Skip to main content

Humoral Mediators of Remote Ischemic Conditioning: Important Role of eNOS/NO/Nitrite

  • Chapter
Brain Edema XVI

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 121))

Abstract

Remote ischemic conditioning (RIC) is a powerful cardioprotectant and neuroprotectant. The mechanism of protection likely involves circulating, blood-borne mediators that transmit the signal from the periphery to the brain. The neuroprotective effect of RIC may be partially related to improvements in cerebral blood flow (CBF). Nitrite is a key circulating mediator of RIC and may be a mediator of increased CBF and also mediate cytoprotection through its effects on nitrosylation of mitochondrial proteins such as complex I. Measuring plasma nitrite may serve as an important blood biomarker, and measuring CBF by techniques such as MRI arterial spin labeling (ASL) may be an ideal surrogate imaging biomarker in clinical trials of RIC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136

    Article  CAS  PubMed  Google Scholar 

  2. Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P (1993) Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87(3):893–899

    Article  CAS  PubMed  Google Scholar 

  3. Gho BC, Schoemaker RG, van den Doel MA, Duncker DJ, Verdouw PD (1996) Myocardial protection by brief ischemia in noncardiac tissue. Circulation 94(9):2193–2200

    Article  CAS  PubMed  Google Scholar 

  4. Birnbaum Y, Hale SL, Kloner RA (1997) Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation 96(5):1641–1646

    Article  CAS  PubMed  Google Scholar 

  5. Schmidt MR, Smerup M, Konstantinov IE, Shimizu M, Li J, Cheung M et al (2007) Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: first demonstration of remote ischemic perconditioning. Am J Physiol Heart Circ Physiol 292(4):H1883–H1890

    Article  CAS  PubMed  Google Scholar 

  6. Malhotra S, Naggar I, Stewart M, Rosenbaum DM (2011) Neurogenic pathway mediated remote preconditioning protects the brain from transient focal ischemic injury. Brain Res 1386:184–190

    Article  CAS  PubMed  Google Scholar 

  7. Shimizu M, Tropak M, Diaz RJ, Suto F, Surendra H, Kuzmin E et al (2009) Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: evidence suggesting cross-species protection. Clin Sci (Lond) 117(5):191–200

    Article  CAS  Google Scholar 

  8. Konstantinov IE, Li J, Cheung MM, Shimizu M, Stokoe J, Kharbanda RK et al (2005) Remote ischemic preconditioning of the recipient reduces myocardial ischemia-reperfusion injury of the denervated donor heart via a Katp channel-dependent mechanism. Transplantation 79(12):1691–1695

    Article  PubMed  Google Scholar 

  9. Davidson SM, Selvaraj P, He D, Boi-Doku C, Yellon RL, Vicencio JM et al (2013) Remote ischaemic preconditioning involves signalling through the SDF-1alpha/CXCR4 signalling axis. Basic Res Cardiol 108(5):377

    Article  PubMed  Google Scholar 

  10. Cai ZP, Parajuli N, Zheng X, Becker L (2012) Remote ischemic preconditioning confers late protection against myocardial ischemia-reperfusion injury in mice by upregulating interleukin-10. Basic Res Cardiol 107(4):277

    Article  PubMed Central  PubMed  Google Scholar 

  11. Li J, Rohailla S, Gelber N, Rutka J, Sabah N, Gladstone RA et al (2014) MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res Cardiol 109(5):423

    Article  PubMed  Google Scholar 

  12. Rassaf T, Totzeck M, Hendgen-Cotta UB, Shiva S, Heusch G, Kelm M (2014) Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res 114(10):1601–1610

    Article  CAS  PubMed  Google Scholar 

  13. Shimizu M, Konstantinov IE, Kharbanda RK, Cheung MH, Redington AN (2007) Effects of intermittent lower limb ischaemia on coronary blood flow and coronary resistance in pigs. Acta Physiol (Oxf) 190(2):103–109

    Article  CAS  Google Scholar 

  14. Kono Y, Fukuda S, Hanatani A, Nakanishi K, Otsuka K, Taguchi H et al (2014) Remote ischemic conditioning improves coronary microcirculation in healthy subjects and patients with heart failure. Drug Des Devel Ther 8:1175–1181

    PubMed Central  PubMed  Google Scholar 

  15. Dawson DA, Furuya K, Gotoh J, Nakao Y, Hallenbeck JM (1999) Cerebrovascular hemodynamics and ischemic tolerance: lipopolysaccharide-induced resistance to focal cerebral ischemia is not due to changes in severity of the initial ischemic insult, but is associated with preservation of microvascular perfusion. J Cereb Blood Flow Metab 19(6):616–623

    Article  CAS  PubMed  Google Scholar 

  16. Zhao L, Nowak TS Jr (2006) CBF changes associated with focal ischemic preconditioning in the spontaneously hypertensive rat. J Cereb Blood Flow Metab 26(9):1128–1140

    CAS  PubMed  Google Scholar 

  17. Hoyte LC, Papadakis M, Barber PA, Buchan AM (2006) Improved regional cerebral blood flow is important for the protection seen in a mouse model of late phase ischemic preconditioning. Brain Res 1121(1):231–237

    Article  CAS  PubMed  Google Scholar 

  18. Hoda MN, Bhatia K, Hafez SS, Johnson MH, Siddiqui S, Ergul A et al (2014) Remote ischemic perconditioning is effective after embolic stroke in ovariectomized female mice. Transl Stroke Res 5:484–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hoda MN, Fagan SC, Khan MB, Vaibhav K, Chaudhary A, Wang P et al (2014) A 2 x 2 factorial design for the combination therapy of minocycline and remote ischemic perconditioning: efficacy in a preclinical trial in murine thromboembolic stroke model. Exp Transl Stroke Med 6:10

    Article  PubMed Central  PubMed  Google Scholar 

  20. Hoda MN, Siddiqui S, Herberg S, Periyasamy-Thandavan S, Bhatia K, Hafez SS et al (2012) Remote ischemic perconditioning is effective alone and in combination with intravenous tissue-type plasminogen activator in murine model of embolic stroke. Stroke 43(10):2794–2799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Khan MB, Hoda MN, Vaibhav K, Giri S, Wang P, Waller JL et al (2015) Remote ischemic postconditioning: harnessing endogenous protection in a murine model of vascular cognitive impairment. Transl Stroke Res 6(1):69–77

    Article  PubMed Central  PubMed  Google Scholar 

  22. Gidday JM, Shah AR, Maceren RG, Wang Q, Pelligrino DA, Holtzman DM et al (1999) Nitric oxide mediates cerebral ischemic tolerance in a neonatal rat model of hypoxic preconditioning. J Cereb Blood Flow Metab 19(3):331–340

    Article  CAS  PubMed  Google Scholar 

  23. Atochin DN, Clark J, Demchenko IT, Moskowitz MA, Huang PL (2003) Rapid cerebral ischemic preconditioning in mice deficient in endothelial and neuronal nitric oxide synthases. Stroke 34(5):1299–1303

    Article  CAS  PubMed  Google Scholar 

  24. Orio M, Kunz A, Kawano T, Anrather J, Zhou P, Iadecola C (2007) Lipopolysaccharide induces early tolerance to excitotoxicity via nitric oxide and cGMP. Stroke 38(10):2812–2817

    Article  CAS  PubMed  Google Scholar 

  25. Abu-Amara M, Yang SY, Quaglia A, Rowley P, de Mel A, Tapuria N et al (2011) Nitric oxide is an essential mediator of the protective effects of remote ischaemic preconditioning in a mouse model of liver ischaemia/reperfusion injury. Clin Sci (Lond) 121(6):257–266

    Article  CAS  Google Scholar 

  26. Abu-Amara M, Yang SY, Quaglia A, Rowley P, Fuller B, Seifalian A et al (2011) Role of endothelial nitric oxide synthase in remote ischemic preconditioning of the mouse liver. Liver Transpl 17(5):610–619

    Article  PubMed  Google Scholar 

  27. Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ et al (2010) Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 87(3):406–423

    Article  CAS  PubMed  Google Scholar 

  28. Kim-Shapiro DB, Gladwin MT (2014) Mechanisms of nitrite bioactivation. Nitric Oxide 38:58–68

    Article  CAS  PubMed  Google Scholar 

  29. Liu C, Wajih N, Liu X, Basu S, Janes J, Marvel M et al (2015) Mechanisms of human erythrocytic bioactivation of nitrite. J Biol Chem 290(2):1281–1294

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Colby Polonsky, medical illustrator, Georgia Regent’s University for Fig. 1. This work is supported by NIH-NINDS R21 NS081143.

Conflict of Interest

The authors have no conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Hess MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hess, D.C., Hoda, M.N., Khan, M.B. (2016). Humoral Mediators of Remote Ischemic Conditioning: Important Role of eNOS/NO/Nitrite. In: Applegate, R., Chen, G., Feng, H., Zhang, J. (eds) Brain Edema XVI. Acta Neurochirurgica Supplement, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-319-18497-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18497-5_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18496-8

  • Online ISBN: 978-3-319-18497-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics