Skip to main content

Role of Zinc in Different Body Systems

  • Chapter
Acrodermatitis Enteropathica

Abstract

Zinc plays multiple roles in metabolism, which can be classified into three major categories: catalytic, structural and regulatory functions [1, 2]. Zinc functions as a component of the catalytic site of various enzymes (termed metalloenzymes), which was first described by Keilin and Mann in 1939 after demonstrating that the enzyme carbonic anhydrase (an essential enzyme involved in the metabolism of carbon dioxide) requires zinc for proper catalytic function [3]. In the catalytic site of carbonic anhydrase, zinc was found to function as a Lewis acid by accepting a pair of electrons [3]. In a similar manner, zinc also is essential for the catalytic function of multiple other enzymes including alcohol dehydrogenase, matrix metalloproteinases, alkaline phosphatase and various RNA polymerases [4–6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maret W. Zinc and human disease. In: Interrelations between essential metal ions and human diseases. Dordrecht: Springer; 2013. p. 389–414.

    Chapter  Google Scholar 

  2. Cousins RJ. Metal elements and gene expression. Annu Rev Nutr. 1994;14(1):449–69.

    Article  CAS  PubMed  Google Scholar 

  3. Keilin D, Mann T. Carbonic anhydrase. Purification and nature of the enzyme. Biochem J. 1940;34(8-9):1163.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Plocke DJ, Levinthal C, Vallee BL. Alkaline phosphatase of Escherichia coli: a zinc metalloenzyme*. Biochemistry. 1962;1(3):373–8.

    Article  CAS  PubMed  Google Scholar 

  5. Kagi J, VALLEE BL. The role of zinc in alcohol dehydrogenase. V. The effect of metal-binding agents on the structure of the yeast alcohol dehydrogenase molecule. J Biol Chem. 1960;235:3188–92.

    CAS  PubMed  Google Scholar 

  6. Scrutton M, Wu C, Goldthwait D. The presence and possible role of zinc in RNA polymerase obtained from Escherichia coli. Proc Natl Acad Sci. 1971;68(10):2497–501.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Laity JH, Lee BM, Wright PE. Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol. 2001;11(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  8. Umesono K, et al. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991;65(7):1255–66.

    Article  CAS  PubMed  Google Scholar 

  9. Daniels PJ, et al. Mammalian metal response element‐binding transcription factor‐1 functions as a zinc sensor in yeast, but not as a sensor of cadmium or oxidative stress. Nucleic Acids Res. 2002;30(14):3130–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Günes Ç, et al. Embryonic lethality and liver degeneration in mice lacking the metal‐responsive transcriptional activator MTF‐1. EMBO J. 1998;17(10):2846–54.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Fraker PJ, Gershwin ME, Good RA, Prasad A. Interrelationships between zinc and immune function. Fed Proc 1986;45:1474–9.

    Google Scholar 

  12. Krebs NF. Overview of zinc absorption and excretion in the human gastrointestinal tract. J Nutr. 2000;130(5):1374S–7.

    CAS  PubMed  Google Scholar 

  13. Saper RB, Rash R. Zinc: an essential micronutrient. Am Fam Physician. 2009;79(9):768.

    PubMed Central  PubMed  Google Scholar 

  14. Sandstead HH. Zinc nutrition in the United States. Am J Clin Nutr. 1973;26(11):1251–60.

    CAS  PubMed  Google Scholar 

  15. Van Wouwe JP. Clinical and laboratory assessment of zinc deficiency in Dutch children. A review. Biol Trace Elem Res. 1995;49(2-3):211–25.

    Article  PubMed  Google Scholar 

  16. Piperi C, Papavassiliou AG. Molecular mechanisms regulating matrix metalloproteinases. Curr Top Med Chem. 2012;12(10):1095–112.

    Article  CAS  PubMed  Google Scholar 

  17. Salgueiro MJ, et al. The role of zinc in the growth and development of children. Nutrition. 2002;18(6):510–9.

    Article  CAS  PubMed  Google Scholar 

  18. Brewer GJ, et al. Zinc inhibition of calmodulin: a proposed molecular mechanism of zinc action on cellular functions. Am J Hematol. 1979;7(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  19. Krebs J. Calmodulin-dependent protein kinase IV: regulation of function and expression. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res. 1998;1448(2):183–9.

    CAS  Google Scholar 

  20. Van Wouwe JP. Clinical and laboratory diagnosis of acrodermatitis enteropathica. Eur J Pediatr. 1989;149(1):2–8.

    Article  PubMed  Google Scholar 

  21. Kumar P, et al. Zinc and skin: a brief summary. Dermatol Online J. 2012;18(3):1.

    PubMed  Google Scholar 

  22. Aggett PJ. Acrodermatitis enteropathica. J Inherit Metab Dis. 1983;6 Suppl 1:39–43.

    Article  PubMed  Google Scholar 

  23. Perafán‐Riveros C, et al. Acrodermatitis enteropathica: case report and review of the literature. Pediatr Dermatol. 2002;19(5):426–31.

    Article  PubMed  Google Scholar 

  24. Watanabe T, et al. Zinc deficiency delays gastric ulcer healing in rats. Dig Dis Sci. 1995;40(6):1340–4.

    Article  CAS  PubMed  Google Scholar 

  25. McClain CJ, Su LC. Zinc deficiency in the alcoholic: a review. Alcohol Clin Exp Res. 1983;7(1):5–10.

    Article  CAS  PubMed  Google Scholar 

  26. Grønli O, et al. Zinc deficiency is common in several psychiatric disorders. PLoS One. 2013;8(12), e82793.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Takeda A. Zinc homeostasis and functions of zinc in the brain. Biometals. 2001;14(3-4):343–51.

    Article  CAS  PubMed  Google Scholar 

  28. Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev. 1993;73(1):79–118.

    CAS  PubMed  Google Scholar 

  29. Tuormaa TE. Adverse effects of zinc deficiency: a review from the literature. J Orthomol Med. 1995;10:149–64.

    Google Scholar 

  30. Naber TH, et al. Serum alkaline phosphatase activity during zinc deficiency and long-term inflammatory stress. Clin Chim Acta. 1996;249(1):109–27.

    Article  CAS  PubMed  Google Scholar 

  31. Root AW, et al. Effects of zinc deficiency upon pituitary function in sexually mature and immature male rats. J Nutr. 1979;109(6):958–64.

    CAS  PubMed  Google Scholar 

  32. Slater JP, Mildvan AS, Loeb LA. Zinc in DNA polymerases. Biochem Biophys Res Commun. 1971;44(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  33. Falchuk KH, Montorzi M. Zinc physiology and biochemistry in oocytes and embryos. In: Zinc biochemistry, physiology, and homeostasis. London: Springer; 2001. p. 199–209.

    Chapter  Google Scholar 

  34. Dreosti IE. Zinc and the gene. Mutat Res/Fundam Mol Mech Mutagen. 2001;475(1):161–7.

    Article  CAS  Google Scholar 

  35. Prasad AS. Clinical, biochemical and nutritional spectrum of zinc deficiency in human subjects: an update. Nutr Rev. 1983;41(7):197–208.

    Article  CAS  PubMed  Google Scholar 

  36. Drummond I, et al. Repression of the insulin-like growth factor II gene by the Wilms tumor suppressor WT1. Science. 1992;257(5070):674–8.

    Article  CAS  PubMed  Google Scholar 

  37. Werner H, et al. The regulation of IGF-I receptor gene expression. Int J Biochem Cell Biol. 1995;27(10):987–94.

    Article  CAS  PubMed  Google Scholar 

  38. Kumari D, Nair N, Bedwal RS. Effect of dietary zinc deficiency on testes of Wistar rats: morphometric and cell quantification studies. J Trace Elem Med Biol. 2011;25(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  39. Millar M, et al. The effects of dietary zinc deficiency on the reproductive system of male rats. Can J Biochem Physiol. 1958;36(6):557–69.

    Article  CAS  PubMed  Google Scholar 

  40. Bedwal R, Bahuguna A. Zinc, copper and selenium in reproduction. Experientia. 1994;50(7):626–40.

    Article  CAS  PubMed  Google Scholar 

  41. Favier AE. The role of zinc in reproduction. Biol Trace Elem Res. 1992;32(1-3):363–82.

    Article  CAS  PubMed  Google Scholar 

  42. Prasad AS, et al. Zinc status and serum testosterone levels of healthy adults. Nutrition. 1996;12(5):344–8.

    Article  CAS  PubMed  Google Scholar 

  43. Andrews JC, et al. Role of zinc during hamster sperm capacitation. Biol Reprod. 1994;51(6):1238–47.

    Article  CAS  PubMed  Google Scholar 

  44. Henkel R, et al. Relevance of zinc in human sperm flagella and its relation to motility. Fertil Steril. 1999;71(6):1138–43.

    Article  CAS  PubMed  Google Scholar 

  45. Marone G, Findlay SR, Lichtenstein LM. Modulation of histamine release from human basophils in vitro by physiological concentrations of zinc. J Pharmacol Exp Therap. 1981;217(2):292–8.

    CAS  Google Scholar 

  46. Kimball SR, et al. Effects of zinc deficiency on protein synthesis and expression of specific mRNAs in rat liver. Metabolism. 1995;44(1):126–33.

    Article  CAS  PubMed  Google Scholar 

  47. SANDSTEAD HH, et al. Zinc and wound healing. Effects of zinc deficiency and zinc supplementation. Am J Clin Nut. 1970;23:514–9.

    CAS  Google Scholar 

  48. McMurray D. Cell-mediated immunity in nutritional deficiency. Prog Food Nutr Sci. 1983;8(3-4):193–228.

    Google Scholar 

  49. Prasad AS, et al. Serum thymulin in human zinc deficiency. J Clin Invest. 1988;82(4):1202.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Wirth J, Fraker P, Kierszenbaum F. Zinc requirement for macrophage function: effect of zinc deficiency on uptake and killing of a protozoan parasite. Immunology. 1989;68(1):114.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr. 1998;68(2):447S–63.

    CAS  PubMed  Google Scholar 

  52. Keen CL, Gershwin ME. Zinc deficiency and immune function. Annu Rev Nutr. 1990;10(1):415–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beigi, P.K.M., Maverakis, E. (2015). Role of Zinc in Different Body Systems. In: Acrodermatitis Enteropathica. Springer, Cham. https://doi.org/10.1007/978-3-319-17819-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17819-6_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17818-9

  • Online ISBN: 978-3-319-17819-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics