Skip to main content

Nanosystems for Immunotherapeutic Drug Delivery

  • Chapter
  • First Online:
Biomaterials in Regenerative Medicine and the Immune System

Abstract

Advances in engineered nanoformulations for immunotherapeutic drug delivery have accompanied the rapidly growing interest in clinical immunotherapy. Several material systems have been developed that confer improved efficacy by overcoming delivery barriers detrimental to drug bioactivity. Notable examples include strategies that prolong drug circulation times and enhance the delivery of immunotherapeutic drugs to lymphoid tissues enriched in immune cells important in the initiation and regulation of immune response. The utility of material nanoformulations to facilitate co-delivery of multiple drugs with synergistic activity has also been demonstrated, as has the potential for drug delivery and immunotherapeutic activity to be enhanced via receptor-mediated targeting. Important innovations have furthermore led to the development of triggered drug release mechanisms that increase the control of drug bioactivity within targeted subcellular compartments and/or tissues. This chapter details how materials engineering, formulation design, and delivery schemes have improved immunological outcomes in a variety of therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Alum:

Aluminum hydroxide gel

Da:

Dalton

DTSSP:

3,3′-dithiobis(sulfosuccinimidylpropionate)

NIR:

Near infrared

nm:

Nanometer

OVA:

Chicken ovalbumin

PAM:

Tri-palmitoyl-S-glyceryl cysteine lipopeptide with a pentapeptide SKKKK

PEG:

Poly(ethylene glycol)

PLGA:

Poly(lactic-co-glycolic acid)

SB:

Transforming growth factor-β inhibitor SB505124

TGF-β:

Transforming growth factor-β

TLR:

Toll-like receptor

TRX:

3,5-didodecyloxybenzamidine

References

  1. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–22.

    Article  Google Scholar 

  2. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med. 1999;130(6):461–70.

    Article  Google Scholar 

  3. Liao W, Lin J-X, Leonard WJ. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol. 2011;23(5):598–604.

    Article  Google Scholar 

  4. Miki K, Nagaoka K, Harada M, et al. Combination therapy with dendritic cell vaccine and IL-2 encapsulating polymeric micelles enhances intra-tumoral accumulation of antigen-specific CTLs. Int Immunopharmacol. 2014;23(2):499–504.

    Article  Google Scholar 

  5. Acquavella N, Kluger H, Rhee J, et al. Toxicity and activity of a twice daily high-dose bolus interleukin 2 regimen in patients with metastatic melanoma and metastatic renal cell cancer. J Immunother. 2008;31(6):569–76.

    Article  Google Scholar 

  6. Donohue JH, Rosenberg SA. The fate of interleukin-2 after in vivo administration. J Immunol. 1983;130(5):2203–8.

    Google Scholar 

  7. Van Furth R, Cohn Z, Hirsch J, Humphrey J, Spector W, Langevoort H. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Org. 1972;46(6):845.

    Google Scholar 

  8. Karakoti AS, Das S, Thevuthasan S, Seal S. PEGylated inorganic nanoparticles. Angew Chem Int Ed. 2011;50(9):1980–94.

    Article  Google Scholar 

  9. Kaminskas LM, Boyd BJ, Karellas P, et al. The impact of molecular weight and PEG chain length on the systemic pharmacokinetics of PEGylated poly l-lysine dendrimers. Mol Pharm. 2008;5(3):449–63.

    Article  Google Scholar 

  10. Ryan GM, Kaminskas LM, Bulitta JB, McIntosh MP, Owen DJ, Porter CJ. PEGylated polylysine dendrimers increase lymphatic exposure to doxorubicin when compared to PEGylated liposomal and solution formulations of doxorubicin. J Control Release. 2013;172(1):128–36.

    Article  Google Scholar 

  11. Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol. 2005;5(8):617–28.

    Article  Google Scholar 

  12. Thomas SN, Schudel A. Overcoming transport barriers for interstitial-, lymphatic-, and lymph node-targeted drug delivery. Curr Opin Chem Eng. 2015;7:65–74.

    Article  Google Scholar 

  13. Roozendaal R, Mempel TR, Pitcher LA, et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity. 2009;30(2):264–76.

    Article  Google Scholar 

  14. Thomas SN, Rutkowski JM, Pasquier M, et al. Impaired humoral immunity and tolerance in K14-VEGFR-3-Ig mice that lack dermal lymphatic drainage. J Immunol. 2012;189(5):2181–90.

    Article  Google Scholar 

  15. Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release. 2006;112(1):26–34.

    Article  Google Scholar 

  16. Porter CJ. Drug delivery to the lymphatic system. Crit Rev Ther Drug Carrier Syst. 1997;14(4):333–93.

    Google Scholar 

  17. Dane KY, Nembrini C, Tomei AA, et al. Nano-sized drug-loaded micelles deliver payload to lymph node immune cells and prolong allograft survival. J Control Release. 2011;156(2):154–60.

    Article  Google Scholar 

  18. Rehor A, Hubbell JA, Tirelli N. Oxidation-sensitive polymeric nanoparticles. Langmuir. 2004;21(1):411–7.

    Article  Google Scholar 

  19. de Titta A, Ballester M, Julier Z, et al. Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. Proc Natl Acad Sci. 2013;110(49):19902–7.

    Article  Google Scholar 

  20. Swartz MA, Lund AW. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer. 2012;12(3):210–9.

    Article  Google Scholar 

  21. Thomas SN, Vokali E, Lund AW, Hubbell JA, Swartz MA. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials. 2014;35(2):814–24.

    Article  Google Scholar 

  22. Kwong B, Liu H, Irvine DJ. Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy. Biomaterials. 2011;32(22):5134–47.

    Article  Google Scholar 

  23. Takeda K, Akira S. TLR signaling pathways. Semin Immunol. 2004 Feb;16(1):3–9.

    Google Scholar 

  24. Laing P, Bacon A, McCormack B, Gregoriadis G, Frisch B, Schuber F. The ‘co-delivery’ approach to liposomal vaccines: application to the development of influenza-A and hepatitis-B vaccine candidates. J Liposome Res. 2006;16(3):229–35.

    Article  Google Scholar 

  25. Bal SM, Hortensius S, Ding Z, Jiskoot W, Bouwstra JA. Co-encapsulation of antigen and toll-like receptor ligand in cationic liposomes affects the quality of the immune response in mice after intradermal vaccination. Vaccine. 2011;29(5):1045–52.

    Article  Google Scholar 

  26. Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med. 2001;7(10):1118–22.

    Article  Google Scholar 

  27. Park J, Wrzesinski SH, Stern E, et al. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat Mater. 2012;11(10):895–905.

    Article  Google Scholar 

  28. Cruz LJ, Rosalia RA, Kleinovink JW, Rueda F, Löwik CWGM, Ossendorp F. Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8+ T cell response: a comparative study. J Control Release. 2014;192(0):209–18.

    Article  Google Scholar 

  29. Bandyopadhyay A, Fine RL, Demento S, Bockenstedt LK, Fahmy TM. The impact of nanoparticle ligand density on dendritic-cell targeted vaccines. Biomaterials. 2011;32(11):3094–105.

    Article  Google Scholar 

  30. Hubbell JA, Thomas SN, Swartz MA. Materials engineering for immunomodulation. Nature. 2009;462(7272):449–60.

    Article  Google Scholar 

  31. Gleeson PA. The role of endosomes in innate and adaptive immunity. Semin Cell Dev Biol. 2014;31:64–72.

    Article  Google Scholar 

  32. Schmaljohann D. Thermo-and pH-responsive polymers in drug delivery. Adv Drug Del Rev. 2006;58(15):1655–70.

    Article  Google Scholar 

  33. Yoshizaki Y, Yuba E, Sakaguchi N, Koiwai K, Harada A, Kono K. Potentiation of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen delivery carriers for cancer immunotherapy. Biomaterials. 2014;35(28):8186–96.

    Article  Google Scholar 

  34. Matsuda M, Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract. 2013;7(5):e330–41.

    Article  Google Scholar 

  35. Huo M, Yuan J, Tao L, Wei Y. Redox-responsive polymers for drug delivery: from molecular design to applications. Polym Chem. 2014;5(5):1519–28.

    Article  Google Scholar 

  36. Li P, Luo Z, Liu P, et al. Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses. J Control Release. 2013;168(3):271–9.

    Article  Google Scholar 

  37. Schmalfeldt B, Prechtel D, Harting K, et al. Increased expression of matrix metalloproteinases (MMP)-2, MMP-9, and the urokinase-type plasminogen activator is associated with progression from benign to advanced ovarian cancer. Clin Cancer Res. 2001;7(8):2396–404.

    Google Scholar 

  38. Wong C, Stylianopoulos T, Cui J, et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci. 2011;108(6):2426–31.

    Article  Google Scholar 

  39. Chauhan VP, Stylianopoulos T, Boucher Y, Jain RK. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu Rev Chem Biomol Eng. 2011;2(1):281–98.

    Article  Google Scholar 

  40. Fomina N, Sankaranarayanan J, Almutairi A. Photochemical mechanisms of light-triggered release from nanocarriers. Adv Drug Del Rev. 2012;64(11):1005–20.

    Article  Google Scholar 

  41. Tao Y, Ju E, Liu Z, Dong K, Ren J, Qu X. Engineered, self-assembled near-infrared photothermal agents for combined tumor immunotherapy and chemo-photothermal therapy. Biomaterials. 2014;35(24):6646–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan N. Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schudel, A., Bellavia, M., Thomas, S. (2015). Nanosystems for Immunotherapeutic Drug Delivery. In: Santambrogio, L. (eds) Biomaterials in Regenerative Medicine and the Immune System. Springer, Cham. https://doi.org/10.1007/978-3-319-18045-8_9

Download citation

Publish with us

Policies and ethics