Skip to main content

Who’s Zooming Who? Seminal Fluids and Cryptic Female Choice in Diptera

  • Chapter
  • First Online:
Cryptic Female Choice in Arthropods

Abstract

Dipteran females have many opportunities to influence the reproductive success of their mates. After each mating, females may influence their mates’ post-copulatory reproductive success by choosing whether and where to store sperm, whether and when to remate and lay eggs, and how much to invest in eggs fertilized by different males. Female neural, endocrine, and muscular mechanisms are necessary for these processes to occur. We review physiological experiments that have borne this out. Further evidence from many Diptera shows that seminal fluid proteins (Sfps) also influence female post-copulatory processes including ones that affect sperm use. The most comprehensive evidence comes from Drosophila melanogaster , whose seminal proteome is well characterized. In this species, studies of sequence variation, including in natural populations, and of gene-specific knockdown in the laboratory, have identified male and female genes whose actions influence and/or correlate with post-copulatory processes in the female. Furthermore, co-evolution between Sfps and female reproductive proteins suggests their involvement in common functional pathways. We review the evidence for the interaction of Sfp-mediated effects and cryptic female choice (CFC), with a focus on D. melanogaster and evidence from other Diptera as available. Finally, we conclude by assessing what is known and as yet unknown about the interface between CFC and Sfps and by suggesting avenues for further research in this fascinating area.

You walked in on the sly

Scopin’ for love.

You thought I’d be naïve and tame

But I beat you at your own game.

Take another look and tell me, baby

Who’s zoomin’ who?

Aretha Franklin, Preston Glass, Narada Michael Walden 1985

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams EM, Wolfner MF (2007) Seminal proteins but not sperm induce morphological changes in the Drosophila melanogaster female reproductive tract during sperm storage. J Insect Physiol 53:319–331

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aguadé M (1998) Different forces drive the evolution of the Acp26Aa and Acp26Ab accessory gland genes in the Drosophila melanogaster species complex. Genetics 150:1079–1089

    PubMed Central  PubMed  Google Scholar 

  • Aguadé M (1999) Positive selection drives the evolution of the Acp29AB accessory gland protein in Drosophila. Genetics 152:543–551

    PubMed Central  PubMed  Google Scholar 

  • Aigaki T, Fleischmann I, Chen PS, Kubli E (1991) Ectopic expression of sex peptide alters reproductive behavior of female Drosophila melanogaster. Neuron 7:557–563

    CAS  PubMed  Google Scholar 

  • Akashi H, Gojobori T (2002) Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci USA 99:3695–3700

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alfonso-Parra C, Avila FW, Deewatthanawong P, Sirot LK, Wolfner MF, Harrington LC (2014) Synthesis, depletion and cell-type expression of a protein from the male accessory glands of the dengue vector mosquito Aedes aegypti. J Insect Physiol 70:117–124

    Google Scholar 

  • Allen AK, Spradling AC (2008) The Sf1-related nuclear hormone receptor Hr39 regulates Drosophila female reproductive tract development and function. Development 135:311–321

    CAS  PubMed  Google Scholar 

  • Almeida FC, DeSalle R (2008) Evidence of adaptive evolution of accessory gland proteins in closely related species of the Drosophila repleta group. Mol Biol Evol 25:2043–2053

    CAS  PubMed  Google Scholar 

  • Anderson RC (1945) A study of the factors affecting fertility of lozenge females of Drosophila melanogaster. Genetics 30:280

    Google Scholar 

  • Apger-McGlaughon JL, Wolfner MF (2013) Post-mating change in excretion by mated Drosophila melanogaster females is a long-term response that depends on sex peptide and sperm. J Insect Physiol 59:1024–1030

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arnqvist G, Danielsson I (1999) Copulatory behavior, genital morphology, and male fertilization success in water striders. Evolution 53:147–156

    Google Scholar 

  • Arnqvist G, Nilsson T (2000) The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav 60:145–164

    PubMed  Google Scholar 

  • Arthur BI, Hauschteck-Jungen E, Nothiger R, Ward PI (1998) A female nervous system is necessary for normal sperm storage in Drosophila melanogaster: a masculinized nervous system is as good as none. Proc R Soc London, Ser B 265:1749–1753

    Google Scholar 

  • Arthur BI, Sbilordo SH, Pemberton AJ, Ward PI (2008) The anatomy of fertilization in the yellow dung fly Scathophaga stercoraria. J Morphol 269:630–637

    PubMed  Google Scholar 

  • Avila FW, Wolfner MF (2009) Acp36DE is required for uterine conformational changes in mated Drosophila females. Proc Natl Acad Sci USA 106:15796–15800

    PubMed Central  CAS  PubMed  Google Scholar 

  • Avila FW, Mattei AL, Wolfner MF (2015) Sex peptide receptor is required for the release of stored sperm by mated Drosophila melanogaster females. J Insect Physiol 14(76):1–6. doi:10.1016/j.jinsphys.2015.03.006. [Epub ahead of print]

  • Avila FW, Ravi Ram K, Bloch Qazi MC, Wolfner MF (2015) Sex peptide is required for the efficient release of stored sperm in mated Drosophila females. Genetics 186:595–600

    Google Scholar 

  • Avila FW, Sirot LK, LaFlamme BA, Rubinstein CD, Wolfner MF (2011) Insect seminal fluid proteins: identification and function. Annu Rev Entomol 56:21–40

    PubMed Central  CAS  PubMed  Google Scholar 

  • Avila FW, Qazi MCB, Rubinstein CD, Wolfner MF (2012) A requirement for the neuromodulators octopamine and tyramine in Drosophila melanogaster female sperm storage. Proc Natl Acad Sci USA 109:4562–4567

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ayroles JF, Carbone MA, Stone EA, Jordan KW, Lyman RF, Magwire MM et al (2009) Systems genetics of complex traits in Drosophila melanogaster. Nat Genet 41:299–307

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ayroles JF, Laflamme BA, Stone EA, Wolfner MF, Mackay TFC (2011) Functional genome annotation of Drosophila seminal fluid proteins using transcriptional genetic networks. Genet Res 93:387–395

    CAS  Google Scholar 

  • Baena ML, Eberhard WG (2007) Appearances deceive: female “resistance” behaviour in a sepsid fly is not a test of male ability to hold on. Ethol Ecol Evol 19:27–50

    Google Scholar 

  • Baldini F, Gabrieli P, South A, Valim C, Mancini F, Catteruccia F (2013) The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito Anopheles gambiae. PLoS Biol 11(10):e1001695

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031

    CAS  PubMed  Google Scholar 

  • Bantscheff M, Lemeer S, Savitski MM, Kuster B (2012) Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 404:939–965

    CAS  PubMed  Google Scholar 

  • Barnes AI, Wigby S, Boone JM, Partridge L, Chapman T (2008) Feeding, fecundity and lifespan in female Drosophila melanogaster. Proc R Soc London, Ser B 275:1675–1683

    Google Scholar 

  • Bartoszewski S, Luschnig S, Desjeux I, Grosshans J, Nüsslein-Volhard C (2004) Drosophila p24 homologues eclair and baiser are necessary for the activity of the maternally expressed Tkv receptor during early embryogenesis. Mech Dev 121:1259–1273

    CAS  PubMed  Google Scholar 

  • Bassett AR, Tibbit C, Ponting CP, Liu JL (2013) Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4:220–228

    PubMed Central  CAS  PubMed  Google Scholar 

  • Begun DJ, Whitley P, Todd BL, Waldrip-Dail HM, Clark AG (2000) Molecular population genetics of male accessory gland proteins in Drosophila. Genetics 156:1879–1888

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bentley MD, Day JF (1989) Chemical ecology and behavioral aspects of mosquito oviposition. Annu Rev Entomol 34:401–421

    CAS  PubMed  Google Scholar 

  • Bertram MJ, Neubaum DM, Wolfner MF (1996) Localization of the Drosophila male accessory gland protein Acp36DE in the mated female suggests a role in sperm storage. Insect Biochem Mol Biol 26:971–980

    CAS  PubMed  Google Scholar 

  • Birkhead TR (1998) Cryptic female choice: criteria for establishing female sperm choice. Evolution 52:1212–1218

    Google Scholar 

  • Birkhead TR (2000) Defining and demonstrating postcopulatory female choice—again. Evolution 54:1057–1060

    CAS  PubMed  Google Scholar 

  • Bjork A, Starmer WT, Higginson DM, Rhodes CJ, Pitnick S (2007) Complex interactions with females and rival males limit the evolution of sperm offence and defence. Proc R Soc London, Ser B 274:1779–1788

    Google Scholar 

  • Bloch Qazi MC (2003) A potential mechanism for cryptic female choice in a flour beetle. J Evol Biol 16:170–176

    CAS  PubMed  Google Scholar 

  • Bloch Qazi MC, Hogdal L (2010) Hold on: females modulate sperm depletion from storage sites in the fly Drosophila melanogaster. J Insect Physiol 56:1332–1340

    CAS  PubMed  Google Scholar 

  • Bloch Qazi MC, Wolfner MF (2003) An early role for the Drosophila melanogaster male seminal protein Acp36DE in female sperm storage. J Exp Biol 206:3521–3528

    PubMed  Google Scholar 

  • Bloch Qazi MC, Wolfner MF (2006) Emergence of sperm from female storage sites has egg-influenced and egg-independent phases in Drosophila melanogaster. Biol Lett 2:128–130

    PubMed Central  PubMed  Google Scholar 

  • Bloch Qazi MC, Heifetz Y, Wolfner MF (2003) The developments between gametogenesis and fertilization: ovulation and female sperm storage in Drosophila melanogaster. Dev Biol 256:195–211

    CAS  PubMed  Google Scholar 

  • Boes KE, Ribeiro JMC, Wong A, Harrington LC, Wolfner MF, Sirot LK (2014) Identification and characterization of seminal fluid proteins in the Asian Tiger mosquito Aedes albopictus. PLoS Negl Trop Dis 8:e2946

    PubMed Central  PubMed  Google Scholar 

  • Bonduriansky R, Wheeler J, Rowe L (2005) Ejaculate feeding and female fitness in the sexually dimorphic fly Prochyliza xanthostoma (Diptera: Piophilidae). Anim Behav 69:489–497

    Google Scholar 

  • Bontonou G, Shaik HA, Denis B, Wicker-Thomas C (2015) Acp70A regulates Drosophila pheromones through juvenile hormone induction. Insect Biochem Mol Biol 56:36–49

    Google Scholar 

  • Bragg JG, Wagner A (2009) Protein material costs: single atoms can make an evolutionary difference. Trends Genet 25:5–8

    CAS  PubMed  Google Scholar 

  • Bretman A, Lawniczak MKN, Boone J, Chapman T (2010) A mating plug protein reduces early female remating in Drosophila melanogaster. J Insect Physiol 56:107–113

    CAS  PubMed  Google Scholar 

  • Brunel O, Rull J (2010) The natural history and unusual mating behavior of Euxesta bilimeki (Diptera: Ulidiidae). Ann Entomol Soc Am 103:111–119

    Google Scholar 

  • Carney GE, Taylor BJ (2003) Logjam encodes a predicted EMP24/GP25 protein that is required for Drosophila oviposition behavior. Genetics 164:173–186

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carroll D (2014) Genome engineering with targetable nucleases. Annu Rev Biochem 83:409–439

    CAS  PubMed  Google Scholar 

  • Carvalho GB, Kapahi P, Anderson DJ, Benzer S (2006) Allocrine modulation of feeding behavior by the sex peptide of Drosophila. Curr Biol 16:692–696

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chapman T, Herndon LA, Heifetz Y, Partridge L, Wolfner MF (2001) The Acp26Aa seminal fluid protein is a modulator of early egg hatchability in Drosophila melanogaster. Proc R Soc London, Ser B 268:1647–1654

    CAS  Google Scholar 

  • Chapman T, Bangham J, Vinti G, Seifried B, Lung O, Wolfner MF et al (2003) The sex peptide of Drosophila melanogaster: female post-mating responses analyzed by using RNA interference. Proc Natl Acad Sci USA 100:9923–9928

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen PS, Stumm-Zollinger E, Aigaki T, Balmer J, Bienz M, Böhlen P (1988) A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell 54:291–298

    CAS  PubMed  Google Scholar 

  • Chow CY, Wolfner MF, Clark AG (2010) The genetic basis for male × female interactions underlying variation in reproductive phenotypes of Drosophila. Genetics 186:1355-U1451

    Google Scholar 

  • Chow CY, Wolfner MF, Clark AG (2013) Large neurological component to genetic differences underlying biased sperm use in Drosophila. Genetics 193:177–185

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clark AG, Begun DJ (1998) Female genotypes affect sperm displacement in Drosophila. Genetics 149:1487–1493

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clark AG, Aguadé M, Prout T, Harshman LG, Langley CH (1995) Variation in sperm displacement and its association with accessory gland protein loci in Drosophila melanogaster. Genetics 139:189–201

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clark AG, Begun DJ, Prout T (1999) Female × male interactions in Drosophila sperm competition. Science 283:217–220

    CAS  PubMed  Google Scholar 

  • Clark NL, Aagaard JE, Swanson WJ (2006) Evolution of reproductive proteins from animals and plants. Reproduction 131:11–22

    CAS  PubMed  Google Scholar 

  • Clark NL, Gasper J, Sekino M, Springer SA, Aquadro CF, Swanson WJ (2009) Coevolution of interacting fertilization proteins. PLoS Genet 5:e1000570

    PubMed Central  PubMed  Google Scholar 

  • Clements AN (2000) The biology of mosquitoes. Chapman and Hall, London

    Google Scholar 

  • Clifton ME, Correa S, Rivera-Pérez C, Nouzova M, Noriega FG (2014) Male Aedes aegypti mosquitoes use JH III transferred during copulation to influence previtellogenic ovary physiology and affect the reproductive output of female mosquitoes. J Insect Physiol 64:40–47

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cognigni P, Bailey AP, Miguel-Aliaga I (2011) Enteric neurons and systemic signals couple nutritional and reproductive status with intestinal homeostasis. Cell Metab 13:92–104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cole SH, Carney GE, McClung CA, Willard SS, Taylor BJ, Hirsh J (2005) Two functional but noncomplementing Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility. J Biol Chem 280:14948–14955

    CAS  PubMed  Google Scholar 

  • Cordero C (1995) Ejaculate substances that affect female insect reproductive physiology and behavior—honest or arbitrary traits. J Theor Biol 174:453–461

    CAS  Google Scholar 

  • Debelle JS, Hilliker AJ, Sokolowski MB (1989) Genetic localization of foraging (for)—a major gene for larval behavior in Drosophila melanogaster. Genetics 123:157–163

    CAS  Google Scholar 

  • Demont M, Martin OY, Bussiere LF (2012) Wild yellow dung fly females may not select sperm based on dung pat microclimate but could nevertheless benefit from polyandry. Evol Ecol 26:715–731

    Google Scholar 

  • Díaz-Fleischer F, Aluja M (2003a) Clutch size in frugivorous insects as a function of host firmness: the case of the tephritid fly Anastrepha ludens. Ecol Entomol 28:268–277

    Google Scholar 

  • Díaz-Fleischer F, Aluja M (2003b) Influence of conspecific presence, experience, and host quality on oviposition behavior and clutch size determination in Anastrepha ludens (Diptera: Tephritidae). J Insect Behav 16:537–554

    Google Scholar 

  • Drummond-Barbosa D, Spradling AC (2001) Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol 231:265–278

    CAS  PubMed  Google Scholar 

  • Dweck HKM, Ebrahim SAM, Kromann S, Bown D, Hillbur Y, Sachse S et al (2013) Olfactory preference for egg laying on citrus substrates in Drosophila. Curr Biol 23:2472–2480

    CAS  PubMed  Google Scholar 

  • Eberhard WG (1996) Female control: sexual selection by cryptic female choice. Princeton University Press, Princeton

    Google Scholar 

  • Eberhard WG (2000) Criteria for demonstrating postcopulatory female choice. Evolution 54:1047–1050

    CAS  PubMed  Google Scholar 

  • Eberhard WG (2002) The function of female resistance behavior: intromission by male coercion vs. female cooperation in sepsid flies (Diptera: Sepsidae). Rev Biol Trop 50:485–505

    PubMed  Google Scholar 

  • Eberhard WG (2015) Cryptic female choice and other types of post-copulatory sexual selection. In: Peretti AV, Aisenberg A (eds) Cryptic female choice in arthropods. Springer, Cham

    Google Scholar 

  • Eberhard WG, Cordero C (1995) Sexual selection by cryptic female choice on male seminal products—a new bridge between sexual selection and reproductive physiology. Trends Ecol Evol 10:493–496

    CAS  PubMed  Google Scholar 

  • Edvardsson M, Arnqvist G (2000) Copulatory courtship and cryptic female choice in red flour beetles Tribolium castaneum. Proc R Soc London, Ser B 267:559–563

    CAS  Google Scholar 

  • Fedina TY, Lewis SM (2004) Female influence over offspring paternity in the red flour beetle Tribolium castaneum. Proc R Soc London, Ser B 271:1393–1399

    Google Scholar 

  • Fedorka KM, Winterhalter WE, Ware B (2011) Perceived sperm competition intensity influences seminal fluid protein production prior to courtship and mating. Evolution 65:584–590

    PubMed  Google Scholar 

  • Ferveur JF, Sureau G (1996) Simultaneous influence on male courtship of stimulatory and inhibitory pheromones produced by live sex-mosaic Drosophila melanogaster. Proc R Soc London, Ser B 263:967–973

    CAS  Google Scholar 

  • Findlay GD, Yi XH, MacCoss MJ, Swanson WJ (2008) Proteomics reveals novel Drosophila seminal fluid proteins transferred at mating. PLoS Biol 6:1417–1426

    CAS  Google Scholar 

  • Findlay GD, MacCoss MJ, Swanson WJ (2009) Proteomic discovery of previously unannotated, rapidly evolving seminal fluid genes in Drosophila. Genome Res 19:886–896

    PubMed Central  CAS  PubMed  Google Scholar 

  • Findlay GD, Sitnik JL, Wang W, Aquadro CF, Clark NL, Wolfner MF (2014) Evolutionary rate covariation identifies new members of a protein network required for Drosophila melanogaster female post-mating responses. PLoS Genet 10:e1004108

    PubMed Central  PubMed  Google Scholar 

  • Fiumera AC, Dumont BL, Clark AG (2005) Sperm competitive ability in Drosophila melanogaster associated with variation in male reproductive proteins. Genetics 169:243–257

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fiumera AC, Dumont BL, Clark AG (2006) Natural variation in male-induced ‘cost-of-mating’ and allele-specific association with male reproductive genes in Drosophila melanogaster. Philos Trans R Soc London, Ser B 361:355–361

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fiumera AC, Dumont BL, Clark AG (2007) Associations between sperm competition and natural variation in male reproductive genes on the third chromosome of Drosophila melanogaster. Genetics 176:1245–1260

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fricke C, Green D, Mills WE, Chapman T (2013) Age-dependent female responses to a male ejaculate signal alter demographic opportunities for selection. Proc R Soc London, Ser B 280:20130428

    Google Scholar 

  • Fritz AH (2002) A single, abdominal ganglion in Anastrepha suspensa (Diptera: Tephritidae) and its innervation of the female sperm storage organs. Ann Entomol Soc Am 95:103–108

    Google Scholar 

  • Fritz AH, Turner FR (2002) A light and electron microscopical study of the spermathecae and ventral receptacle of Anastrepha suspensa (Diptera: Tephritidae) and implications in female influence of sperm storage. Arthropod Struct Dev 30:293–313

    PubMed  Google Scholar 

  • Gillott C (2003) Male accessory gland secretions: modulators of female reproductive physiology and behavior. Annu Rev Entomol 48:163–184

    CAS  PubMed  Google Scholar 

  • Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O’Connor-Giles KM (2013a) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194:1029–1035

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gratz SJ, Wildonger J, Harrison MM, O’Connor-Giles KM (2013b) CRISPR/Cas9-mediated genome engineering and the promise of designer flies on demand. Fly 7:249–255

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haerty W, Jagadeeshan S, Kulathinal RJ, Wong A, Ram KR, Sirot LK et al (2007) Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila. Genetics 177:1321–1335

    PubMed Central  CAS  PubMed  Google Scholar 

  • Han KA, Millar NS, Davis RL (1998) A novel octopamine receptor with preferential expression in Drosophila mushroom bodies. J Neurosci 18:3650–3658

    CAS  PubMed  Google Scholar 

  • Hansen IA, Attardo GM, Rodriguez SD, Drake LL (2014) Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways. Front Psychol 5:103

    Google Scholar 

  • Harshman LG, Clark AG (1998) Inference of sperm competition from broods of field-caught Drosophila. Evolution 52:1334–1341

    Google Scholar 

  • Häsemeyer M, Yapici N, Heberlein U, Dickson BJ (2009) Sensory neurons in the Drosophila genital tract regulate female reproductive behavior. Neuron 61:511–518

    PubMed  Google Scholar 

  • Haussmann IU, Hemani Y, Wijesekera T, Dauwalder B, Soller M (2013) Multiple pathways mediate the sex-peptide-regulated switch in female Drosophila reproductive behaviours. Proc R Soc London, Ser B 280

    Google Scholar 

  • Heifetz Y, Rivlin PK (2010) Beyond the mouse model: using Drosophila as a model for sperm interaction with the female reproductive tract. Theriogenology 73:723–739

    CAS  PubMed  Google Scholar 

  • Heifetz Y, Wolfner MF (2004) Mating, seminal fluid components, and sperm cause changes in vesicle release in the Drosophila female reproductive tract. Proc Natl Acad Sci USA 101:6261–6266

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heifetz Y, Lung O, Frongillo EA, Wolfner MF (2000) The Drosophila seminal fluid protein Acp26Aa stimulates release of oocytes by the ovary. Curr Biol 10:99–102

    CAS  PubMed  Google Scholar 

  • Heifetz Y, Vandenberg LN, Cohn HI, Wolfner MF (2005) Two cleavage products of the Drosophila accessory gland protein ovulin can independently induce ovulation. Proc Natl Acad Sci USA 102:743–748

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heifetz Y, Lindner M, Garini Y, Wolfner MF (2014) Mating regulates neuromodulator ensembles at nerve termini innervating the Drosophila reproductive tract. Curr Biol 24:731–737

    PubMed Central  CAS  PubMed  Google Scholar 

  • Helinski MEH, Deewatthanawong P, Sirot LK, Wolfner MF, Harrington LC (2012a) Duration and dose-dependency of female sexual receptivity responses to seminal fluid proteins in Aedes albopictus and Ae. aegypti mosquitoes. J Insect Physiol 58:1307–1313

    PubMed Central  CAS  PubMed  Google Scholar 

  • Helinski MEH, Valerio L, Facchinelli L, Scott TW, Ramsey J, Harrington LC (2012b) Evidence of polyandry for Aedes aegypti in semifield enclosures. Am J Trop Med Hyg 86:635–641

    PubMed Central  PubMed  Google Scholar 

  • Hellriegel B, Bernasconi G (2000) Female-mediated differential sperm storage in a fly with complex spermathecae, Scatophaga stercoraria. Anim Behav 59:311–317

    PubMed  Google Scholar 

  • Herndon LA, Wolfner MF (1995) A Drosophila seminal fluid protein, Acp26Aa, stimulates egg laying in females for 1 day after mating. Proc Natl Acad Sci USA 92:10114–10118

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hodgson DJ, Hosken DJ (2006) Sperm competition promotes the exploitation of rival ejaculates. J Theor Biol 243:230–234

    CAS  PubMed  Google Scholar 

  • Holman L, Snook RR (2008) A sterile sperm caste protects brother fertile sperm from female-mediated death in Drosophila pseudoobscura. Curr Biol 18:292–296

    CAS  PubMed  Google Scholar 

  • Hosken DJ, Meyer EP, Ward PI (1999) Internal female reproductive anatomy and genital interactions during copula in the yellow dung fly, Scathophaga stercoraria (Diptera: Scathophagidae). Can J Zool 77:1975–1983

    Google Scholar 

  • Hotzy C, Polak M, Ronn JL, Arnqvist G (2012) Phenotypic engineering unveils the function of genital morphology. Curr Biol 22:2258–2261

    CAS  PubMed  Google Scholar 

  • House CM, Simmons LW (2003) Genital morphology and fertilization success in the dung beetle Onthophagus taurus: an example of sexually selected male genitalia. Proc R Soc London, Ser B 270:447–455

    Google Scholar 

  • Iida K, Cavener DR (2004) Glucose dehydrogenase is required for normal sperm storage and utilization in female Drosophila melanogaster. J Exp Biol 207:675–681

    CAS  PubMed  Google Scholar 

  • Ilango K, Lane RP (2000) Coadaptation of male aedeagal filaments and female spermathecal ducts of the Old World Phlebotomine sand flies (Diptera: Psychodidae). J Med Entomol 37:653–659

    CAS  PubMed  Google Scholar 

  • Isaac RE, Kim YJ, Audsley N (2014) The degradome and the evolution of Drosophila sex peptide as a ligand for the MIP receptor. Peptides 53:258–264

    CAS  PubMed  Google Scholar 

  • Jang EB (1995) Effects of mating and accessory gland injections on olfactory-mediated behavior in the female mediterranean fruit fly, Ceratitis capitata. J Insect Physiol 41:705–710

    CAS  Google Scholar 

  • Jennions MD, Petrie M (2000) Why do females mate multiply? A review of the genetic benefits. Biol Rev 75:21–64

    CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    CAS  PubMed  Google Scholar 

  • Kacsoh BZ, Lynch ZR, Mortimer NT, Schlenke TA (2013) Fruit flies medicate offspring after seeing parasites. Science 339:947–950

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kamimura Y (2007) Twin intromittent organs of Drosophila for traumatic insemination. Biol Lett 3:401–404

    PubMed Central  PubMed  Google Scholar 

  • Kapelnikov A, Rivlin PK, Hoy RR, Heifetz Y (2008) Tissue remodeling: a mating-induced differentiation program for the Drosophila oviduct. BMC Dev Biol 8:114

    PubMed Central  PubMed  Google Scholar 

  • Kaufmann C, Brown MR (2008) Regulation of carbohydrate metabolism and flight performance by a hypertrehalosaemic hormone in the mosquito Anopheles gambiae. J Insect Physiol 54:367–377

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaufmann C, Merzendorfer H, Gade G (2009) The adipokinetic hormone system in Culicinae (Diptera: Culicidae): molecular identification and characterization of two adipokinetic hormone (AKH) precursors from Aedes aegypti and Culex pipiens and two putative AKH receptor variants from A. aegypti. Insect Biochem Mol Biol 39:770–781

    CAS  PubMed  Google Scholar 

  • Kelly TJ, Adams TS, Schwartz MB, Birnbaum MJ, Rubenstein EC, Imberski RB (1987) Juvenile hormone and ovarian maturation in the Diptera—a review of recent results. Insect Biochem 17:1089–1093

    CAS  Google Scholar 

  • Kempenaers B, Foerster K, Questiau S, Robertson BC, Vermeirssen ELM (2000) Distinguishing between female sperm choice versus male sperm competition: a comment on Birkhead. Evolution 54:1050–1052

    CAS  PubMed  Google Scholar 

  • Kent CF, Daskalchuk T, Cook L, Sokolowski MB, Greenspan RJ (2009) The Drosophila foraging gene mediates adult plasticity and gene-environment interactions in behaviour, metabolites, and gene expression in response to food deprivation. PLoS Genet 5:e1000609

    Google Scholar 

  • Kern AD, Jones CD, Begun DJ (2004) Molecular population genetics of male accessory gland proteins in the Drosophila simulans complex. Genetics 167:725–735

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim YJ, Bartalska K, Audsley N, Yamanaka N, Yapici N, Lee JY et al (2010) MIPs are ancestral ligands for the sex peptide receptor. Proc Natl Acad Sci USA 107:6520–6525

    PubMed Central  CAS  PubMed  Google Scholar 

  • LaFlamme BA, Wolfner MF (2013) Identification and function of proteolysis regulators in seminal fluid. Mol Reprod Dev 80:80–101

    PubMed Central  CAS  PubMed  Google Scholar 

  • LaFlamme BA, Ram KR, Wolfner MF (2012) The Drosophila melanogaster seminal fluid protease “seminase” regulates proteolytic and post-mating reproductive processes. PLoS Genet 8:e1002435

    PubMed Central  CAS  PubMed  Google Scholar 

  • LaFlamme B, Avila F, Michalski K, Wolfner M (2014) A Drosophila protease cascade member, seminal metalloprotease-1, is activated stepwise by male factors and requires female factors for full activity. Genetics 196(4):1117–1129

    Google Scholar 

  • Lee HG, Seong CS, Kim YC, Davis RL, Han KA (2003) Octopamine receptor OAMB is required for ovulation in Drosophila melanogaster. Dev Biol 264:179–190

    CAS  PubMed  Google Scholar 

  • Lee HG, Rohila S, Han KA (2009) The octopamine receptor OAMB mediates ovulation via Ca2+/calmodulin-dependent protein kinase II in the Drosophila oviduct epithelium. PLoS ONE 4:e4716

    PubMed Central  PubMed  Google Scholar 

  • Liu HF, Kubli E (2003) Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc Natl Acad Sci USA 100:9929–9933

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lung O, Wolfner MF (1999) Drosophila seminal fluid proteins enter the circulatory system of the mated female fly by crossing the posterior vaginal wall. Insect Biochem Mol Biol 29:1043–1052

    CAS  PubMed  Google Scholar 

  • Lüpold S, Pitnick S, Berben KS, Blengini CS, Belote JM, Manier MK (2013) Female mediation of competitive fertilization success in Drosophila melanogaster. Proc Natl Acad Sci USA 110:10693–10698

    PubMed Central  PubMed  Google Scholar 

  • Mancini E, Tammaro F, Baldini F, Via A, Raimondo D, George P et al (2011) Molecular evolution of a gene cluster of serine proteases expressed in the Anopheles gambiae female reproductive tract. BMC Evol Biol 11:72

    Google Scholar 

  • Manier MK, Belote JM, Berben KS, Novikov D, Stuart WT, Pitnick S (2010) Resolving mechanisms of competitive fertilization success in Drosophila melanogaster. Science 328:354–357

    CAS  PubMed  Google Scholar 

  • Manier MK, Belote JM, Berben KS, Lüpold S, Ala-Honkola O, Collins WF et al (2013a) Rapid diversification of sperm precedence traits and processes among three sibling Drosophila species. Evolution 67:2348–2362

    PubMed  Google Scholar 

  • Manier MK, Lüpold S, Belote JM, Starmer WT, Berben KS, Ala-Honkola O et al (2013b) Postcopulatory sexual selection generates speciation phenotypes in Drosophila. Curr Biol 23:1853–1862

    CAS  PubMed  Google Scholar 

  • Markow TA, Ankney PF (1984) Drosophila males contribute to oogenesis in a multiple mating species. Science 224:302–303

    CAS  PubMed  Google Scholar 

  • Markow TA, Beall S, Castrezana S (2012) The wild side of life Drosophila reproduction in nature. Fly 6:98–101

    PubMed  Google Scholar 

  • Middleton CA, Nongthomba U, Parry K, Sweeney ST, Sparrow JC, Elliott CJ (2006) Neuromuscular organization and aminergic modulation of contractions in the Drosophila ovary. BMC Biol 4:17

    PubMed Central  PubMed  Google Scholar 

  • Monastirioti M (2003) Distinct octopamine cell population residing in the CNS abdominal ganglion controls ovulation in Drosophila melanogaster. Dev Biol 264:38–49

    CAS  PubMed  Google Scholar 

  • Monastirioti M, Linn CE, White K (1996) Characterization of Drosophila tyramine beta-hydroxylase gene and isolation of mutant flies lacking octopamine. J Neurosci 16:3900–3911

    CAS  PubMed  Google Scholar 

  • Monsma SA, Wolfner MF (1988) Structure and expression of a Drosophila male accessory gland gene whose product resembles a peptide pheromone precursor. Genes Dev 2:1063–1073

    CAS  PubMed  Google Scholar 

  • Monsma SA, Harada HA, Wolfner MF (1990) Synthesis of two Drosophila male accessory gland proteins and their fate after transfer to the female during mating. Dev Biol 142:465–475

    CAS  PubMed  Google Scholar 

  • Moshitzky P, Fleischmann I, Chaimov N, Saudan P, Klauser S, Kubli E et al (1996) Sex-peptide activates juvenile hormone biosynthesis in the Drosophila melanogaster corpus allatum. Arch Insect Biochem Physiol 32:363–374

    CAS  PubMed  Google Scholar 

  • Mueller JL, Linklater JR, Ram KR, Chapman T, Wolfner MR (2008) Targeted gene deletion and phenotypic analysis of the Drosophila melanogaster seminal fluid protease inhibitor Acp62F. Genetics 178:1605–1614

    PubMed Central  CAS  PubMed  Google Scholar 

  • Neubaum DM, Wolfner MF (1999) Mated Drosophila melanogaster females require a seminal fluid protein, Acp36DE, to store sperm efficiently. Genetics 153:845–857

    PubMed Central  CAS  PubMed  Google Scholar 

  • Otronen M (1997) Sperm numbers, their storage and usage in the fly Dryomyza anilis. Proc R Soc London, Ser B 264:777–782

    Google Scholar 

  • Otronen M, Siva-Jothy MT (1991) The effect of postcopulatory male behavior on ejaculate distribution within the female sperm storage organs of the fly Dryomyza anilis (Diptera: Dryomyzidae). Behav Ecol Sociobiol 29:33–37

    Google Scholar 

  • Ottiger M, Soller M, Stocker RF, Kubli E (2000) Binding sites of Drosophila melanogaster sex peptide pheromones. J Neurobiol 44:57–71

    CAS  PubMed  Google Scholar 

  • Park M, Wolfner MF (1995) Male and female cooperate in the prohormone-like processing of a Drosophila melanogaster seminal fluid protein. Dev Biol 171:694–702

    CAS  PubMed  Google Scholar 

  • Parker GA (1990) Sperm competition games—raffles and roles. Proc R Soc London, Ser B 242:120–126

    Google Scholar 

  • Peng J, Chen S, Büsser S, Liu H, Honegger T, Kubli E (2005) Gradual release of sperm bound sex-peptide controls female postmating behavior in Drosophila. Curr Biol 15:207–213

    CAS  PubMed  Google Scholar 

  • Pérez-Staples D, Weldon CW, Radhakrishnan P, Prenter J, Taylor PW (2010) Control of copula duration and sperm storage by female Queensland fruit flies. J Insect Physiol 56:1755–1762

    PubMed  Google Scholar 

  • Pérez-Staples D, Cordova-Garcia G, Aluja M (2014) Sperm dynamics and cryptic male choice in tephritid flies. Anim Behav 89:131–139

    Google Scholar 

  • Pie MR (1998) Lek behavior as the mating strategy of Setellia sp. (Diptera: Richardiidae). J Insect Behav 11:823–832

    Google Scholar 

  • Pilpel N, Nezer I, Applebaum SW, Helfetz Y (2008) Mating-increases trypsin in female Drosophila hemolymph. Insect Biochem Mol Biol 38:320–330

    CAS  PubMed  Google Scholar 

  • Pitnick S, Brown WD (2000) Criteria for demonstrating female sperm choice. Evolution 54:1052–1056

    CAS  PubMed  Google Scholar 

  • Pitnick S, Spicer GS, Markow TA (1995) How long is a giant sperm? Nature 375:109

    CAS  PubMed  Google Scholar 

  • Pitnick S, Spicer GS, Markow T (1997) Phylogenetic examination of female incorporation of ejaculate in Drosophila. Evolution 51:833–845

    Google Scholar 

  • Pitnick S, Markow T, Spicer GS (1999) Evolution of multiple kinds of female sperm-storage organs in Drosophila. Evolution 53:1804–1822

    Google Scholar 

  • Pitnick S, Wolfner MF, Suarez S (2009) Sperm-female interactions. In: Birkhead TR DJHaSP (ed) Sperm biology: an evolutionary perspective. Academic Press, London, pp 247–304

    Google Scholar 

  • Poels J, Van Loy T, Vandersmissen HP, Van Hiel B, Van Soest S, Nachman RJ et al (2010) Myoinhibiting peptides are the ancestral ligands of the promiscuous Drosophila sex peptide receptor. Cell Mol Life Sci 67:3511–3522

    CAS  PubMed  Google Scholar 

  • Polak M, Rashed A (2010) Microscale laser surgery reveals adaptive function of male intromittent genitalia. Proc R Soc London, Ser B 277:1371–1376

    Google Scholar 

  • Polak M, Simmons LW (2009) Secondary sexual trait size reveals competitive fertilization success in Drosophila bipectinata Duda. Behav Ecol 20:753–760

    Google Scholar 

  • Prokupek A, Hoffmann F, Eyun SI, Moriyama E, Zhou M, Harshman L (2008) An evolutionary expressed sequence tag analysis of Drosophila spermatheca genes. Evolution 62:2936–2947

    CAS  PubMed  Google Scholar 

  • Prokupek AM, Kachman SD, Ladunga I, Harshman LG (2009) Transcriptional profiling of the sperm storage organs of Drosophila melanogaster. Insect Mol Biol 18:465–475

    CAS  PubMed  Google Scholar 

  • Radhakrishnan P, Fedorka KM (2012) Immune activation decreases sperm viability in both sexes and influences female sperm storage. Proc R Soc London, Ser B 279:3577–3583

    CAS  Google Scholar 

  • Radhakrishnan P, Taylor PW (2007) Seminal fluids mediate sexual inhibition and short copula duration in mated female Queensland fruit flies. J Insect Physiol 53:741–745

    CAS  PubMed  Google Scholar 

  • Radhakrishnan P, Nair S, Raftos D, Taylor PW (2008) Transfer and fate of male ejaculate in female Queensland fruit flies. Physiol Entomol 33:302–309

    Google Scholar 

  • Ravi Ram K, Wolfner MF (2007a) Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integr Comp Biol 47:427–445

    CAS  PubMed  Google Scholar 

  • Ravi Ram K, Wolfner MF (2007b) Sustained post-mating response in Drosophila melanogaster requires multiple seminal fluid proteins. PLoS Genet 3:2428–2438

    Google Scholar 

  • Ravi Ram K, Wolfner MF (2009) A network of interactions among seminal proteins underlies the long-term postmating response in Drosophila. Proc Natl Acad Sci USA 106:15384–15389

    PubMed  Google Scholar 

  • Ravi Ram K, Ji S, Wolfner MF (2005) Fates and targets of male accessory gland proteins in mated female Drosophila melanogaster. Insect Biochem Mol Biol 35:1059–1071

    CAS  PubMed  Google Scholar 

  • Ravi Ram K, Sirot LK, Wolfner MF (2006) Predicted seminal astacin-like protease is required for processing of reproductive proteins in Drosophila melanogaster. Proc Natl Acad Sci USA 103:18674–18679

    PubMed Central  PubMed  Google Scholar 

  • Rezával C, Nojima T, Neville MC, Lin AC, Goodwin SF (2014) Sexually dimorphic octopaminergic neurons modulate female postmating behaviors in Drosophila. Curr Biol 24:725–730

    PubMed  Google Scholar 

  • Rodriguez-Enriquez CL, Tadeo E, Rull J (2013) Elucidating the function of ejaculate expulsion and consumption after copulation by female Euxesta bilimeki. Behav Ecol Sociobiol 67:937–946

    Google Scholar 

  • Rodríguez-Valentín R, López-González I, Jorquera R, Labarca P, Zurita M, Reynaud E (2006) Oviduct contraction in Drosophila is modulated by a neural network that is both octopaminergic and glutamatergic. J Cell Physiol 209:183–198

    PubMed  Google Scholar 

  • Rogers DW, Baldini F, Battaglia F, Panico M, Dell A, Morris HR et al (2009) Transglutaminase-mediated semen coagulation controls sperm storage in the malaria mosquito. PLoS Biol 7:e1000272

    Google Scholar 

  • Rowe L, Arnqvist G (2012) Sexual selection and the evolution of genital shape and complexity in water striders. Evolution 66:40–54

    PubMed  Google Scholar 

  • Rubinstein CD, Wolfner MF (2013) Drosophila seminal protein ovulin mediates ovulation through female octopamine neuronal signaling. Proc Natl Acad Sci USA 110:17420–17425

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rubinstein CD, Wolfner MF (2014) Reproductive hacking: a male seminal protein acts through intact reproductive pathways in female Drosophila. FLY 8:80–85

    Google Scholar 

  • Sbilordo SH, Schäfer MA, Ward PI (2009) Sperm release and use at fertilization by yellow dung fly females (Scathophaga stercoraria). Biol J Linn Soc 98:511–518

    Google Scholar 

  • Schäfer MA, Berger D, Jochmann R, Blanckenhorn WU, Bussiere LF (2013) The developmental plasticity and functional significance of an additional sperm storage compartment in female yellow dung flies. Funct Ecol 27:1392–1402

    Google Scholar 

  • Schnakenberg SL, Matias WR, Siegal ML (2011) Sperm-storage defects and live birth in Drosophila females lacking spermathecal secretory cells. PLoS Biol 9:e1001192

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schully SD, Hellberg ME (2006) Positive selection on nucleotide substitutions and indels in accessory gland proteins of the Drosophila pseudoobscura subgroup. J Mol Evol 62:793–802

    CAS  PubMed  Google Scholar 

  • Shelly TE (1990) Observations on the lek behavior of Drosophila imparisetae (Diptera: Drosophilidae) in Hawaii. J Kans Entomol Soc 63:652–655

    Google Scholar 

  • Shelly TE, Kaneshiro KY (1991) Lek behavior of the oriental fruit fly, Dacus dorsalis, in Hawaii (Diptera: Tephriditae). J Insect Behav 4:235–241

    Google Scholar 

  • Sirot LK, Brockmann HJ, Lapointe SL (2007) Male postcopulatory reproductive success in the beetle, Diaprepes abbreviatus. Anim Behav 74:143–152

    Google Scholar 

  • Sirot LK, Wolfner MF, Wigby S (2011) Protein-specific manipulation of ejaculate composition in response to female mating status in Drosophila melanogaster. Proc Natl Acad Sci USA 108:9922–9926

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sirot LK, Findlay GD, Sitnik JL, Frasheri D, Avila FW, Wolfner MF (2014) Molecular characterization and evolution of a gene family encoding both female- and male-specific reproductive proteins in Drosophila. Mol Biol Evol 31(6):1554–1567

    Google Scholar 

  • Smith DR, Chapman MR (2010) Economical evolution: microbes reduce the synthetic cost of extracellular proteins. MBio 1(3):pii: e00131–10

    Google Scholar 

  • Smith C, Greig D (2010) The cost of sexual signaling in yeast. Evolution 64:3114–3122

    PubMed  Google Scholar 

  • Smith DT, Hosken DJ, Ffrench-Constant RH, Wedell N (2009) Variation in sex peptide expression in D. melanogaster. Genet Res 91:237–242

    CAS  Google Scholar 

  • Smith DT, Sirot LK, Wolfner MF, Hosken DJ, Wedell N (2012) The consequences of genetic variation in sex peptide expression levels for egg laying and retention in females. Heredity 109:222–225

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soller M, Bownes M, Kubli E (1997) Mating and sex peptide stimulate the accumulation of yolk in oocytes of Drosophila melanogaster. Eur J Biochem 243:732–738

    CAS  PubMed  Google Scholar 

  • Sun J, Spradling AC (2013) Ovulation in Drosophila is controlled by secretory cells of the female reproductive tract. eLife 2: e00415

    Google Scholar 

  • Swanson WJ, Clark AG, Waldrip-Dail HM, Wolfner MF, Aquadro CF (2001) Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila. Proc Natl Acad Sci USA 98:7375–7379

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tripet F, Toure YT, Dolo G, Lanzaro GC (2003) Frequency of multiple inseminations in field-collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. Am J Trop Med Hyg 68:1–5

    PubMed  Google Scholar 

  • Tsaur SC, Ting CT, Wu CI (2001) Sex in Drosophila mauritiana: a very high level of amino acid polymorphism in a male reproductive protein gene, Acp26Aa. Mol Biol Evol 18:22–26

    CAS  PubMed  Google Scholar 

  • Twig E, Yuval B (2005) Function of multiple sperm storage organs in female Mediterranean fruit flies (Ceratitis capitata, Diptera: Tephritidae). J Insect Physiol 51:67–74

    CAS  PubMed  Google Scholar 

  • Waage JK (1979) Dual function of the damselfly penis—sperm removal and transfer. Science 203:916–918

    CAS  PubMed  Google Scholar 

  • Wagstaff BJ, Begun DJ (2005) Comparative genomics of accessory gland protein genes in Drosophila melanogaster and D. pseudoobscura. Mol Biol Evol 22:818–832

    CAS  PubMed  Google Scholar 

  • Wagstaff BJ, Begun DJ (2007) Adaptive evolution of recently duplicated accessory gland protein genes in desert Drosophila. Genetics 177:1023–1030

    PubMed Central  CAS  PubMed  Google Scholar 

  • Walters JR, Harrison RG (2010) Combined EST and proteomic analysis identifies rapidly evolving seminal fluid proteins in Heliconius butterflies. Mol Biol Evol 27:2000–2013

    CAS  PubMed  Google Scholar 

  • Ward PI, Wilson AJ, Reim C (2008) A cost of cryptic female choice in the yellow dung fly. Genetica 134:63–67

    PubMed  Google Scholar 

  • Wigby S, Sirot LK, Linklater JR, Buehner N, Calboli FCF, Bretman A et al (2009) Seminal fluid protein allocation and male reproductive success. Curr Biol 19:751–757

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wojcieszek JM, Simmons LW (2011) Male genital morphology influences paternity success in the millipede Antichiropus variabilis. Behav Ecol Sociobiol 65:1843–1856

    Google Scholar 

  • Wong A, Rundle H (2013) Selection on the Drosophila seminal fluid protein Acp62F. Ecol Evol 3:1942–1950

    PubMed Central  PubMed  Google Scholar 

  • Wong A, Turchin M, Wolfner MF, Aquadro CF (2012) Temporally variable selection on proteolysis-related reproductive tract proteins in Drosophila. Mol Biol Evol 29:229–238

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang CH, Belawat P, Hafen E, Jan LY, Jan YN (2008) Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 319:1679–1683

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang CH, Rumpf S, Xiang Y, Gordon MD, Song W, Jan LY et al (2009) Control of the postmating behavioral switch in Drosophila females by internal sensory neurons. Neuron 61:519–526

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yapici N, Kim YJ, Ribeiro C, Dickson BJ (2008) A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 451:33-U31

    Google Scholar 

  • Yutani K, Ogasahara K, Sugino Y, Matsushiro A (1977) Effect of a single amino acid substitution on stability conformation of a protein. Nature 267:274–275

    CAS  PubMed  Google Scholar 

  • Yutani K, Ogasahara K, Tsujita T, Sugino Y (1987) The dependence of conformational stability on the hydrophobicity of the amino acid residue in a series of variant proteins substituted by each of the 20 amino acids at a unique position of the tryptophan synthase alpha subunit. Protein Eng 1:249–249

    Google Scholar 

  • Zeh JA, Zeh DW (2003) Toward a new sexual selection paradigm: polyandry, conflict and incompatibility. Ethology 109:929–950

    Google Scholar 

  • Zhang R, Clark AG, Fiumera AC (2013) Natural genetic variation in male reproductive genes contributes to nontransitivity of sperm competitive ability in Drosophila melanogaster. Mol Ecol 22:1400–1415

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to F. Avila, M. Bloch Qazi, A. Wong, and two anonymous reviewers for valuable comments on this chapter and to Anita Aisenberg and Alfredo Peretti for the opportunity to write it. We appreciate support from NIH grants R01-HD038921 (to MFW), R01-HD059060 (to MFW and A.G. Clark), R01-AI095491 (to MFW and L.C. Harrington), and R15-ES020051 (to A. Fiumera).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura K. Sirot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sirot, L.K., Wolfner, M.F. (2015). Who’s Zooming Who? Seminal Fluids and Cryptic Female Choice in Diptera. In: Peretti, A., Aisenberg, A. (eds) Cryptic Female Choice in Arthropods. Springer, Cham. https://doi.org/10.1007/978-3-319-17894-3_13

Download citation

Publish with us

Policies and ethics