Skip to main content

Role of Circulating Immune Cells in Stroke and Preconditioning-Induced Protection

  • Chapter
Brain Edema XVI

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 121))

Abstract

Stroke activates an inflammatory response that results in the infiltration of peripheral immune cells into the ischemic area, contributing to exacerbation of tissue damage. However, evidence indicates that inflammatory cell infiltration can also promote neuroprotection through regulatory immune cells that mitigate injury. These immune regulatory cells may also be important mediators of neuroprotection associated with preconditioning, a phenomenon whereby small exposure to a potential harmful stimulus is able to induce protection against a subsequent ischemic event. The elucidation of mechanisms that allow these immune cells to confer neuroprotection is critical to developing new therapeutic strategies against acute stroke. In the present review, we discuss the dual role of peripheral immune cells in stroke-related brain injury and neuroprotection. Furthermore, we report new data from our laboratory that supports the important role of peripheral cells and their interaction with the brain endothelium for the establishment of the protective phenotype in preconditioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang J, Upadhyay UM, Tamargo RJ (2006) Inflammation in stroke and focal cerebral ischemia. Surg Neurol 66(3):232–245

    Article  PubMed  Google Scholar 

  2. Yilmaz G et al (2006) Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 113(17):2105–2112

    Article  PubMed  Google Scholar 

  3. Hurn PD et al (2007) T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab 27(11):1798–1805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17(7):796–808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Liesz A et al (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15(2):192–199

    Article  CAS  PubMed  Google Scholar 

  6. Bodhankar S et al (2013) IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke. Metab Brain Dis 28(3):375–386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Monson NL et al (2014) Repetitive hypoxic preconditioning induces an immunosuppressed B cell phenotype during endogenous protection from stroke. J Neuroinflammation 11:22

    Article  PubMed Central  PubMed  Google Scholar 

  8. Gelderblom M et al (2009) Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40(5):1849–1857

    Article  PubMed  Google Scholar 

  9. Gronberg NV et al (2013) Leukocyte infiltration in experimental stroke. J Neuroinflammation 10:115

    Article  PubMed Central  PubMed  Google Scholar 

  10. Rosell A et al (2008) MMP-9-positive neutrophil infiltration is associated to blood–brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke 39(4):1121–1126

    Article  CAS  PubMed  Google Scholar 

  11. Matsuo Y et al (1994) Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat. Effects of neutrophil depletion. Stroke 25(7):1469–1475

    Article  CAS  PubMed  Google Scholar 

  12. Matsuo Y et al (1994) Role of cell adhesion molecules in brain injury after transient middle cerebral artery occlusion in the rat. Brain Res 656(2):344–352

    Article  CAS  PubMed  Google Scholar 

  13. Hudome S et al (1997) The role of neutrophils in the production of hypoxic-ischemic brain injury in the neonatal rat. Pediatr Res 41(5):607–616

    Article  CAS  PubMed  Google Scholar 

  14. Mori E et al (1992) Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons. Stroke 23(5):712–718

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y et al (1996) Propentofylline inhibits polymorphonuclear leukocyte recruitment in vivo by a mechanism involving adenosine A2A receptors. Eur J Pharmacol 313(3):237–242

    Article  CAS  PubMed  Google Scholar 

  16. McCarter JF et al (2001) FK 506 protects brain tissue in animal models of stroke. Transplant Proc 33(3):2390–2392

    Article  CAS  PubMed  Google Scholar 

  17. Harris AK et al (2005) Effect of neutrophil depletion on gelatinase expression, edema formation and hemorrhagic transformation after focal ischemic stroke. BMC Neurosci 6:49

    Article  PubMed Central  PubMed  Google Scholar 

  18. Krams M et al (2003) Acute Stroke Therapy by Inhibition of Neutrophils (ASTIN): an adaptive dose–response study of UK-279,276 in acute ischemic stroke. Stroke 34(11):2543–2548

    Article  CAS  PubMed  Google Scholar 

  19. Becker KJ (2002) Anti-leukocyte antibodies: LeukArrest (Hu23F2G) and Enlimomab (R6.5) in acute stroke. Curr Med Res Opin 18(Suppl 2):s18–s22

    Article  PubMed  Google Scholar 

  20. Enlimomab Acute Stroke Trial Investigators (2001) Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology 57(8):1428–1434

    Article  Google Scholar 

  21. Tang Z et al (2014) CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke. J Neuroinflammation 11:26

    Article  PubMed Central  PubMed  Google Scholar 

  22. Downes CE et al (2013) MyD88 is a critical regulator of hematopoietic cell-mediated neuroprotection seen after stroke. PLoS One 8(3), e57948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lalancette-Hebert M et al (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27(10):2596–2605

    Article  CAS  PubMed  Google Scholar 

  24. Imai F et al (2007) Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab 27(3):488–500

    Article  CAS  PubMed  Google Scholar 

  25. Ren X et al (2011) Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J Neurosci 31(23):8556–8563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Bodhankar S et al (2014) Treatment of experimental stroke with IL-10-producing B-cells reduces infarct size and peripheral and CNS inflammation in wild-type B-cell-sufficient mice. Metab Brain Dis 29(1):59–73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Rosenzweig HL et al (2004) Endotoxin preconditioning prevents cellular inflammatory response during ischemic neuroprotection in mice. Stroke 35(11):2576–2581

    Article  CAS  PubMed  Google Scholar 

  28. Rosenzweig HL et al (2007) Endotoxin preconditioning protects against the cytotoxic effects of TNFalpha after stroke: a novel role for TNFalpha in LPS-ischemic tolerance. J Cereb Blood Flow Metab 27(10):1663–1674

    Article  CAS  PubMed  Google Scholar 

  29. Stevens SL et al (2008) Toll-like receptor 9: a new target of ischemic preconditioning in the brain. J Cereb Blood Flow Metab 28(5):1040–1047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Marsh B et al (2009) Systemic lipopolysaccharide protects the brain from ischemic injury by reprogramming the response of the brain to stroke: a critical role for IRF3. J Neurosci 29(31):9839–9849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Bahjat FR et al (2011) Proof of concept: pharmacological preconditioning with a Toll-like receptor agonist protects against cerebrovascular injury in a primate model of stroke. J Cereb Blood Flow Metab 31(5):1229–1242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Packard AE et al (2012) TLR9 bone marrow chimeric mice define a role for cerebral TNF in neuroprotection induced by CpG preconditioning. J Cereb Blood Flow Metab 32(12):2193–2200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Abbott NJ et al (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37(1):13–25

    Article  CAS  PubMed  Google Scholar 

  34. Miyazaki D et al (2009) Regulatory function of CpG-activated B cells in late-phase experimental allergic conjunctivitis. Invest Ophthalmol Vis Sci 50(4):1626–1635

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest Statement

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary P. Stenzel-Poore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gesuete, R., Stevens, S.L., Stenzel-Poore, M.P. (2016). Role of Circulating Immune Cells in Stroke and Preconditioning-Induced Protection. In: Applegate, R., Chen, G., Feng, H., Zhang, J. (eds) Brain Edema XVI. Acta Neurochirurgica Supplement, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-319-18497-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18497-5_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18496-8

  • Online ISBN: 978-3-319-18497-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics