Skip to main content

Interaction of the WDN with Biological Objects

  • Chapter
  • First Online:
Pulsed Electrical Discharges for Medicine and Biology

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 576 Accesses

Abstract

There are many reasons to suppose that the interest to the nanoparticles will have remain for a long time, and the first one is that the nanoparticles have unique properties due to their intermediate state between atom-molecular and condensed matter. Object of investigation was the interaction of nanostructures water dispersions and biological objects—standard human blood serum and chicken egg white lysozyme . Measurements of nanostructures (from here and then monomers are smallest oxide nanoparticles, clusters are nanoparticles aggregations, supramolecular complexes are aggregations of nanostructures, albumins, and lipoproteins) sizes by means of the laser correlation spectrometer of quasi-elastic light scattering were carried out. Except laser correlation spectrometer at investigation, transmissive electronic microscopy, and atomic force microscopy were used. Interactions of nanostructure of all investigated metals with blood serum are of same type and have differed only quantitatively. These distinctions are connected with sizes of nanostructures aggregates. Correlation between patient state and blood properties allows us to suppose potential diagnostic significance of new integral characteristics of patient state, characteristic radii of nanoparticles-serum components complex formed. Obtained results and data available from publications, lead us to possibility of using such nanostructures for diagnosis of some conformational diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Wiwanitkit, J. Ren. Fail. 28(2), 185 (2006)

    Article  Google Scholar 

  2. P. Taboada, S. Barbosa, E. Castro, V. Mosquera, J. Phys. Chem. B Condens. Matter Mater. Surf. Interfaces Biophys. 26, (2006)

    Google Scholar 

  3. F.G. Rutberg, V.A. Kolikov, V.N. Snetov, A.Yu. Stogov, E.G. Abramov, E.V. Bogomolova, L.K. Panina, J. Tech. Phys. 12, 82 (2012)

    Google Scholar 

  4. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D: Appl. Phys. 36, 167 (2003)

    Article  ADS  Google Scholar 

  5. O.V. Salata, Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2 (2004)

    Google Scholar 

  6. H. Gu, K. Xu, C. Xu, et al., J. Am. Chem. Soc. Chem. Commun. (2006)

    Google Scholar 

  7. D. Weller, A. Moser, J. IEEE. Trans. Magn. 35(6), 4423 (1999)

    Article  ADS  Google Scholar 

  8. C. Berry, A. Curtis, J. Phys. D: Appl. Phys. 36, 182 (2003)

    Article  Google Scholar 

  9. A.-H. Lu, E.L. Salabas, F. Schuth, Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew, Chem. Int. Ed. 46(8), 1222–1244 (2007)

    Google Scholar 

  10. C. Lang, D. SchĂĽler, J. Phys. Condens. Matter. 18, 2815 (2006)

    Article  Google Scholar 

  11. J. Hong, P. Gong, D. Xu et al., J. Biotechnol. 128, 597 (2007)

    Article  Google Scholar 

  12. W. Tan, K. Wang, X. He et al., J. Med. Res. Rev. 5, 24 (2004)

    Google Scholar 

  13. V.I. Shubayev, T.R. Pisanic II, J. Sungho, J. Adv. Drug Delivery Rev. 6, 61 (2009)

    Google Scholar 

  14. X.X. He, K. Wang, W. Tan et al., J. Am. Chem. Soc. 125, 7168 (2003)

    Article  Google Scholar 

  15. M.-H. Liao, D.-H. Chen, J. Biotech. Lett. 23, 1723 (2001)

    Article  Google Scholar 

  16. I.M. Kirko, G.E. Kirko, Magnetohydrodynamics. Modern Vision Problems, (Moscow-Izhevsk, 2009)

    Google Scholar 

  17. S.I. Syrovatsky, J. Physics-Uspekhi 3, LXII (1957) (in Russian)

    Google Scholar 

  18. L.D. Landau, E.M. Lifshitz, Theoretical Physics, vol. VI, Hydrodynamics, (FIZMATLIT, Moskow, 2001) (in Russian)

    Google Scholar 

  19. Y.A. Nevsky, A.N. Osiptsov, J. Tech. Phys. Lett. 7, 35 (2009) (in Russian)

    Google Scholar 

  20. L.I. Sedov, Continuum Mechanics (Nauka, Moscow, 1976) (in Russian)

    Google Scholar 

  21. M.I. Shliomis, J. Physics-Uspekhi, 112 (1974) (in Russian)

    Google Scholar 

  22. J.K. Betchelor, Introduction to Fluid Dynamics, (SIC “Regular and Chaotic Dynamics”, 2004)

    Google Scholar 

  23. L.D. Landau, E.M. Lifshitz, Theoretical Physics (PHYSMATLIT, Moscow, 2001)

    Google Scholar 

  24. P. Rutberg, V. Kolikov, V. Snetov, A. Stogov, L. Noskin, S. Landa, A. Arutjuman, V. Egorov, A. Sirotkin, J. High Temp. Mater. Proc. 3, 13 (2009)

    Google Scholar 

  25. F.G. Rutberg, V.A. Kolikov, V.N. Snetov, A.Y. Stogov, E.G. Abramov, E.V. Bogomolova, L.K. Panina, J. Tech. Phys. 12, 57 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Kolikov .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kolikov, V., Rutberg, P. (2015). Interaction of the WDN with Biological Objects. In: Pulsed Electrical Discharges for Medicine and Biology. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-18129-5_8

Download citation

Publish with us

Policies and ethics