Skip to main content

Abstract

Computational Protein Design aims at rationally designing amino-acid sequences that fold into a given three-dimensional structure and that will bestow the designed protein with desirable properties/functions. Usual criteria for design include stability of the designed protein and affinity between it and a ligand of interest. However, estimating the affinity between two molecules requires to compute the partition function, a #P-complete problem.

Because of its extreme computational cost, bio-physicists have designed the K * algorithm, which combines Best-First A * search with dominance analysis to provide an estimate of the partition function with deterministic guarantees of quality. In this paper, we show that it is possible to speed up search and keep reasonable memory requirement using a Cost Function Network approach combining Depth First Search with arc consistency based lower bounds. We describe our algorithm and compare our first results to the CPD-dedicated software Osprey 2.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fersht, A.: Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. W.H. Freeman and Co., New York (1999)

    Google Scholar 

  2. Peisajovich, S.G., Tawfik, D.S.: Protein engineers turned evolutionists. Nature Methods 4(12), 991–994 (2007)

    Article  Google Scholar 

  3. Pabo, C.: Molecular technology. Designing proteins and peptides. Nature 301(5897), 200 (1983)

    Article  Google Scholar 

  4. Miklos, A.E., Kluwe, C., Der, B.S., Pai, S., Sircar, A., Hughes, R.A., Berrondo, M., Xu, J., Codrea, V., Buckley, P.E., et al.: Structure-based design of supercharged, highly thermoresistant antibodies. Chemistry & Biology 19(4), 449–455 (2012)

    Article  Google Scholar 

  5. Siegel, J.B., Zanghellini, A., Lovick, H.M., Kiss, G., Lambert, A.R., St Clair, J.L., Gallaher, J.L., Hilvert, D., Gelb, M.H., Stoddard, B.L., Houk, K.N., Michael, F.E., Baker, D.: Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329(5989), 309–313 (2010)

    Article  Google Scholar 

  6. Georgiev, I., Lilien, R.H., Donald, B.R.: The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles. Journal of Computational Chemistry 29(10), 1527–1542 (2008)

    Article  Google Scholar 

  7. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier (2006)

    Google Scholar 

  8. Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft arc consistency revisited. Artificial Intelligence 174, 449–478 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Larrosa, J.: Boosting search with variable elimination. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 291–305. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Gainza, P., Roberts, K.E., Georgiev, I., Lilien, R.H., Keedy, D.A., Chen, C.Y., Reza, F., Anderson, A.C., Richardson, D.C., Richardson, J.S., et al.: Osprey: Protein design with ensembles, flexibility, and provable algorithms. Methods Enzymol. (2012)

    Google Scholar 

  11. Desmet, J., De Maeyer, M., Hazes, B., Lasters, I.: The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356(6369), 539–542 (1992)

    Article  Google Scholar 

  12. Pierce, N.A., Winfree, E.: Protein design is NP-hard. Protein Engineering 15(10), 779–782 (2002)

    Article  Google Scholar 

  13. Rubinstein, R.Y., Ridder, A., Vaisman, R.: Fast sequential Monte Carlo methods for counting and optimization. John Wiley & Sons (2013)

    Google Scholar 

  14. Allouche, D., André, I., Barbe, S., Davies, J., de Givry, S., Katsirelos, G., O’Sullivan, B., Prestwich, S., Schiex, T., Traoré, S.: Computational protein design as an optimization problem. Artificial Intelligence 212, 59–79 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rendl, F., Rinaldi, G., Wiegele, A.: Solving Max-Cut to optimality by intersecting semidefinite and polyhedral relaxations. Math. Programming 121(2), 307 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Traoré, S., Allouche, D., André, I., de Givry, S., Katsirelos, G., Schiex, T., Barbe, S.: A new framework for computational protein design through cost function network optimization. Bioinformatics 29(17), 2129–2136 (2013)

    Article  Google Scholar 

  17. Case, D., Babin, V., Berryman, J., Betz, R., Cai, Q., Cerutti, D., Cheatham Iii, T., Darden, T., Duke, R., Gohlke, H., et al.: Amber 14 (2014)

    Google Scholar 

  18. Lovell, S.C., Word, J.M., Richardson, J.S., Richardson, D.C.: The penultimate rotamer library. Proteins 40(3), 389–408 (2000)

    Article  Google Scholar 

  19. Larrosa, J., de Givry, S., Heras, F., Zytnicki, M.: Existential arc consistency: getting closer to full arc consistency in weighted CSPs. In: Proc. of the 19th IJCAI, Edinburgh, Scotland, pp. 84–89 (August 2005)

    Google Scholar 

  20. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: ECAI, vol. 16, p. 146 (2004)

    Google Scholar 

  21. Lecoutre, C., Saïs, L., Tabary, S., Vidal, V.: Reasoning from last conflict(s) in constraint programming. Artificial Intelligence 173, 1592–1614 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shapovalov, M.V., Dunbrack, R.L.: A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 19(6), 844–858 (2011)

    Article  Google Scholar 

  23. Subramaniam, S., Senes, A.: Backbone dependency further improves side chain prediction efficiency in the energy-based conformer library (bebl). Proteins: Structure, Function, and Bioinformatics 82(11), 3177–3187 (2014)

    Article  Google Scholar 

  24. Sang, T., Bacchus, F., Beame, P., Kautz, H., Pitassi, T.: Combining component caching and clause learning for effective model counting. In: Proc. of the 7th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT 2004) (2004)

    Google Scholar 

  25. Choi, A., Kisa, D., Darwiche, A.: Compiling probabilistic graphical models using sentential decision diagrams. In: van der Gaag, L.C. (ed.) ECSQARU 2013. LNCS, vol. 7958, pp. 121–132. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  26. Larrosa, J., Heras, F.: Resolution in max-sat and its relation to local consistency in weighted csps. In: IJCAI, pp. 193–198 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Viricel, C., Simoncini, D., Allouche, D., de Givry, S., Barbe, S., Schiex, T. (2015). Approximate Counting with Deterministic Guarantees for Affinity Computation. In: Le Thi, H., Pham Dinh, T., Nguyen, N. (eds) Modelling, Computation and Optimization in Information Systems and Management Sciences. Advances in Intelligent Systems and Computing, vol 360. Springer, Cham. https://doi.org/10.1007/978-3-319-18167-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18167-7_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18166-0

  • Online ISBN: 978-3-319-18167-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics