 

  2. Zoschke K, Oppermann H, Manier CA, Ndip I, Puschmann R, Ehrmann O, Wolf J, Lang KD (2012) Wafer level 3D system integration based on silicon interposers with through silicon vias. In: Proceedings of 14th IEEE electronics packaging technology conference 5–7 Dec. 2012, pp 8–13

    Google Scholar 

  3. Mourier T, Ribiere C, Romero G, Gottardi M, Allouti N, Eleouet R, Roman A, Magis T, Minoret S, Ratin C, Scevola D, Dupuy E, Martin B, Gabette L, Marseilhan D, Enot T, Pellat M, Loup V, Segaud R, Feldis H, Charpentier A, Bally JP, Assous M, Charbonnier I, Laviron C, Coudrain P, Sillon N (2913) 3D integration challenges today from technological toolbox to industrial prototypes. Proceedings of IEEE interconnect technology conference, pp 1–3

    Google Scholar 

  4. Sheu SS, Lin ZH, Lin CS, Lau JH, Lee SH, Su KL, Ku TK, Wu SH, Hung JF, Chen PS, Lai SJ, Lo WC, Kao MJ (2012) Electrical characterization of through silicon vias (TSVs) with an on chip bus driver for 3D IC integration. Proceedings of IEEE 62nd electrical components and technology conference, pp 851–856

    Google Scholar 

  5. Peterson K (1982) Silicon as a mechanical material. Proc IEEE 70(5):420–457

    Article  Google Scholar 

  6. Bhardwaj JK, Ashraf H, Hopkins J, Johnston I, McAuley S, Hall S, Nicholls G, Atabo L, Hynes A, Welch C, Barker A, Gunn B, Lea L, Guibarra E, Watcham S (1999) Advances in high rate silicon and oxide etching using ICP. MEMS/MST technology symposium at SEMICON West’99, San Francisco, CA, USA. July 12–16, 1999

    Google Scholar 

  7. Hynes AM, Ashraf H, Bhardwaj JK, Hopkins J, Johnston I, Shepherd JN (1999) Recent advances in silicon etching for MEMS using the ASETM process. Sens Actuators 74:13–17

    Article  CAS  Google Scholar 

  8. Pang SW (2001) Dry processing of high aspect ratio Si microstructures for MEMS. Proceedings of international symposium on dry process, pp 49–55

    Google Scholar 

  9. Hashimoto K (1994) Charge damage caused by electron shading effect. Jpn J Appl Phys 33(10):6013–6018

    Article  CAS  Google Scholar 

  10. Bhardwaj JK, Ashraf H, Khamsehpour B, Hopkins J, Hynes AM, Ryan ME, Haynes DM (2000) Method of surface treatment of semiconductor substrates. US Patent No. 6,051,503

    Google Scholar 

  11. Hartig MJ, Arnold JC (1997) Inductively coupled plasma reactor and process. US Patent No. US 5,683,548 A

    Google Scholar 

  12. Fukushima T, Bea J, Murugesan M, Lee KW, Koyanagi M (2013) Development of via-last 3D integration technologies using a new temporary adhesive system. 3D systems integration conference (3DIC), San Francisco, 2–4 Oct 2013, pp 1–4

    Google Scholar 

  13. Laermer F, Schilp A (1996) Method of anisotropically etching silicon. US Patent, 5501893

    Google Scholar 

  14. Ayón AA, Braff R, Lin CC, Sawin HH, Schmidt and MA (1999) Characterization of a time multiplexed inductively coupled plasma etcher. J Electrochem Soc 146(1):339–349

    Article  Google Scholar 

  15. Tachi S, Tsujimoto K, Okudaira S (1988) Low-temperature reactive ion etching and microwave plasma etching of silicon. Appl Phys Lett 52(8):616

    Article  CAS  Google Scholar 

  16. Pruessner MW, Rabinovich WS, Stivater TH, Park D, Baldwin JW (2007) Cryogenic etch process development for profile control of high aspect-ratio submicron silicon trenches. J Vac Sci Technol B25(1):21

    Article  Google Scholar 

  17. Sakai I, Sasaki K, Tomioka K, Ohiwa T, Sekine M, Mimura T, Nagaseki K (2001) Proceedings of the 1st international symposium on dry process. The institute of electrical engineers of Japan, Tokyo, p 57

    Google Scholar 

  18. Sakai I, Sakurai N, Ohiwa T (2008) Proceedings of the international symposium on dry process, The Japan society of applied physics, Tokyo, p 125

    Google Scholar 

  19. Horiike Y, Okano H, Yamazaki T, Horie H (1981) High-rate reactive ion etching of SiO2 using a magnetron discharge. Jpn J Appl Phys Part 2 20(11):L817

    Google Scholar 

  20. Hill ML, Hinson DC (1985) Advantages of Magnetron Etching. Solid State Technol 28:243

    Google Scholar 

  21. Kinoshita H, Ishida T, Ohno S (1986) Proceedings of the symposium on dry process. The institute of electrical engineers of Japan, Tokyo, p 36

    Google Scholar 

  22. Müller P, Heinrich F, Mader H (1989) Magnetically enhanced reactive ion etching (MERIE) with different field configurations. Microelectron Eng 10(1):55–67

    Article  Google Scholar 

  23. Sekine M, Narita M, Horioka K, Yoshida Y, Okano H (1995) A new high-density plasma etching system using A dipole-ring magnet. Jpn J Appl Phys 34(11):6274

    Article  CAS  Google Scholar 

  24. d’Agostino R, Flamm D (1981) Plasma etching of Si and SiO2 in SF6-O2 mixtures. J Appl Phys 52(1):162

    Article  Google Scholar 

  25. Gomez S, Belen RJ, Kiehlbauch M, Aydil ES (2004) Etching of high aspect ratio structures in Si using SF6/O2 plasma. J Vac Sci Technol A22(3):606

    Article  Google Scholar 

  26. Shimizu H, Kimura D, Komiya H, Kawabata R (1984) Proceedings of the symposium on dry process. The institute of electrical engineers of Japan, Tokyo, p 121

    Google Scholar 

  27. Coburn JW, Chen M (1980) Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density. J Appl Phys 51(6):3134

    Article  CAS  Google Scholar 

  28. Amasaki S, Takeuchi T, Takeda K, Ishikawa K, Kondo H, Sekine M, Hori M, Sakurai N, Hayashi H, Sakai I, Ohiwa T (2010) Proceedings of the international symposium on dry process. The Japan society of applied physics, Tokyo, p 97

    Google Scholar 

  29. Amasaki S, Takeuchi T, Takeda K, Ishikawa K, Kondo H, Sekine M, Hori M, Sakurai N, Hayashi H, Sakai I, Ohiwa T Proceedings of the international symposium on dry process. The Japan society of applied physics, Tokyo, p 33

    Google Scholar 

  30. Nagai H, Hiramatsu M, Hori M, Goto T (2003) Measurement of oxygen atom density employing vacuum ultraviolet absorption spectroscopy with microdischarge hollow cathode lamp. Rev Sci Instrum 74(7):3453

    Article  CAS  Google Scholar 

  31. Booth JP, Joubert O, Pelletier J, Sadeghi N (1991) Oxygen atom actinometry reinvestigated: comparison with absolute measurements by resonance absorption at 130 nm. J Appl Phys 69(2):618

    Article  CAS  Google Scholar 

  32. Pereora J, Pichon L, Dussart R, Cardinaud C, Duluard CY, Oubensaid EH, Lefaucheux P, Boufnichel M, Ranson P (2009) In situ x-ray photoelectron spectroscopy analysis of SiOxFy passivation layer obtained in a SF6/O2 cryoetching process. Appl Phys Lett 94:071501

    Article  Google Scholar 

  33. Flamm DL, Donnelly VM, Mucha JA (1981) The reaction of fluorine atoms with silicon. J Appl Phys 52(5):3633

    Article  CAS  Google Scholar 

  34. Lieberman MA, Lichtenberg AJ (2004) Principles of plasma discharges and materials processing, 2nd ed., p 587

    Google Scholar 

  35. Kusuda Y, Nonaka T, Motoyama S (2013) TSV process using DRIE and cathode coupled PECVD. ECS Trans 50(32):3–9

    Article  Google Scholar 

  36. Kusuda Y, Minaguchi T, Miyashita T, Motoyama S (2009) Sidewall insulator film deposition for the TSV process using cathode coupled PECVD. The 9th international workshop on microelectronics assembling and packaging, p 41, Fukuoka, Japan

    Google Scholar 

  37. Hiramoto M, Minaguchi T, Motoyama S (2007) Deposition of SiO2 film with excellent step coverage using PECVD. Mater Stage 7(5):16–20 (in Japanese)

    Google Scholar 

  38. SAMCO Inc. (2004) PECVD systems for optical devices—ST series. Opto devices technology outlook. Electr J 28:287–289 (in Japanese)

    Google Scholar 

  39. Laemer FD, Schilp A (1994) A method for anisotropic etching of silicon, German Patent No. DE4241045 C1, May 26

    Google Scholar 

  40. Nonaka T, Oda H, Noda Y, Kuratomi N, Nakano H (2012) A study of via hole etching for TSV process. The 11th APCPST abstract. Kyoto University, Kyoto, Japan, p 286

    Google Scholar 

  41. Andoricacos PC, Uzoh C et al (1998) IBM J Res Devel 42:567–572

    Google Scholar 

  42. Moffat TP, Wheeler D et al (2001) Electrochem Solid-State Lett 4:C26–C29

    Google Scholar 

  43. West AC, Mayer S et al (2001) Electrochem Solid-State Lett 4:C50–C53

    Google Scholar 

  44. Tantavishet N, Pritzker M et al (2003) J Electrochem Soc 150:C665–C669

    Google Scholar 

  45. Kondo K, Matsumoto T et al (2004) J Electrochem Soc 151:C250–C256

    Google Scholar 

  46. White JR (1987) J Appl Electrochem 17:977–1003

    Google Scholar 

  47. Nagy Z, Blaudeau JP (1995) J Electrochem Soc 142:L87–L92

    Google Scholar 

  48. Kondo K, Hamazaki K (2014) ECS Electrochem Lett 3(4):D3–D5

    Google Scholar 

  49. Kondo K, Nakamura T (2009) J Appl Electrochem 39:1789–1794

    Google Scholar 

  50. Kondo K, Yonezawa T et al (2005) J Electrochem Soc 152(11):H173–H177

    Google Scholar 

  51. Sun J-J, Kondo K et al (2003) J Electrochem Soc 150(6):G355–G358

    Google Scholar 

  52. Kondo K, Suzuki Y et al (2010) Electrochem S-S Lett. 13(5):D26–D28

    Google Scholar 

  53. Hayashi T, Kondo K et al (2011) J Electrochem Soc 158(12):D715–D718

    Google Scholar 

  54. Akolkar R (2013) ECS Electrochem Lett 2(2):D5–D9

    Google Scholar 

  55. Hayashi T, Kondo K (2013) J Electrochem Soc 160(6):D256–D259

    Google Scholar 

  56. Luhn O, Radisic A et al (2009) Electrochem & S-S Lett 12(5):D39–D41

    Google Scholar 

  57. Luhn O, Van Hoof C et al (2009) Electrochim Acta 54:2504–2508

    Google Scholar 

  58. Radisic A, Luhn O et al. (2011) Microelectronic Eng 88:701–704

    Google Scholar 

  59. Kadota H et al. (2010) JIEP 13(3):213–219 (in Japanese)

    Google Scholar 

  60. Moffat TP, Josell D (2012) J Electrochem Soc 159(4):D208–D216

    Google Scholar 

  61. Beica R, Sharbono C (2008) Through silicon via copper electrodeposition for 3D integration. Proceedings of ECTC conference

    Google Scholar 

  62. Baskaran R, McHugh P (2011) Characterization of the organic components in a commercial TSV filling chemistry. Paper presented at the 220th meeting of the Electrochemical Society, Oct 2011

    Google Scholar 

  63. Flugel A, Amold M (2011) Tailored design of suppressor ensembles for damascene and 3D-TSV copper plating. Paper presented at the 220th meeting of the electrochemical society, Oct 2011

    Google Scholar 

  64. Arnold M, Emnet C (2010) New concept for advanced 3D TSV copper plating additives. Paper presented at the 218th meeting of the electrochemical society, Oct 2011

    Google Scholar 

  65. Adolf JD, Landau U (2009) Scaling analysis of bottom up fill with application to through silicon via. Paper presented at the 216th meeting of the electrochemical society, Oct 2009

    Google Scholar 

  66. Landau U (2010) Electroplating of interconnects—scaling from nanoscale dual-damascene to micron-scale through silicon vias. Paper presented at the 218th meeting of the electrochemical society, Oct 2010

    Google Scholar 

  67. Adolf JD, Landau U (2010) Additive adsorption and transport effects on the void-free metallization of through silicon vias. Paper presented at the 218th meeting of the electrochemical society, Oct 2010

    Google Scholar 

  68. Adolf JD, Landau U (2011) Leveler effects on filling of through silicon vias. Paper presented at the 220th meeting of the electrochemical society, Oct 2011

    Google Scholar 

  69. Che FX, Putra W et al (2011) Numerical and experimental study on Cu protrusion of Cu-filled through-silicon vias (TSV). In: Proceedings of 3DIC 2011, 2011

    Google Scholar 

  70. Kumar N et al (2011) Advanced reliability study of TSV interposers and interconnects for the 28 nm technology FPGA. Proceedings of ECTC 2011

    Google Scholar 

  71. Huyghebaerta C, Coenena J et al (2011) Microelectr Eng 88:745–748 (5th May)

    Google Scholar 

  72. Croesa K, Varela O et al (2011) Microelectronics reliability 51 (9–11):1856–1859

    Google Scholar 

  73. Garrou P (2010) Cu protrusion, keep-out zones highlight 3D talks at IEDM. In: Solid state technology. Bruker corporation. http://www.electroiq.com/articles/ap/2010/12/cu-protrusion-keep-out.html. Accessed 22 Feb 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tanaka, M. et al. (2015). TSV Processes. In: Kondo, K., Kada, M., Takahashi, K. (eds) Three-Dimensional Integration of Semiconductors. Springer, Cham. https://doi.org/10.1007/978-3-319-18675-7_3

Download citation

Publish with us

Policies and ethics