Skip to main content

Pathophysiology

  • Chapter
  • First Online:
Handbook of Multiple Myeloma

Abstract

As with cancer in general, multiple myeloma (MM) is characterized by the occurrence of many genetic changes, either at the chromosomal level or at the DNA level (mutations). If karyotype analyses have been crucial in our understanding of leukemia oncogenesis, it is clearly not the case in MM. Several reasons may explain these differences. The most important one is probably the low proliferative index of plasma cells, preventing the generation of clonal metaphases in vitro. A second reason is that the quality of bone marrow samples sent to cytogenetic labs for analysis is frequently poor, partly due to the patchy distribution of plasma cells within the bone marrow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • LaĂŹ JL, Zandecki M, Mary JY, et al. Improved cytogenetics in multiple myeloma: a study of 151 patients including 117 patients at diagnosis. Blood. 1995;85:2490-2497.

    Google Scholar 

  • Smadja NV, Bastard C, Brigaudeau C, Leroux D, Fruchart C, Groupe Français de CytogĂ©nĂ©tique HĂ©matologique. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood. 2001;98:2229-2238.

    Google Scholar 

  • Bergsagel PL , Chesi M, Nardini E, Brents LA , Kirby SL , Kuehl WM. Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proc Natl Acad Sci USA. 1996;93:13931-13936.

    Google Scholar 

  • Chesi M, Bergsagel PL , Brents LA , Smith CM, Gerhard DS , Kuehl WM. Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood. 1996;88:674-681.

    Google Scholar 

  • Chesi M, Nardini E, Lim RSC , et al. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood. 1998;92:3025-3034.

    Google Scholar 

  • Chesi M, Bergsagel PL, Shonukan OO, et al. Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood. 1998;91:4457-4463.

    Google Scholar 

  • Magrangeas F, Avet-Loiseau H, Gouraud W, et al. Minor clone provides a reservoir for relapse in multiple myeloma. Leukemia. 2013;27:473-481.

    Google Scholar 

  • Keats JJ, Chesi M, Egan JB, et al. Clonal competition with alternating dominance in multiple myeloma. Blood. 2012;120:1067-1076.

    Google Scholar 

  • Walker BA, Wardell CP, Melchor L, et al. Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms. Leukemia. 2014;28:384-390.

    Google Scholar 

  • Egan JB, Shi CX, Tembe W, et al. Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides. Blood. 2012;120:1060-1066.

    Google Scholar 

  • Chapman MA, Lawrence MS, Keats JJ, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471:467-472.

    Google Scholar 

  • Bolli N, Avet-Loiseau H, Wedge DC, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997-3003.

    Google Scholar 

  • Lohr JG, Stojanov P, Carter SL, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25:91-101.

    Google Scholar 

  • Avet-Loiseau H, Attal M, Moreau P, et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood. 2007;109:3489-3495.

    Google Scholar 

  • Hebraud B, Leleu X, Lauwers-Cances V, et al. Deletion of the 1p32 region is a major independent prognostic factor in young patients with myeloma: the IFM experience on 1195 patients. Leukemia. 2014;28:675-679.

    Google Scholar 

  • Avet-Loiseau H, Malard F, Campion L, et al. Translocation t(14;16) and multiple myeloma: is it really an independent prognostic factor? Blood. 2011;117:2009-2011.

    Google Scholar 

  • Zhan F, Hardin J, Kordsmeier B, et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood. 2002;99:1745-1757.

    Google Scholar 

  • Zhan F, Huang Y, Colla S, et al. The molecular classification of multiple myeloma. Blood. 2006;108:2020-2028.

    Google Scholar 

  • Broyl A, Hose D, Lokhorst H, et al. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood. 2010;116:2543-2553.

    Google Scholar 

  • Bianco P, Sacchetti B, Riminucci M. Osteoprogenitors and the hematopoietic microenvironment. Best Pract Res Clin Haematol. 2011;24:37-47.

    Google Scholar 

  • Nagasawa T. Microenvironmental niches in the bone marrow required for B-cell development. Nat Rev Immunol. 2006;6:107-116.

    Google Scholar 

  • Hideshima T, Mitsiades C, Tonon G, Richardson PG , Anderson KC . Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer. 2007;7:585-598.

    Google Scholar 

  • Podar K, Chauhan D, Anderson KC . Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia. 2009;23:10-24.

    Google Scholar 

  • Manier S, Sacco A, Leleu X, Ghobrial IM, Roccaro AM. Bone marrow microenvironment in multiple myeloma progression. J Biomed Biotechnol. 2012;2012:157496.

    Google Scholar 

  • Klein B, Tarte K, Jourdan M, et al. Survival and proliferation factors of normal and malignant plasma cells. Int J Hematol. 2003;78:106-113.

    Google Scholar 

  • De Vos J, Hose D, Rème T, et al. Microarray-based understanding of normal and malignant plasma cells. Immunol Rev. 2006;210:86-104.

    Google Scholar 

  • Sprynski AC, Hose D, Caillot L, et al. The role of IGF-1 as a major growth factor for myeloma cell lines and the prognostic relevance of the expression of its receptor. Blood. 2009;113:4614-4626.

    Google Scholar 

  • Klein B, Zhang XG , Lu ZY, Bataille R. Interleukin-6 in human multiple myeloma. Blood. 1995;85:863-872.

    Google Scholar 

  • Gupta D, Treon SP, Shima Y, et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia. 2001;15:1950-1961.

    Google Scholar 

  • Ribatti D, Nico B, Vacca A. Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene. 2006;25:4257-4266.

    Google Scholar 

  • Giuliani N, Storti P, Bolzoni M, Palma BD, Bonomini S. Angiogenesis and multiple myeloma. Cancer Microenviron. 2011;4:325-337.

    Google Scholar 

  • Roodman GD. Pathogenesis of myeloma bone disease. J Cell Biochem. 2010;109:283-291.

    Google Scholar 

  • Reagan MR, Ghobrial IM. Multiple myeloma mesenchymal stem cells: characterization, origin, and tumor-promoting effects. Clin Cancer Res. 2012;18:342-349.

    Google Scholar 

  • Corre J, Mahtouk K, Attal M, et al. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia. 2007;21:1079-1088.

    Google Scholar 

  • Roccaro AM, Sacco A, Maiso P, et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest. 2013;123:1542-1555.

    Google Scholar 

  • Mahtouk K, Hose D, Raynaud P, et al. Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood. 2007;109:4914-4923.

    Google Scholar 

  • Corre J, Labat E, Espagnolle N, et al. Bioactivity and prognostic significance of growth differentiation factor GDF15 secreted by bone marrow mesenchymal stem cells in multiple myeloma. Cancer Res. 2012;72:1395-1406.

    Google Scholar 

  • Tarkun P, Birtas Atesoglu E, Mehtap O, Musul MM, Hacihanefioglu A. Serum growth differentiation factor 15 levels in newly diagnosed multiple myeloma patients. Acta Haematol. 2014;131:173-178.

    Google Scholar 

  • Raaijmakers MHGP, Mukherjee S, Guo S, et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature. 2010;464:852-857.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Avet-Loiseau, H., Corre, J. (2015). Pathophysiology. In: Mohty, M., Harousseau, JL. (eds) Handbook of Multiple Myeloma. Adis, Cham. https://doi.org/10.1007/978-3-319-18218-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18218-6_1

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-18217-9

  • Online ISBN: 978-3-319-18218-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics