Skip to main content

Sexual Selection Within the Female Genitalia in Lepidoptera

  • Chapter
  • First Online:
Cryptic Female Choice in Arthropods

Abstract

The genitalia of male and female Lepidoptera are complex organs, composed of several structures that exhibit great diversity of shapes, sizes, and positions, suggesting that they have evolved in a relatively rapid and divergent way. In this chapter, we explore the selective pressures responsible for the evolution of genital morphology in the Lepidoptera , emphasizing the possible role of post-copulatory intersexual selection (PCIS) mechanisms (cryptic female choice and sexual conflict). Our exploration is in great extent speculative because knowledge on the functional morphology of genitalia in this group is limited. We start by describing the complexity and diversity of genitalia in Lepidoptera, discussing the available information about the role of the different structures in copulation. Then, we discuss possible ways in which PCIS and other types of selective pressures could have influenced the evolution of genitalia by developing illustrative hypothesis for several structures whose function is not well understood. Finally, we describe in detail recent experimental and comparative studies aimed at understanding the function and selective pressures responsible for the evolution of a female genital trait known as signum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Galicia et al. (2008) also mention that there is evidence suggesting that in some species, signa could play different or additional functions. For example, in some species, the signa is shaped like one or more relatively large plates that could protect the corpus bursae from the damage that cornuti could inflict (see Ferris 2004 for a possible example). These alternatives need to be studied.

References

  • Ah-King M, Barron AB, Heberstein ME (2014) Genital evolution: why are females still understudied? PLoS Biol 12(5):e1001851

    PubMed Central  PubMed  Google Scholar 

  • Alexander RD (1964) The evolution of mating behavior in arthropods. In: Royal Entomological Society London, Symposia, vol 2, pp 78–94

    Google Scholar 

  • Anzaldo SS, Dombroskie J, Brown JW (2014) Morphological variation, taxonomic distribution, and phylogenetic significance of cornuti in tortricinae (Lepidoptera: Tortricidae). Proc Entomol Soc Wash 116:1–31

    Google Scholar 

  • Arikawa K (2001) Hindsight of butterflies. Bioscience 51:219–225

    Google Scholar 

  • Arnold RA, Fisher RL (1977) Operational mechanism of copulation and oviposition in Speyeria (Lepidoptera: Nymphalidae). Ann Entomol Soc Amer 70:455–468

    Google Scholar 

  • Arnqvist G, Rowe L (2002) Comparative analysis unveils antagonistic coevolution between the sexes in a group of insects. Nature 415:787–789

    CAS  PubMed  Google Scholar 

  • Bayard A (1944) Observations sur l’accouplement de Dryas paphia (L.) (Lep. Nymphalidae). Bull Soc Entomol France 49:92–95

    Google Scholar 

  • Bieman DN, Witter JA (1982) Mating wounds in Malacosoma: an insight into bed bug mating behavior. Fla Entomol 65:377–378

    Google Scholar 

  • Blanco CA, Guadalupe Rojas M, Groot AT, Morales-Ramos J, Abel CA (2009) Size and chemical composition of Heliothis virescens (Lepidoptera: Noctuidae) spermatophores. Ann Entomol Soc Amer 102:629–637

    Google Scholar 

  • Boggs CL (1995) Male nuptial gifts: Phenotypic consequences and evolutionary implications. In: Leather SR, Hardie J (eds) Insect reproduction. CRC Press, Cleveland, pp 215–242

    Google Scholar 

  • Boggs CL, Gilbert LE (1977) Male contribution to egg production in butterflies: evidence for transfer of nutrients at mating. Science 206:83–84

    Google Scholar 

  • Brower LP, Oberhauser KS, Boppré M et al (2007) Monarch sex: ancient rites or recent wrongs. Antenna 31:12–18

    Google Scholar 

  • Buntin GD, Pedigo LP (1983) Morphology of the Male and female reproductive systems of Plathypena scabra (F.) (Lepidoptera: Noctuidae). J Kansas Entomol Soc 56:377–386

    Google Scholar 

  • Callahan PS (1958) Serial morphology as a technique for determination of reproductive patterns in the Corn Earworm, Heliothis zea (Boddie). Ann Entomol Soc Amer 51:413–428

    Google Scholar 

  • Callaghan PS (1960) A morphological study of spermatophore placement and mating in the subfamily Plusiinae (Noctuidae, Lepidoptera). Proc XI Inter Congr Entomol 1:339–345

    Google Scholar 

  • Callahan PS, Chapin JB (1960) Morphology of the reproductive systems and mating in two representative members of the family Noctuidae, Pseudaletia unipuncta and Peridroma margaritosa, with comparison to Heliothis zea. Ann Entomol Soc Amer 53:763–782

    Google Scholar 

  • Callahan PS, Cascio T (1963) Histology of the reproductive tracts and transmission of sperm in the Corn Earworm, Heliothis zea. Ann Entomol Soc Amer 56:535–556

    Google Scholar 

  • Castellano S, Cermelli P (2006) Reconciling sexual selection to species recognition: a process-based model of mating decision. J Theor Biol 242:529–538

    PubMed  Google Scholar 

  • Chapman TA (1916) On the pairing of the plebeiid blue butterflies (Lycaeninae, tribe Plebeiini). Trans Entomol Soc Lond 1916:156–180

    Google Scholar 

  • Clarke CA, Sheppard PM (1956) Hand-pairing of butterflies. Lep News 10:47–53

    Google Scholar 

  • Cordero C (2005) The evolution of signa in female Lepidoptera: natural and sexual selection hypotheses. J Theor Biol 232:443–449

    PubMed  Google Scholar 

  • Cordero C (2010) On the function of cornuti, sclerotized structures of the endophallus of Lepidoptera. Genetica 138:27–35

    PubMed  Google Scholar 

  • Cordero C, Eberhard WG (2005) Interaction between sexually antagonistic selection and mate choice in the evolution of female responses to male traits. Evol Ecol 19:11–122

    Google Scholar 

  • Cordero C, Miller JS (2012) On the evolution and function of caltrop cornuti in Lepidoptera—potentially damaging male genital structures transferred to females during copulation. J Nat Hist 46:701–715

    Google Scholar 

  • Covell CV (1970) A revision of the North American species of the genus Scopula (Lepidoptera: Geometridae). Trans Amer Entomol Soc 96:101–221

    Google Scholar 

  • Dang PT (1993) Vesicas of selected tortricid and small lepidopterous species with descriptions of new techniques of vesica eversion (Lepidoptera: Tortricidae, Oecophoridae, Gelechiidae, and Nepticulidae). Can Entomol 125:785–799

    Google Scholar 

  • De Jong R (1978) Functional morphology of the genitalia of Carcharodus boeticus Stauderi Rev. (Lepidoptera, Hesperiidae). Nether J Zool 28:206–212

    Google Scholar 

  • Drummond BA III (1984) Multiple mating and sperm competition in the Lepidoptera. In: Smith RL (ed) Sperm competition and the evolution of animal mating systems. Academic Press, Orlando, pp 291–371

    Google Scholar 

  • Dugdale JS (1974) Female genital configuration in the classification of Lepidoptera. NZJ Zool 1:127–146

    Google Scholar 

  • Eberhard WG (1985) Sexual selection and animal genitalia. Harvard University Press, Cambridge

    Google Scholar 

  • Eberhard WG (1996) Female control: sexual selection by cryptic female choice. Princeton University Press, Princeton

    Google Scholar 

  • Eberhard WG (2010) Evolution of genitalia: theories, evidence, and new directions. Genetica 138:5–18

    PubMed  Google Scholar 

  • Fan X, Li H (2008) The genus Issikiopteryx (Lepidoptera: Lecithoceridae): checklist and descriptions of new species. Zootaxa 1725:53–60

    Google Scholar 

  • Fänger H, Naumann CM (1998) Genital morphology and copulatory mechanism in Zygaena trifolii (Esper, 1783) (Insecta, Lepidoptera, Zygaenidae). Acta Zool 79:9–24

    Google Scholar 

  • Fatzinger CW (1970) Morphology of the reproductive organs of Dioryctria abietella (Lepidoptera: Pyralidae (Phycitinae)). Ann Entomol Soc Am 63(5):1256–1261

    Google Scholar 

  • Ferro DN, Akre RD (1975) Reproductive morphology and mechanics of mating of the Codling Moth, Laspeyresia pomonella. Ann Entomol Soc Amer 68:417–424

    Google Scholar 

  • Forbes WTM (1939) The muscles of the lepidopterous male genitalia. Ann Entomol Soc Amer 32:1–10

    Google Scholar 

  • Galicia I, Sánchez V, Cordero C (2008) On the function of signa, a genital trait of female Lepidoptera. Ann Entomol Soc Amer 101:786–793

    Google Scholar 

  • Gosse PH (1882) On the clasping-organs ancillary to generation in certain groups of the Lepidoptera. Trans Linn Soc Lond S 2(2):265–345

    Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, New York

    Google Scholar 

  • Hannemann HJ (1954a) Zur funktionellen anatomie des männlichen kopulationsapparates von Argynis paphia (L.). Zool Anz 152:266–274

    Google Scholar 

  • Hannemann HJ (1954b) Zur muskelfunktion der weiblichen genitalsegmente von Argynnis paphia (L.) (Lep.). Zool Anz 153:149–154

    Google Scholar 

  • Hausmann A (1999) Falsification of an entomological rule: polymorphic genitalia in geometrid moths. Spixiana 22:83–90

    Google Scholar 

  • Hinton HE (1964) Sperm transfer in insects and the evolution of haemocoelic insemination. In: Highnam KC (ed) Insect reproduction. In: Symposium on Royal Entomology Society London, pp 95–107

    Google Scholar 

  • Hosken DJ, Stockley P (2004) Sexual selection and genital evolution. Trends Ecol Evol 19:87–93

    PubMed  Google Scholar 

  • Huber BA (2003) Rapid evolution and species specificity of arthropod genitalia: fact or artifact? Organ Div Evol 3:63–71

    Google Scholar 

  • Huber BA (2010) Mating positions and the evolution of asymmetric insect genitalia. Genetica 138:19–25

    PubMed  Google Scholar 

  • Huber BA, Sinclair BJ, Schmitt M (2007) The evolution of asymmetric genitalia in spiders and insects. Biol Rev 82:647–698

    PubMed  Google Scholar 

  • Jiménez-Ambriz G, Mota D, Cordero C (2011) Genetic variation in a female genital trait evolved by sexual coevolution. Genetica 139:1241–1249

    PubMed  Google Scholar 

  • Jolivet P (2008) Inverted copulation. In: Capinera JL (ed) Encyclopedia of entomology. Springer, Berlin, pp 2041–2044

    Google Scholar 

  • Jordan K (1896) On mechanical selection and other problems. Nov Zool 3:426–525

    Google Scholar 

  • Justus KA, Mitchell BK (1999) Reproductive morphology, copulation, and inter-populational variation in the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). Int Insect Morphol Embriol 28:233–246

    Google Scholar 

  • Khalifa A (1950) Spermatophore production in Galleria melonella L. (Lepidoptera). Proc Roy Entomol Soc Lond A 25:33–42

    Google Scholar 

  • Klots AB (1970) Lepidoptera. In: Tuxen SL (ed) Taxonomist’s glossary of genitalia in insects, 2nd edn. Munksgard, Copenhagen, pp 115–130

    Google Scholar 

  • Koshio C, Tanaka Y, Kudo S-I (2002) The collapsed eggs found in the bursa copulatrix of a plum moth, Illiberis rotundata Jordan (Zygaenidae: Procridinae): an unusual egg resorption system? J Lep Soc 56:62–65

    Google Scholar 

  • Kristensen NP (1984) Studies on the morphology and systematics of primitive Lepidoptera (Insecta). Steenstrupia 10:141–191

    Google Scholar 

  • Kristensen NP (1999) Handbook of zoology 4: Arthropoda Insecta. Lepidoptera, moths and butterflies, 1: evolution, systematics, and biogeography. De Gruyter, Berlin, pp 1–491

    Google Scholar 

  • Kristensen NP (2003a) Skeleton and muscles: adults. In: Kristensen NP (ed) Handbook of zoology 4: Arthropoda: Insecta, part 36, Lepidoptera, moths and butterflies, 2: morphology, physiology, and development. De Gruyter, Berlin, pp 39–131

    Google Scholar 

  • Kristensen NP (2003b) Reproductive organs. In: Kristensen NP (ed) Handbook of zoology 4: Arthropoda: Insecta, part 36, Lepidoptera, moths and butterflies, 2: morphology, physiology, and development. De Gruyter, Berlin, pp 427–447

    Google Scholar 

  • Kuznetsov VI, Stekolnikov AA (2001) New approaches to the system of Lepidoptera of world fauna on the base of the functional morphology of abdomen. Nauka, St. Petersburg (In Russian)

    Google Scholar 

  • Lai-Fook J (1982a) Structure of the noncutiular simplex of the internal male reproductive tract of Calpodes ethlius (Hesperiidae, Lepidoptera). Can J Zool 60:1184–1201

    Google Scholar 

  • Lai-Fook J (1982b) Structure, function, and possible evolutionary significance of the constrictions in the male reproductive system of Calpodes ethlius (Hesperiidae, Lepidoptera). Can J Zool 60:1828–1836

    Google Scholar 

  • Lai-Fook J (1984) The spermatophore of the skipper, Calpodes ethlius (Hesperiidae, Lepidoptera): the serum sac. Can J Zool 62:1135–1142

    Google Scholar 

  • Lai-Fook J (1986) The virgin bursa copulatrix of the butterfly Calpodes ethlius. Tissue Cell 18:545–558

    CAS  PubMed  Google Scholar 

  • Lai-Fook J (1991) Absorption of phosphorus from the spermatophore through the cuticle of the bursa copulatrix of the butterfly, Calpodes ethlius. Tissue Cell 23:247–259

    CAS  PubMed  Google Scholar 

  • Lincango P, Fernández G, Baixeras J (2013) Microstructure and diversity of the bursa copulatrix wall in Tortricidae (Lepidoptera). Arthrop Struc Dev 42:247–256

    Google Scholar 

  • Liu S, Wang S (2013) Three new species of the genus Issikiopteryx Moriuti, 1973 (Lepidoptera: Lecithoceridae: Lecithocerini) from China. Zootaxa 3669:037–042

    Google Scholar 

  • Lorkovic Z (1952) L’accouplement artificiel chez les Lépidoptères et son application dans les recherches de la fonction de l’appareil génital des insectes. Physiol Compar Oecol 3:313–319

    Google Scholar 

  • Lum PTM (1982) Degenerating oocytes: a physical barrier to sperm translocation in female Plodia interpunctella (Hübner) and Ephestia cautella (Walker). J Georgia Entomol Soc 17:421–427

    Google Scholar 

  • Lum PTM (1984) Ultrastructure of the bulla seminalis in Cadra cautella Walker (Pyralidae: Lepidoptera). Int J Insect Morphol Embryol 13:303–309

    Google Scholar 

  • Lum PTM, Baker JE (1989) Role of bursa copulatrix in oosortion in Cadra cautella (Lepidoptera: Pyralidae). J Entomol Sci 24:373–377

    Google Scholar 

  • Masly JP (2012) 170 years of “lock-and-key”: genital morphology and reproductive isolation. Int J Evol Biol 2012. doi:10.1155/2012/247352

  • Matsuda R (1976) Morphology and evolution of the insect abdomen. International series in pure and applied biology, zoology division, vol 56. Pergamon Press, Oxford

    Google Scholar 

  • Matsumoto K, Suzuki N (1995) The nature of mating plugs and the probability of reinsemination in Japanese Papilionidae. In: Scriber JM, Tsubaki Y, Lederhouse RC (eds) Swallowtail butterflies: their ecology and evolutionary biology. Scientific Publishers, Gainesville, pp 145–154

    Google Scholar 

  • Matthews M (1998) The CSIRO vesica everter: a new apparatus to inflate and harden eversible and other weakly sclerotized structures in insect genitalia. J Nat Hist 32:317–327

    Google Scholar 

  • Mikkola K (1992) Evidence for lock-and-key mechanism in the internal genitalia of the Apamea moths (Lepidoptera, Noctuidae). Syst Entomol 17:145–153

    Google Scholar 

  • Mikkola K (1993) The lock and key mechanism in the internal genitalia of the noctuid and geometrid moths (Lepidoptera) in relation to the speciation concepts. Fol Baer 6:149–157

    Google Scholar 

  • Mikkola K (1994) Inferences about the function of genitalia in the genus Eupithecia, with description of a new organ (Lepidoptera, Geometridae). Nota Lepidop (Suppl 5):73–78

    Google Scholar 

  • Mikkola K (2008) The lock-and-key mechanisms of the internal genitalia of the Noctuidae (Lepidoptera): how are they selected for? Eur J Entomol 105:13–25

    Google Scholar 

  • Miller JS (1988) External genitalic morphology and copulatory mechanism of Cyanotricha necyria (Felder) (Dioptidae). J Lepid Soc 42:103–115

    Google Scholar 

  • Miller JS (1991) Cladistics and classification of the Notodontidae (Lepidoptera: Noctuoidea) based on larval and adult morphology. Bull Amer Mus Nat Hist 204:1–230

    Google Scholar 

  • Miller JS (2009) Generic revision of the Dioptinae (Lepidoptera: Noctuoidea: Notodontidae). Part 1: Dioptini. Part 2: Josiini. Bull Amer Mus Nat Hist 321:1–1022

    Google Scholar 

  • Miller JS, Janzen DH, Franclemont JG (1997) New species of Euhapigiodes, new genus, and Hapigiodes in Hapigiini, new tribe, from Costa Rica, with notes on their life history and immatures (Lepidoptera: Notodontidae). Trop Lepid 8:81–99

    Google Scholar 

  • Minelli A (2002) Homology, limbs and genitalia. Evol Devel 4:127–132

    Google Scholar 

  • Mitter C (1988) Taxonomic potential of some internal reproductive structures in Catocala (Lepidoptera: Noctuidae) and Related Genera. Ann Entomol Soc Amer 81:10–18

    Google Scholar 

  • Mutanen M, Kaitala A, Mönkkönen M (2006) Genital variation within and between three closely related Euxoa moth species: testing the lock-an-key hypothesis. J Zool 268:109–119

    Google Scholar 

  • Naumann CM (1987) Functional morphology of the external male and female genitalia in Zygaena Fabricius, 1775 (Lepidoptera: Zygaenidae). Entomol Scand 18:213–219

    Google Scholar 

  • Norris MJ (1932) Contributions towards the study of insect fertility. I. The structure and operation of the reproductive organs of the genera Ephestia and Plodia (Lepidoptera, Phycitidae). Proc Zool Soc Lond 3:595–611

    Google Scholar 

  • Okagaki H, Sibatani A, Ogata M, Okada Y (1955) Male genitalia of Lepidoptera: morphology and nomenclature II. Morphological significance of saculus and furca. Ann Entomol Soc Amer 48:438–442

    Google Scholar 

  • Osanai M, Kasuga H, Aigaki T (1988) Functional morphology of the glandula prostatica, ejaculatory valve, and ductus ejaculatorius of the Silkworm Bombyx mori. J Morphol 198:231–241

    Google Scholar 

  • Park YI, Ramaswamy SB, Srinivasan A (1998) Spermatophore formation and regulation of egg maturation and oviposition in female Heliothis virescens by the male. J Insect Physiol 44:903–908

    CAS  PubMed  Google Scholar 

  • Penz CM (1999) Higher level phylogeny for the passion vine butterflies (Nymphalidae, Heliconiinae) based on early stage and adult morphology. Zool J Linn Soc 127:278–344

    Google Scholar 

  • Petersen W (1907) Über die Spermatophoren der Schmetterlinge. Z Wissens Zool 88:117–130

    Google Scholar 

  • Platt AP (1978) Editor’s note. J Lepid Soc 32:305

    Google Scholar 

  • Proulx SR, Promislow DEL, Phillips PC (2005) Network thinking in ecology and evolution. Trends Ecol Evol 20:345–353

    PubMed  Google Scholar 

  • Regier JC, Mitter C, Zwick A et al (2013) A large-scale, higher level, molecular phylogenetic study of the insect Order Lepidoptera (moths and butterflies). PLoS ONE 8(3):e58568

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reinecke LH, Reinecke JP, Adams TS (1983) Morphology of the male reproductive tract of mature larval, pupal and adult tobacco hornworms (Lepidoptera: Sphingidae), Manduca sexta. Ann Entomol Soc Am 76:365–375

    Google Scholar 

  • Reinhardt K (2010) Natural selection and genital variation: a role for the environment, parasites and sperm ageing? Genetica 138:119–127

    PubMed  Google Scholar 

  • Rogers SH, Wells H (1984) The structure and function of the bursa copulatrix of the monarch butterfly (Danaus plexippus). J Morphol 180:213–221

    Google Scholar 

  • Rubinoff D, Powell JA (1999) Description of Diedra, new genus (Lepidoptera: Tortricidae: Tortricinae: Archipini), and three new species, based on phylogenetic analysis. Ann Entomol Soc Amer 92:473–478

    Google Scholar 

  • Ryan MJ, Rand AS (1993) Species recognition and sexual selection ass a unitary problem in animal communication. Evolution 47:647–657

    Google Scholar 

  • Sánchez V, Cordero C (2014) Sexual coevolution of spermatophore envelopes and female genital traits in butterflies: evidence of male coercion? PeerJ 2:e247

    PubMed Central  PubMed  Google Scholar 

  • Sánchez V, Hernández-Baños BE, Cordero C (2011) The evolution of a female genital trait widely distributed in Lepidoptera: comparative evidence for an effect of sexual selection. PLoS ONE 6(8):e22642

    PubMed Central  PubMed  Google Scholar 

  • Scott JA (1978) Mid-valval flexion in the left valva of asymmetric genitalia of Erynnis. J Lepid Soc 32:304–305

    Google Scholar 

  • Schilthuizen M (2014) Nature’s nether regions. Viking, New York

    Google Scholar 

  • Sengün A (1944) Experimente zur sexuell-mechanischen isolation. Rev Fac Sci Univ Istanbul 9:239–253

    Google Scholar 

  • Shapiro AM, Porter AH (1989) The lock-and-key hypothesis: evolutionary and biosystematic interpretation of insect genitalia. Ann Rev Entomol 34:231–245

    Google Scholar 

  • Sibatani A, Ogata M, Okada Y, Okagaki H (1954) Male genitalia of Lepidoptera: morphology and nomenclature: I, Divisions of the valvae in Rhopalocera, Phalaenidae (= Noctuidae) and Geometridae. Ann Entomol Soc Amer 47:93–106

    Google Scholar 

  • Sihvonen P (2007) Mating behavior and copulation mechanisms in the genus Scopula (Geometridae: Sterrhinae). Nota Lepid 30:299–313

    Google Scholar 

  • Simmons LW (2014) Sexual selection and genital evolution. Austral Entomol 53:1–17

    Google Scholar 

  • Simonsen TJ (2006a) Glands, muscles and genitalia. Morphological and phylogenetic implications of histological characters in the male genitalia of Fritillary butterflies (Lepidoptera: Nymphalidae: Argynnini). Zool Scr 35:231–241

    Google Scholar 

  • Simonsen TJ (2006b) The male genitalia segments in fritillary butterflies: comparative morphology with special reference to the “rectal plate” in Issoria (Lepidoptera: Nymphalidae). Eur J Entomol 103:425–432

    Google Scholar 

  • Song H, Bucheli SR (2010) Comparison of phylogenetic signal between male genitalia and non-genital characters in insect systematics. Cladistics 26:23–35

    Google Scholar 

  • Stekolnikov AA (1965) Functional morphology of the copulatory apparatus in some Lepidoptera. Entomol Rev 44:143–149

    Google Scholar 

  • Sugawara T (1979) Stretch reception in the bursa copulatrix of the butterfly Pieris rapae crucivora, and its role in behavior. J Ins Physiol A 130:191–199

    Google Scholar 

  • Torres-Vila LM, Rodríguez-Molina MC, Jennions MD (2004) Polyandry and fecundity in the Lepidoptera: can methodological and conceptual approaches bias outcomes? Behav Ecol Sociobiol 55:315–324

    Google Scholar 

  • Tschudi-Rein K, Benz G (1990) Mechanisms of sperm transfer in female Pieris brassicae (Lepidoptera: Pieridae). Ann Entomol Soc Amer 83:1158–1164

    Google Scholar 

  • Wedell N (2005) Female receptivity in butterflies and moths. J Exp Biol 208:3433–3440

    PubMed  Google Scholar 

  • Williams JL (1941) The relations of the spermatophore to the female reproductive ducts in Lepidoptera. Entomol News 52:61–65

    Google Scholar 

  • Zlatkov B (2011) A preliminary study of everted vesicae of several leafrollers (Tortricidae). Nota Lepid 33:285–300

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Laura Sirot for very useful comments on a previous version of the manuscript. CC thanks Jaime Camacho and Raúl Martínez for technical help and PAPIIT/DGAPA (IN208413) for financial support. JB contribution was supported by project BFU2012-39816-CO2-01 of the Spanish Ministerio de Economía y Competitividad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Cordero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cordero, C., Baixeras, J. (2015). Sexual Selection Within the Female Genitalia in Lepidoptera. In: Peretti, A., Aisenberg, A. (eds) Cryptic Female Choice in Arthropods. Springer, Cham. https://doi.org/10.1007/978-3-319-17894-3_12

Download citation

Publish with us

Policies and ethics