Skip to main content

Artificial Neural Networks to Emulate and Compensate Breathing Motion During Radiation Therapy

  • Chapter
Machine Learning in Radiation Oncology

Abstract

A number of treatment sites for external-beam radiation therapy, such as lung, breast, pancreatic, and liver cancers, move as the patient breathes, which compromises the precision of their irradiation. Modern radiation treatment modalities attempt to deal with this by adapting the radiation delivery to the respiratory motion as it occurs. This requires system control processes that can detect and anticipate respiratory movement patterns on a patient-by-patient basis in real time. Because breathing can be very idiosyncratic, this problem is a good candidate for machine learning algorithms that can be trained to model individual breathing patterns. Neural networks have proven quite effective in this capacity. This chapter describes the nature of the motion-compensated treatment problem and the issues in using a neural network to handle it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler JR, Murphy MJ, Chang S, Hancock S. Image-guided robotic radiosurgery. Neurosurgery. 1999;44:1299–306.

    PubMed  Google Scholar 

  2. Ahn S, Yi B, Suh Y, Kim J, Lee S, Shin S, Choi E. A feasibility study on the prediction of tumour location in the lung from skin motion. Br J Radiol. 2004;77:588–96.

    Article  CAS  PubMed  Google Scholar 

  3. Bert C, Saito N, Schmidt A, Chaudhri N, Schardt D, Rietzel E. Target motion tracking with a scanned particle beam. Med Phys. 2007;34(12):4768–71.

    Article  PubMed  Google Scholar 

  4. Davuluri P, Hobson RS, Murphy MJ, Najarian K. Performance comparison of Volterra predictor and neural network for breathing prediction. In: First international conference on biosciences. Cancun, Mexico: IEEE. 2010. p. 6–10.

    Google Scholar 

  5. Depuydt T, Verellen D, Hass O, Gevaert T, Linthout N, Duchateau M, Tournel K, Reynders T, Leysen K, Hoogeman M, Storme G, De Ridder M. Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system. Radiother Oncol. 2011;98(3):365–72.

    Article  PubMed  Google Scholar 

  6. Ernst F, Schweikard A. Robotic LINAC tracking based on correlation and prediction. In: Murphy MJ, editor. Motion adaptation in radiation therapy. New York, NY: Taylor and Francis; 2012.

    Google Scholar 

  7. Falk M, Munck AF, Rosenchöld P, Keall P, Catell H, Cho BC, Poulson P, Povsner S, Sawant A, Zimmerman J, Korreman S. Real-time dynamic MLC tracking for inversely optimised arc therapy. Radiother Oncol. 2010;94:218–23.

    Article  PubMed Central  PubMed  Google Scholar 

  8. George R, Chung TD, Vedam SS, Ramakrishnan V, Mohan R, Weiss E, Keall PJ. Audio-visual biofeedback for respiratory-gated radiotherapy: impact of audio instruction and audio-visual biofeedback on respiratory-gated radiotherapy. Int J Radiat Oncol Biol Phys. 2006;65(3):924–33.

    Article  PubMed  Google Scholar 

  9. George R, Suh Y, Murphy M, Williamson J, Weiss E, Deall P. On the accuracy of a moving average algorithm for target tracking during radiation therapy treatment delivery. Med Phys. 2008;35(6):2356–65.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Gierga DP, Brewer J, Sharp GC, Betke M, Willett CG, Chen GTY. The correlation between internal and external markers for abdominal tumors: implications for respiratory gating. Int J Radiat Oncol Biol Phys. 2005;61(5):1551–8.

    Article  PubMed  Google Scholar 

  11. Goodband JH, Haas OCL, Mills JA. A comparison of neural network approaches for on-line prediction in IGRT. Med Phys. 2008;35(3):1113–22.

    Article  CAS  PubMed  Google Scholar 

  12. Haykin S. Neural networks and learning machines. 3rd ed. London: Pearson; 2009.

    Google Scholar 

  13. Haykin S. Kalman filtering and neural networks. New York: Wiley Interscience; 2001.

    Book  Google Scholar 

  14. Hoisak JDP, Sixel KE, Tirona R, Cheung PCF, Pignol J-P. Correlation of lung tumor motion with external surrogate indicators of respiration. Int J Radiat Oncol Biol Phys. 2004;60(4):1298–306.

    Article  PubMed  Google Scholar 

  15. Hoisak JDP, Sixel KE, Tirona R, Cheung PCF, Pignol J-P. Prediction of lung tumour position based on spirometry and on abdominal displacement: accuracy and reproducibility. Radiother Oncol. 2006;78(3):339–46.

    Article  PubMed  Google Scholar 

  16. Isaksson M, Jalden J, Murphy MJ. On using an adaptive neural network to predict lung tumor motion during respiration for radiotherapy applications. Med Phys. 2005;32(12):3801–9.

    Article  PubMed  Google Scholar 

  17. Kakar M, Mystrom H, Aarup LR, Nottrup TJ, Olsen DR. Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS). Phys Med Biol. 2005;50:4721–8.

    Article  PubMed  Google Scholar 

  18. Kanoulas E, Aslam JA, Sharp GC, Berbeco RI, Nishioka S, Shirato H, Jiang SB. Derivation of the tumor position from external respiratory surrogates with periodical updating of the internal/external correlation. Phys Med Biol. 2007;52(17):5443–56.

    Article  CAS  PubMed  Google Scholar 

  19. Keall PJ, Cattell H, Pokhrel D, Dieterich S, Wong K, Murphy MJ, Vedam SS, Wijesooriya K, Mohan R. Geometric accuracy of a system for real time target tracking with a dynamic MLC. Int J Radiat Oncol Biol Phys. 2006;65(5):1579–84.

    Article  PubMed  Google Scholar 

  20. Koch N, Liu HH, Starkschall G, Jacobson M, Forster KM, Liao Z, Komaki R, Stevens CW. Evaluation of internal lung motion for respiratory-gated radiotherapy using MRI: part I–correlating internal lung motion with skin fiducial motion. Int J Radiat Oncol Biol Phys. 2004;60(5):1459–72.

    Article  PubMed  Google Scholar 

  21. Lee SJ, Motai Y, Murphy M. Respiratory motion estimation with hybrid implementation of extended Kalman filter. IEEE Trans Ind Electron. 2012;59(11):4421–32.

    Article  Google Scholar 

  22. Liang P, Pandit JJ, Robbins PA. Non-stationarity of breath-by-breath ventilation and approaches to modeling the phenomenon. In: Semple SJG, Adams L, Whipp BJ, editors. Modeling and control of ventilation. New York: Plenum; 1995. p. 117–21.

    Chapter  Google Scholar 

  23. Malinowski K, D’Soua WD. Couch-based target alignment. In: Murphy MJ, editor. Motion adaptation in radiation therapy. New York, NY: Taylor and Francis; 2012.

    Google Scholar 

  24. McQuaid D, Webb S. IMRT delivery to a moving target by dynamic MLC tracking: delivery for targets moving in two dimensions in the beam’s-eye view. Phys Med Biol. 2006;51:4819–39.

    Article  CAS  PubMed  Google Scholar 

  25. McQuaid D, Webb S. Target-tracking deliveries using conventional multileaf collimators planned with 4D direct-aperture optimization. Phys Med Biol. 2008;53:4013–29.

    Article  CAS  PubMed  Google Scholar 

  26. McQuaid D, Partridge M, Symonds Tayler R, Evans PM, Webb S. Target-tracking deliveries on an Elekta linac: a feasibility study. Phys Med Biol. 2009;54:3563–78.

    Article  CAS  PubMed  Google Scholar 

  27. McQuaid D, Webb S. Fundamentals of tracking with a linac MLC. In: Murphy MJ, editor. Motion adaptation in radiation therapy. New York, NY: Taylor and Francis; 2012.

    Google Scholar 

  28. Minsky M, Papert S. Perceptrons. Cambridge: MIT Press; 1969.

    Google Scholar 

  29. Murphy MJ, Jalden J, Isaksson M. Adaptive filtering to predict lung tumor breathing motion free breathing. In: Proceedings of the 16th international congress on computer-assisted radiology and surgery. Paris; 2002. p. 539–44.

    Google Scholar 

  30. Murphy MJ. Tracking moving organs in real time. In: Chen and Bortfield, editors. Seminars in radiation oncology, vol 14 (1). 2004. p. 91–100.

    Google Scholar 

  31. Murphy MJ, Dieterich S. Comparative performance of linear and nonlinear neural networks to predict irregular breathing. Phys Med Biol. 2006;51:5903–14.

    Article  PubMed  Google Scholar 

  32. Murphy MJ. Using neural networks to predict breathing motion. In: Seventh international congress on machine learning applications. San Diego, CA: IEEE. 2008. p. 528–32.

    Google Scholar 

  33. Murphy MJ, Pokhrel D. Optimization and evaluation of an adaptive neural network filter to predict respiratory motion. Med Phys. 2009;36(1):40–7.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Neicu T, Shirato H, Seppenwoolde Y. Synchronized moving aperture radiation therapy (SMART); average tumour trajectory for lung patients. Phys Med Biol. 2003;48:587–98.

    Article  PubMed  Google Scholar 

  35. Ozhasoglu C, Murphy MJ. Issues in respiratory motion compensation during external-beam radiotherapy. Int J Radiat Oncol Biol Phys. 2002;52:1389–99.

    Article  PubMed  Google Scholar 

  36. Podder TK, Buzurovic I, Galvin JM, Yu Y. Dynamics-based decentralized control of robotic couch and multi-leaf collimators for tracking tumor motion. IEEE Int Conf Robot Automat. 2008;19(23):2496–502.

    Google Scholar 

  37. Puskorius GV, Feldkamp LA. Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks. IEEE Trans Neural Netw. 1994;5(2):279–97.

    Article  CAS  PubMed  Google Scholar 

  38. Qiu P, D’Souza WD, McAvoy TJ, Liu KJR. Inferential modeling and predictive feedback control in real-time motion compensation using the treatment couch during radiotherapy. Phys Med Biol. 2007;52:5831–54.

    Article  PubMed  Google Scholar 

  39. Rangaraj D, Papiez L. Synchronized delivery of DMLC intensity modulated radiation therapy for stationary and moving targets. Med Phys. 2005;32:1802–17.

    Article  PubMed  Google Scholar 

  40. Ren Q, Nishioka S, Shirato H, Berbeco RI. Adaptive prediction of respiratory motion for motion compensation radiotherapy. Phys Med Biol. 2007;52(22):6651–61.

    Article  PubMed  Google Scholar 

  41. Sawant A, Venkat R, Srivastava V, Carlson D, Povzner S, Cattell H, Keall P. Management of three-dimensional intrafraction motion through real-time DMLC tracking. Med Phys. 2008;35:2050–61.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Schweikard A, Glosser G, Bodduluri M, Murphy MJ, Adler JR. Robotic motion compensation for respiratory movement during radiosurgery. Comput Aided Surg. 2000;5:263–77.

    Article  CAS  PubMed  Google Scholar 

  43. Schweikard A, Shiomi H, Adler J. Respiration tracking in radiosurgery. Med Phys. 2004;31(1):2738–41.

    Article  PubMed  Google Scholar 

  44. Sharp GC, Jiang SB, Shimizu S, Shirato H. Prediction of respiratory tumour motion for real-time image-guided radiotherapy. Phys Med Biol. 2004;49(3):425–40.

    Article  PubMed  Google Scholar 

  45. Solberg TD, Medin PM, Ramirez E, Ding C, Foster RD, Yordy J. Commissioning and initial stereotactic ablative radiotherapy experience with Vero. J Appl Clin Med Phys. 2014;15(2):205–25.

    Google Scholar 

  46. D’Souza WD, Naqvi SA, Uu CX. Real-time intra-fraction motion tracking using the treatment couch: a feasibility study. Phys Med Biol. 2005;50:4021–33.

    Article  PubMed  Google Scholar 

  47. D’Souza WD, McAvoy TJ. An analysis of the treatment couch and control system dynamics for respiration-induced motion compensation. Med Phys. 2006;33(12):4701–9.

    Article  PubMed  Google Scholar 

  48. Tacke MB, Nill S, Krauss A, Oelfke U. Real-time tumor tracking: automatic compensation of target motion using the Siemens 160 MLC. Med Phys. 2010;37:753–61.

    Article  PubMed  Google Scholar 

  49. Tobin MJ, Mador MJ, Guenther SM, Lodato RF, Sackner MA. Variability of resting respiratory drive and timing in healthy subject. J Appl Physiol. 1988;65:309–17.

    CAS  PubMed  Google Scholar 

  50. Tsunashima Y, Sakae T, Shioyama Y, et al. Correlation between the respiratory waveform measured using a respiratory sensor and 3D tumor motion in gated radiotherapy. Int J Radiat Oncol Biol Phys. 2004;60(3):951–8.

    Article  PubMed  Google Scholar 

  51. Williams RJ. Training recurrent networks using the extended Kalman filter. Int Joint Conf Neural Netw. 1992;4:241–6.

    Google Scholar 

  52. Wu H, et al. Gating based on internal/external signals with dynamic correlation updates. Phys Med Biol. 2008;53(24):7137–50.

    Article  PubMed  Google Scholar 

  53. Yan H, Yin F-F, Zhu G-P, Ajlouni M, Kim JH. Adaptive prediction of internal target motion using external marker motion: a technical study. Phys Med Biol. 2006;51(1):31–44.

    Article  PubMed  Google Scholar 

  54. Zhang T, et al. Application of the spirometer in respiratory gated radiotherapy. Med Phys. 2003;30(12):3165–71.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Murphy, M.J. (2015). Artificial Neural Networks to Emulate and Compensate Breathing Motion During Radiation Therapy. In: El Naqa, I., Li, R., Murphy, M. (eds) Machine Learning in Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-18305-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18305-3_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18304-6

  • Online ISBN: 978-3-319-18305-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics