Skip to main content

Principles of Bedload Transport of Non-cohesive Sediment in Open-Channels

  • Chapter
  • First Online:
Rivers – Physical, Fluvial and Environmental Processes

Abstract

This text addresses the particular case of motion and causes of motion of granular material as bedload in the fluvial domain. The aim is to perform and overview of key concepts, main achievements and recent advances on the description of the processes involved in erosion, deposition and transport of sediment in open-channels. The theoretical functional relations describing both the initiation of motion and the sediment transport are introduced. The classical problem of the initiation of motion of particles is treated at grain and at reach scales, accounting for the stochastic nature of flow. Concepts of granular kinematics and methods for quantifying the sediment transport rate in rivers are presented. The latter results from the interactions between the flow and the particles on the bed surface. The sediment transport rate, which has been shown to have a stochastic behaviour, is converted to a lumped statistic distribution. Finally, some field and laboratory techniques for measuring sediment transport, accounting for its inherent fluctuations, are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that gravity appears in Eq. (13.4) through terms \(u_{*}\) and \(g(\rho^{(g)} - \rho^{(w)} )\); in the latter case it allows for separating clearly the effects of grain weight, directly depending of \(g(\rho^{(g)} - \rho^{(w)} )\), and inertial effects, depending only on \(\rho^{(g)}\) (Yalin 1977).

  2. 2.

    We define exposed grain as that which, to be able to move, would not have to disturb the position of its neighbours (we ignore, for now, the possibility of collective entrainment).

  3. 3.

    The ensemble analysis underlying Eq. (13.26) is not possible in practice since it is not feasible to subject the exact same bed to a succession of turbulent flows. The practical way to generate a succession of flow realizations is to expose the bed to a turbulent flow over a sufficiently long but finite time interval, so that all relevant turbulent scales are included. Hence, in practical terms, an empirical probability of entrainment can be obtained for a set of bed locations, coincident with the position of a set of grains that may be substituted over the course of time.

  4. 4.

    The view of sediment transport as a purely size selective process has been rejected (Parker and Klingeman 1982; Komar 1987). Deterministic bedload discharge formulas that include a dependence of a power of \(\theta - \, \theta_{c}\) require corrections to either the Shields or the critical Shields parameters when applied to the transport of size fractions. Hiding-exposure coefficients have been proposed to reduce/increase \(\theta_{k} - \, \theta_{ck}\) for given size fractions d k smaller/larger than a reference diameter (Egiazaroff 1965; Ashida and Michiue 1972). As seen in the example of Fig. 13.6, hiding and exposure describe different phenomena. The former is related to local modifications of the flow field which, for smaller size fractions may signify reduced mobility due to sheltering or decreased near bed turbulence (Nelson et al. 1995). The latter expresses the positioning of the grain relatively to its immediate neighbours. Increased exposure and decreased support angle are common of larger size fractions (Sect. 13.3 and, e.g., Komar and Li 1988). Due to this combined effect, in the limit, equal mobility of different size fractions can be nearly attained for gravel mixtures (Parker and Klingeman 1982; Parker et al. 1982), although the range of conditions for this to happen has been shown to be relatively narrow (Wathen et al. 1995; Parker and Toro-Escobar 2002). Hiding/exposure coefficients thus account, in a lumped way, for the differential grain response regarding entrainment, depending on the particular location/diameter of the particle relatively to their neighbours.

  5. 5.

    Kennedy (1995) believed that Shields (1936) used Kramer’s (1935) category of weak-countable transport conditions to define the incipient motion conditions, thus reducing subjectivity to the notion of “countable”.

References

  • Ackers P, White WR (1973) Sediment transport: a new approach and analysis. J Hydraul Div 99(HY11):2041–2060

    Google Scholar 

  • Aleixo R, Maia R (2006) The beginning of sediment transport—a different approach. In: Ferreira RML, Alves ECTL, Leal JGAB, Cardoso AH (eds) River flow 2006. Balkema, Lisse, pp 553–563

    Google Scholar 

  • Ancey C, Davison AC, Böhm T, Jodeau M, Frey P (2008) Entrainment and motion of coarse particles in a shallow water stream down a steep slope. J Fluid Mech 595:83–114

    Google Scholar 

  • Andrews ED (1983) Entrainment of gravel from naturally sorted riverbed materials. Geol Soc Am Bull 94:1225–1231

    Google Scholar 

  • Andrews ED, Erman DC (1986) Persistence in the size distribution of surficial bed material during an extreme snowmelt flood. Water Resour Res 22:191–197

    Google Scholar 

  • Ashida K, Michiue M (1972) Study on hydraulic resistance and bedload transport rate in alluvial streams. Trans Jpn Soc Civ Eng 206:59–69

    Google Scholar 

  • Ashworth PJ, Ferguson RI (1989) Size-selective entrainment of bed-load in gravel bed streams. Water Resour Res 25:627–634

    Google Scholar 

  • Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc R Soc Lond A 225:49–63

    Google Scholar 

  • Bagnold, R. A. (1956). The flow of cohesionless grains in fluids. Phil. Trans. Roy. Soc. London, A, 249: 964

    Google Scholar 

  • Ballio F, Nikora V, Coleman SE (2014) On the definition of solid discharge in hydro-environment research and applications. J Hydraul Res 52(2):173–184

    Google Scholar 

  • Benda L (1990) The influence of debris flows on channels and valley floors in the Oregon Coast Range, U.S.A. Earth Surf Proc Land 15:457–466

    Google Scholar 

  • Benda L, Dunne T (1997) Stochastic forcing of sediment routing and storage in channel networks. Water Resour Res 33(12):2849–2863

    Google Scholar 

  • Bettess R (1984) Initiation of sediment transport in gravel streams. Proc Instn Civ Eng 77(Part 2, Technical Note 407):79–88

    Google Scholar 

  • Binggeli B (1980) On the intrinsic shape of elliptical galaxies. Astron Astrophys 82(3):289–294

    Google Scholar 

  • Bogen J (1980) The hysteresis effect of sediment transport systems. Norsk Geogr Tidsskr 34:45–54

    Google Scholar 

  • Bradley DN, Tucker GE, Benson DA (2010) Fractional dispersion in a sand bed river. J Geophys Res 115:F00A09. doi:10.1029/2009JF001268

  • Bradley WC, Mears AI (1980) Calculations of flows needed to transport coarse fraction of boulder creek alluvium at boulder, Colorado—summary. Geolog Soc Am Bull 91:135–138

    Google Scholar 

  • Bridge JS, Bennet SJ (1992) A model for the entrainment and transport of sediment grains of mixed sizes, shapes and densities. Water Resour Res 28(2):337–363

    Google Scholar 

  • Brownlie WR (1981) Prediction of flow depth and sediment discharge in open channels. W.M. Keck Laboratory of Hydraulics and Water Resources, Report no. KH-R-43A, California Institute of Technology, Pasadena, California

    Google Scholar 

  • Buffington JM (1999) The legend of shields. J Hydraul Eng 125(4):376–387

    Google Scholar 

  • Buffington JM, Montgomery DR (1997) A systematic analysis of eight decades of incipient motion studies with special reference to gravel bedded rivers. Water Resour Res 33(8):1993–2029

    Google Scholar 

  • Buffington JM, Montgomery DR (1999) Effects of hydraulic roughness on surface textures of gravel-bed rivers. Water Resour Res 35. doi:10.1029/1999WR900138

  • Buffinton JM, Dietrich WE, Kirchner JW (1992) Friction angle measurements on a naturally formed gravel strembed. Implications for critical boundary shear stress. Water Resour Res 28(2):411–425

    Google Scholar 

  • Cao Z (1997) Turbulent bursting-based sediment entrainment functions. J Hydraul Eng 123(3):233–236. doi:10.1061/(ASCE)0733-9429(1997)123:3(233)

  • Carling PA (1983) Threshold of coarse sediment transport in broad and narrow natural streams. Earth Surf Proc Land 8(1):1–18

    Google Scholar 

  • Carling PA, Kelsey A, Glaister MS (1992) Effect of bed roughness, particle shape and orientation on initial motion criteria. In: Billy P, Day RD, Thorne CR, Taconi P (eds) Dinamics of gravel-bed river. Wiley, New York, pp 23–37

    Google Scholar 

  • Carling PA, Golz E, Orr HG, Radecki-Pawlik A (2000) The morphodynamics of fluvial sand dunes in the River Rhine near Mainz, Germany. Sedimentol Morphol Sedimentol 47:227–252. doi:10.1046/j.1365-3091.2000.00290.x

    Google Scholar 

  • Cheng N-S, Chiew Y-M (1998) Pickup probability for sediment entrainment. J Hydraul Eng 124(2):232–235. doi:10.1061/(ASCE)0733-9429(1998)124:2(232)

    Google Scholar 

  • Chepil WS (1959) Equilibrium of soil grains at the threshold of movement by wind. Soil Sci Soc Am J 23(6):422–428

    Google Scholar 

  • Chepil WS (1961) The use of spheres to measure lift and drag on wind-eroded soil grains. Proc Soil Sci Soc 25:343–345

    Google Scholar 

  • Church M (2006) Bed material transport and the morphology of alluvial river channels. Annu Rev Earth Planet Sci 34:325–354

    Google Scholar 

  • Church M, Hassan MA (1992) Size and distance of travel of unconstrained clasts on a streambed. Water Resour Res 28(1):299–303

    Google Scholar 

  • Church M, Hassan MA (2002) Mobility of bed material in Harris Creek. Water Resour Res 38:19-1–19-12. doi:10.1029/2001WR000753

  • Church M (1978) Palaeohydraulic reconstructions from a Holocene valley fill. In: Miall AD (ed) Fluvial sedimentology. Canadian Society of Petroleum Geologists, Mem. 5, Calgary, Canada, pp 743–772

    Google Scholar 

  • Church M, Hassan MA, Wolcott JF (1998) Stabilizing self-organized structures in gravel-bed stream channels: Field and experimental observations. Water Resour Res 34(11):3169–3179

    Google Scholar 

  • Crickmore MJ, Lean GH (1962) The measurement of sand transport by means of radioactive tracers. Proc R Soc London Ser A 266:402–421

    Google Scholar 

  • Curran JC, Wilcock PR (2005) Characteristic dimensions of the step-pool bed configuration: An experimental study. Water Resour Res 41:W02030. doi:10.1029/2004WR003568

    Google Scholar 

  • DeVries PE, Burges SJ, Daigneau J (2001) Measurements of the temporal progression of scour in a pool-riffle sequence in a gravel bed stream using an electronic scour monitor. Water Resour Res 37:2805–2816

    Google Scholar 

  • DeVries P (2002) Bedload layer thickness and disturbance depth in gravel bed streams. J Hydraul Eng 128:983–991

    Google Scholar 

  • Dey S, Papanicolaou AN (2008) Sediment threshold under stream flow: a state-of-the-art review. Water Eng KSCE J Civ Eng 12:45–60

    Google Scholar 

  • Dietrich WE, Kirchner JW, Ikeda H, Iseya F (1989) Sediment supply and the development of the coarse surface layer in gravel-bedded rivers. Nature 340:215–217

    Google Scholar 

  • Drake TG, Shreve RL, Dietrich WE, Whiting PJ, Leopold LB (1988) Bed load transport of fine gravel observed by motion-picture photography. J Fluid Mech 192:193–217

    Google Scholar 

  • Egiazaroff IV (1965) Calculation of non-uniform sediment concentrations. J Hydraul Eng 91(4):225–248

    Google Scholar 

  • Einstein HA (1950) The bed-load function for sediment transportation in open channel flows. Soil Conserv. Serv. Tech. Bull. 1026, US Department of Agriculture, 73 pp

    Google Scholar 

  • Einstein HA (1937) Bedload transport as a probability problem. Ph.D. thesis, Colorado State University (In Sedimentation, Shen, H.W. (ed.) 1972, App. C)

    Google Scholar 

  • Emmett, W.W. (1980). A field calibration of the sediment-trapping characteristics of the Helley-Smith bedload sampler: U. S. geological survey. Professional paper 1139, 44 p

    Google Scholar 

  • Ettema R, Mutel CF (2004) Hans Albert Einstein: innovation and compromise in formulating sediment transport by rivers. J Hydraul Eng 130(6):477–487

    Google Scholar 

  • Fahnestock RK (1963) Morphology and hydrology of a glacial stream—White River, Mount Rainier, Washington. U.S. geological survey professional paper 422A, 70 pp

    Google Scholar 

  • Feller W (1968) An introduction to probability theory and its applications, vol 1, 3rd edn. Willey, New York

    Google Scholar 

  • Fenton JD, Abbott JE (1977) Initial movement of grains in a stream bed: the effects of relative protrusion. Proc R Soc A 352:523–527

    Google Scholar 

  • Ferguson RI, Hoey TB (2002) Long-term slowdown of river tracer pebbles: generic models and implications for interpreting short-term tracer studies. Water Resour Res 38(8):17-1–17-11

    Google Scholar 

  • Ferguson RI (1994) Critical discharge for entrainment of poorly sorted gravel. Earth Surf Proc Land 19:179–186

    Google Scholar 

  • Ferguson RI, Wathen SJ (1998) Tracer-pebble movement along a concave river profile: virtual velocity in relation to grain size and shear stress. Water Resour Res 34:2031–2038

    Google Scholar 

  • Ferguson RI, Bloomer DJ, Hoey TB, Werritty A (2002) Mobility of river tracer pebbles over different timescales. Water Resour Res 38:1045. doi:10.1029/2001WR000254

    Google Scholar 

  • Fernandez Luque R, van Beek R (1976) Erosion and transport of bed-load sediment. J Hydraul Res 14(2):127–144

    Google Scholar 

  • Ferreira RML (2005) River morphodynamics and sediment transport. Conceptual model and solutions. PhD thesis, IST, TULisbon

    Google Scholar 

  • Ferreira RML, Franca MJ, Leal JGAB, Cardoso AH (2009) Mathematical modelling of shallow flows: closure models drawn from grain-scale mechanics of sediment transport and flow hydrodynamics. Can J Civ Eng 36(10):1605–1621. doi:10.1139/L09-033

    Google Scholar 

  • Ferreira RML, Ferreira L, Ricardo AM, Franca MJ (2010) Impacts of sand transport on flow variables and dissolved oxygen in gravel-bed streams suitable for salmonid spawning. River Res Appl 26(4):414–438. doi:10.1002/rra.1307

  • Ferreira RML, Franca MJ, Leal JGAB, Cardoso AH (2012) Flow over rough mobile beds: Friction factor and vertical distribution of the longitudinal mean velocity. Water Resour Res 48(5):W05529, 1944–7973. doi:10.1029/2011WR011126

  • Foufoula-Georgiou E, Stark C (2010) Introduction to special section on stochastic transport and emergent scaling on earth’s surface: rethinking geomorphic transport—stochastic theories, broad scales of motion and nonlocality. J Geophys Res 115. doi:10.1029/2010JF001661

  • Furbish DJ, Haff PK, Roseberry JC, Schmeeckle MW (2012a) A probabilistic description of the bed load sediment flux: 1. Theory. J of Geophys Res 117:F03031. doi:10.1029/2012JF002352

    Google Scholar 

  • Furbish DJ, Ball AE, Schmeeckle MW (2012b) A probabilistic description of the bed load sediment flux: 4. Fickian diffusion at low transport rates. J Geophys Res Earth Surf 117

    Google Scholar 

  • Ganti V, Meerschaert MM, Foufoula-Georgiou E, Viparelli E, Parker G (2010) Normal and anomalous diffusion of gravel tracer particles in rivers. J Geophys Res Earth Surf 115:F00A12. Doi:http://dx.doi.org/10.1029/2008JF001222

  • Garde RJ, Ranga Raju KG (1985) Mechanics of sediment transportation and alluvial stream problems, 2nd edn. Willey Eastern Limited, New Delhi

    Google Scholar 

  • Gessler J (1965) The beginning of bedload movement of mixtures investigated as natural armouring in channels. Technical report no. 69, The Laboratory of Hydraulic Research and Soil Mechanics, Swiss Federal Institute of Technology, Zurich, (translation by W. M. Keck Laboratory of Hydraulics and Water Resources, California Inst. Technology)

    Google Scholar 

  • Gintz D, Hassan MA, Schmidt K-H (1996) Frequency and magnitude of bedload transport in a mountain river. Earth Surf Proc Land 21:433–446

    Google Scholar 

  • Göğüş M, Defne Z (2005) Effect of shape in incipient motion of large solitary particles. J Hydraul Eng 131(1):38–45

    Google Scholar 

  • Gomez B, Church M (1989) An assessment of bed load sediment transport formulae for gravel bed rivers. Water Resour Res 25:1161–1186

    Google Scholar 

  • Gomi T, Sidle RC (2003) Bed load transport in managed steep-gradient headwater streams of Southeastern Alaska. Water Resour Res 39. doi:10.1029/2003WR002440

  • Gottesfeld AS, Hassan MA, Tunnicliffe JF, Poirier RW (2004) Sediment dispersion in fish bearing streams: the influence of floods and spawning salmon. J Am Water Resour Assoc 40:1071–1086

    Google Scholar 

  • Graf WH (1971) Hydraulics of sediment transport. McGraw_Hill Book Co., New York

    Google Scholar 

  • Gray JR, Laronne JB, Marr JDG (2010) Bedload-surrogate monitoring technologies. U.S. geological survey scientific investigations report 2010–5091

    Google Scholar 

  • (Am Soc Civ Eng Proc)

    Google Scholar 

  • Gyr A, Schmid A (1997) Turbulent flows over smooth erodible sand beds in flumes. J Hydraul Res 35(4):525–544

    Google Scholar 

  • Habersack HM (2001) Radio-tracking gravel particles in a large braided river in New Zealand: a field test of the stochastic theory of bed load transport proposed by Einstein. Hydrol Process 15:377–391

    Google Scholar 

  • Haschenburger JK (2012) On gravel exchange in natural channels. In: Church M, Biron PA, Roy A (eds) Gravel-bed river: processes, tools, environments. Wiley, New York, pp 56–67

    Google Scholar 

  • Haschenburger JK, Church M (1998) Bed material transport estimated from the virtual velocity of sediment. Earth Surf Proc Land 23:791–808

    Google Scholar 

  • Haschenburger JK (1999) A probability model of scour and fill depths in gravel-bed channels. Water Resour Res 35:2857–2869

    Google Scholar 

  • Haschenburger JK (2011a) The rate of fluvial gravel dispersion. Geophys Res Lett 38(L24403). doi:10.1029/2011GL049928

  • Haschenburger JK (2011b) Vertical mixing of gravel over a long flood series. Earth Surf Proc Land 36:1044–1058

    Google Scholar 

  • Haschenburger JK (2013) Tracing river gravels: insights into dispersion from a long-term field experiment. Geomorphology 200:121–131

    Google Scholar 

  • Hassan MA, Church M (2000) Experiments on surface structure and partial sediment transport on a gravel bed. Water Resour Res 36:1885–1895

    Google Scholar 

  • Hassan MA, Zimmermann AM (2011) Channel response and recovery to changes in sediment supply. In: Church M, Biron PA, Roy A (eds) Gravel-bed river: processes, tools, environments, pp 464–473 (Invited contribution)

    Google Scholar 

  • Hassan MA, Church M, Schick AP (1991) Distance of movement of coarse particles in gravel bed streams. Water Resour Res 27:503–511

    Google Scholar 

  • Hassan M, Smith B, Hogan D, Luzi D, Zimmermann A, Eaton B (2008) Sediment storage and transport in coarse bed streams: scale considerations. In: Habersack H, Piegay H, Rinaldi M (eds) Gravel-bed rivers VI: from process understanding to river restoration. Elsevier, Amsterdam, pp 473–496

    Google Scholar 

  • Hassan MA (1990) Scour, fill, and burial depth of coarse material in gravel bed streams. Earth Surf Proc Land 15:341–356

    Google Scholar 

  • Hassan MA, Church M (1992) The movement of individual grains on the streambed. In: Billi P, Hey RE, Thorne CR, Tacconi P (eds) Dynamics of gravel bed rivers. Wiley, New York, pp 159–175

    Google Scholar 

  • Hassan MA, Church M (2001) Rating bedload transport in Harris Creek: seasonal and spatial variation over a cobble-gravel bed. Water Resour Res 37:813–825

    Google Scholar 

  • Hassan MA, Church M (1994) Vertical mixing of coarse particles in gravel bed rivers: a kinematic model. Water Resour Res 30:1173–1185

    Google Scholar 

  • Hassan MA, Ergenzinger P (2003) Tracers in fluvial geomorphology. In: Kondolf GM (ed) Tools in fluvial geomorphology. Wiley, Chichester

    Google Scholar 

  • Hassan MA, Reid I (1990) The influence of microform bed roughness elements on flow and sediment transport in gravel bed rivers. Earth Surf Proc Land 15:739–750

    Google Scholar 

  • Hassan MA, Church M, Ashworth PJ (1992) Virtual rate and mean distance of travel of individual clasts in gravel-bed channels. Earth Surf Proc Land 17:617–628

    Google Scholar 

  • Hassan MA, Robinson SVJ, Voepel H, Lewis J, Lisle TE (2014) Modeling temporal trends in bedload transport in gravel-bed streams using hierarchical mixed-effects models. Geomorphology 219:260–269

    Google Scholar 

  • Hassan MA, Schick AP, Shaw PA (1999) The transport of gravel in an ephemeral sandbed river. Earth Surf Proc Land 24:623–640

    Google Scholar 

  • Hassan MA, Voepel H, Schumer R, Parker G, Fraccarollo L (2013) Displacement characteristics of coarse fluvial bed sediment. J Geophys Res Earth Surf 118:155–165

    Google Scholar 

  • Hayward JA (1980) Hydrology and stream sediments in a mountain catchment. Special Publication 17, Tussock Grasslands and Mountain Lands Institutes, Lincoln College, Canterbury, New Zealnad, 236 pp

    Google Scholar 

  • Helley EJ, Smith W (1971) The development and calibration of a pressure difference bed load sampler. U.S. geological survey, open file report, 18 pp

    Google Scholar 

  • Hill KM, DellAngelo L, Meerschaert MM (2010) Heavy‐tailed travel distance in gravel bed transport: An exploratory enquiry. J Geophys Res 115:F00A14. doi:10.1029/2009JF001276

  • Houbrechts G, Campenhout JV, Levecq Y, Hallot E, Peeters A, Petit F (2012) Comparison of methods for quantifying active layer dynamics and bedload discharge in armoured gravel-bed rivers. Earth Surf Proc Land 37:1501–1517

    Google Scholar 

  • Hu C, Hui Y, Xia Z (1992) Experimental study on saltation of solid grains in flowing water. Int J Sediment Res 7(2):23–51

    Google Scholar 

  • Hubbell DW, Stevens HH, Skinner JV, Beverage JP (1985) New approach to calibrating bed load samplers. J Hydraul Eng 111:677–694 (American Society of Civil Engineering)

    Google Scholar 

  • Iverson R (1997) The physics of debris flows. Rev Geophys 35(3):245–296

    Google Scholar 

  • Jackson WL, Beschta RL (1982) A model of two-phase bedload transport in an Oregon coast range stream. Earth Surf Proc Land 7:517–527

    Google Scholar 

  • Jaeggi MNR (1995) Sediment transport in mountain rivers—a review. In: International conference on erosion control, 25–26 August, 1995, The Sabo Society of Japan, keynote address, 13 pp

    Google Scholar 

  • Kennedy JF (1995) The albert shields story. J Hydraul Eng 121:766–772

    Google Scholar 

  • Kirchner JW, Dietrich WE, Iseya F, Ikeda H (1990) The variability of critical shear stress, friction angle, and grain protrusion in water-worked sediments. Sedimentology 37:647–672

    Google Scholar 

  • Kleinhans M, van Rijn L (2002) Stochastic prediction of sediment transport in sand-gravel bed rivers. J Hydraul Eng 128:412–425. doi:10.1061/(ASCE)0733-9429(2002)128:4(412) (Special Issue: Stochastic Hydraulics and Sediment Transport)

  • Komar PD (1987) Selective grain entrainment by a current from a bed of mixed sizes: a reanalysis. J Sediment Petrol 57(2):203–211

    Google Scholar 

  • Komar PD, Miller MC (1973) The threshold of sediment movement under oscilatorry water waves. J Sediment Petrol 43(4):1101

    Google Scholar 

  • Komar PD, Li MZ (1988) Application of grain pivoting and sliding analyses to selective entrainment of gravel and to flow competence evaluations. Sedimentology 35:681–695

    Google Scholar 

  • Kovacs A, Parker G (1994) A new vectorial bedload formulation and its application to the time evolution of straight river channels. J Fluid Mech 267:153–183

    Google Scholar 

  • Kramer H (1935) Sand mixtures and sand movement in fluvial models. Trans Am Soc Civ Eng 100:798–878

    Google Scholar 

  • Kuhnle RA (1992) Bedload transport during rising and falling stages on two small streams. Earth Surf Proc Land 17:191–197

    Google Scholar 

  • Lacey RWJ, Roy AG (2007) A comparative study of the turbulent flow field with and without a pebble cluster in a gravel bed river. Water Resour Res 43:W05502. doi:10.1029/2006WR005027

    Google Scholar 

  • Lamarre H, Roy AG (2008) The role of morphology on the displacement of particles in a step–pool river system. Geomorphology 99:270–279

    Google Scholar 

  • Lamb MP, Scheingross JS, Amidon WH, Swanson E, Limaye A (2011) A model for fire-induced sediment yield by dry ravel in steep landscapes. J Geophys Res: Earth Surf 116(F3)

    Google Scholar 

  • Laronne JB, Reid I, Yitshak Y, Frostick LE (1992) Recording bedload discharge in a semiarid channel, Nahal Yatir, Israel. In: Bogen J, Walling DE, Day TJ (eds) Erosion and sediment transport monitoring programmes in river basins, vol 210. IAHS Publication, Wallingford, pp 79–86

    Google Scholar 

  • Lauffer H, Sommer N (1982) Studies on sediment transport in mountain streams of the eastern Alps. In: Proceeding of 14th congress international commission on large dams, Rio de Janeiro, pp 431–453

    Google Scholar 

  • Lenzi MA, D’Agostino V (1999) Bedload transport in the instrumented catchment of the Rio Cordon, Part II: analysis of bedload rate. CATENA 36:191–204

    Google Scholar 

  • Lenzi MA, D’Agostino V, Billi P (1999) Bedload transport in the instrumented catchment of Rio Cordon, part I: analysis of bedload records, conditions and threshold of bedload entrainment. Catena 36:171–190

    Google Scholar 

  • Li Z, Komar PD (1986) Laboratory measurements of pivoting angles for applications to selective e ntrainment of gravel in a current. Sedimentology 33(3):413–423. doi:10.1111/j.1365-3091.1986.tb00545.x

    Google Scholar 

  • Ling C-H (1995) Criteria for incipient motion of spherical sediment particles. J Hydraul Eng 121(6):472–478. doi:10.1061/(ASCE)0733-9429(1995)121:6(472)

    Google Scholar 

  • Lisle TE, Nelson JM, Pitlick J, Madej MA, Barkett BL (2000) Variability of bed mobility in natural, gravel-bed channels and adjustments to sediment load at local and reach scales. Water Resour Res 36(12):3743–3755

    Google Scholar 

  • Lisle TE, Pizzuto JE, Ikeda H, Iseya F, Kodama Y (1997) Evolution of a sediment wave in an experimental channel. Water Resour Res 33(8):1971–1981

    Google Scholar 

  • Lisle TE, Hilton S (1992) The volume of fine sediment in pools: an index of sediment supply in gravel bed streams. Water Resour Bull 28:371–383

    Google Scholar 

  • Ma H, Heyman J, Fu X, Mettra F, Ancey C, Parker G (2014) Bed load transport over a broad range of timescales: determination of three regimes of fluctuations. J Geophys Res Earth Surf 119(12):2169–9011. doi:10.1002/2014JF003308

    Google Scholar 

  • MacVicar BJ, Roy AG (2011) Sediment mobility in a forced riffle-pool. Geomorphology 125:445–456

    Google Scholar 

  • Martin R, Jerolmack D, Schumer R (2012) The physical basis for anomalous diffusion in bed load transport. J Geophys Res 117:F01018, 18 pp. doi:10.1029/2011JF002075

  • Mavies W, Ho C-H, Tu Y-C (1935) The transportation of detritus by flowing water–I. University of Iowa Studies in Engineering, Bulletin 5, 54 pp

    Google Scholar 

  • McEwan I, Sørensen M, Heald J, Tait S, Cunningham G, Goring D, Willetts B (2004) Probabilistic modeling of bed-load composition. J Hydraul Eng 130(2):129–139. doi:10.1061/(ASCE)0733-9429(2004)130:2(129)

    Google Scholar 

  • McNamara JP, Borden C (2004) Observations on the movement of coarse gravel using implanted motion-sensing radio transmitters. Hydrol Process 18(10):1871–1884

    Google Scholar 

  • Meade RH (1985) Wavelike movement of bedload sediment, East Fork River, Wyoming. Environ Geol Water Sci 7:215–255

    Google Scholar 

  • Meyer-Peter E, Müller R (1948) Formulas for bed-load transport. In: Proceedings of 2nd meeting, IAHR, Stockholm, Sweden, pp 39–64

    Google Scholar 

  • Milhous, R.T. (1973). Sediment transport in a gravel-bottomed stream, PhD thesis, Oregon State University, Corvallis, Oregon, 232 pp

    Google Scholar 

  • Miller DJ, Benda LE (2000) Effects of punctuated sediment supply on valley-floor landforms and sediment transport. Geolog Soc Am Bull 112:1814–1824

    Google Scholar 

  • Miller RL, Byrne RJ (1966) The angle of repose for a single grain on a fixed rough bed. Sedimentology 6(4):303–314. doi:10.1111/j.1365-3091.1966.tb01897.x

    Google Scholar 

  • Mizuyama T (1977) Bedload transport in steep channels. Ph.D. thesis, Kyoto University, Japan, 118 pp

    Google Scholar 

  • Nakagawa H, Tsujimoto T (1976) Experimental Study on Evolution of Sand Waves from an Initially Flattened Bed. Disaster Prev Res Inst Ann 19:289–309

    Google Scholar 

  • Nelson JM, Shreve RL, McLean SR, Drake TG (1995) Role of near-bed turbulence in bedload transport and bedform mechanics. Water Resour Res 31:2071–2086

    Google Scholar 

  • Nikora V, Habersack H, Huber T, McEwan I (2002) On bed particle diffusion in gravel bed flows under weak bed load transport. Water Resour Res 38(6):1–9

    Google Scholar 

  • Novak ID (1973) Predicting coarse sediment transport: the Hjulstrom curve revisited. In: Morisawa M (ed) Fluvial geomorphology. Binghampton New York State University, New York, pp 13–26

    Google Scholar 

  • Paintal AS (1971a) Concept of critical shear stress in loose boundary open channels. J Hydraul Res 9(1):91–113

    Google Scholar 

  • Paintal AS (1971b) A stochastic model of bed load transport. J Hydraul Res 9(4):527–554

    Google Scholar 

  • Parker G (1990) Surface bedload transport relation for gravel rivers. J Hydraul Res 28(4):417–436

    Google Scholar 

  • Parker G (2008) Transport of gravel and sediment mixtures. In: García MH (ed) Sedimentation engineering. Processes, measurements, modeling and practice, ASCE, Reston, pp 165–251

    Google Scholar 

  • Parker G, Andrews E (1985) Sorting of bed load sediment by flow in meander bends. Water Resour Res 21(9):1361–1373

    Google Scholar 

  • Parker G, Klingeman PC (1982) On why gravel-bed streams are paved. Water Resour Res 18:1049–1423

    Google Scholar 

  • Parker G, Toro-Escobar CM (2002) Equal mobility of gravel in streams: the remains of the day. Water Resour Res 38(11):1264. doi:10.1029/2001WR000669

    Google Scholar 

  • Parker G, Paola C, Leclair S (2000) Probabilistic form of Exner equation of sediment continuity for mixtures with no active layer. J Hydraul Eng 126:818–826

    Google Scholar 

  • Parker G, Klingeman PC, McLean DG (1982) Bedload and size distribution in paved gravel-bed streams. J Hydraul Div 108(HY4):544–571

    Google Scholar 

  • Parker G, Seminara G, Solari L (2003) Bed load at low shields stress on arbitrarily sloping beds: alternative entrainment formulation. Water Resour Res 39(7):1183

    Google Scholar 

  • Proffitt GJ, Sutherland AJ (1983) Transport of non-uniform sediment. J Hydraul Res IAHR 21(1):33–43

    Google Scholar 

  • Pyrce RS, Ashmore PE (2003a) Particle path length distributions in meandering gravel-bed streams: results from physical models. Earth Surf Proc Land 28:951–966

    Google Scholar 

  • Pyrce RS, Ashmore PE (2003b) The relation between particle path length distributions and channel morphology in gravel-bed streams. Geomorphology 56:167–187

    Google Scholar 

  • Pyrce RS, Ashmore PE (2005) Bedload path length and point bar development in gravel-bed river models. Sedimentology 52:839–857

    Google Scholar 

  • Ramette M, Heuzel M (1962) Le Rhône à Lyon. Etude de l’entraînement des galets à l’aide de traceurs radioactifs. Essai poor l’extension de la formule de Mayer-Peter au domaines du charriage partiel. Houille Blanche, pp 289–399

    Google Scholar 

  • Reid I, Frostick LE (1984) Particle interaction and its effect on the thresholds of initial and final beldoad motion in coarse alluvial channels. Can Soc Pet Geo 19:61–68 (Koster EH, Steel RJ (eds) Sedimentary of gravels and conglomerates)

    Google Scholar 

  • Reid I, Laronne JB (1995) Bedload sediment transport in an ephemeral stream and a comparison with seasonal and perennial counterparts. Water Resour Res 31:773–781

    Google Scholar 

  • Reid I, Frostick LE, Lyman JL (1985) The incidence and nature of bedload transport during flood flows in coarse-grained alluvial channels. Earth Surf Proc Land 10:33–44

    Google Scholar 

  • Reid I, Layman JT, Frostick LE (1980) The continuous measurement of bedload discharge. J Hydraul Res 18:243–249

    Google Scholar 

  • Ribberink JS (1987) Mathematical modeling of one-dimensional morphological changes in rivers with non-uniform sediment. Ph.D. thesis, Delft University of Technology, 200 p

    Google Scholar 

  • Rickenmann D (1990) Bedload capacity of slurry flows at steep slopes. In: Mitteilung der Versuchsanstalt fur Wasserbau, Hydrologie und Glaziologie, Rep. 103, Eidg. Tech. Hochsch, Zurich, Zurich, Switzerland, 249 pp

    Google Scholar 

  • Rickenmann D (2001) Comparison of bedload transport in torrents and gravel bed streams. Water Resour Res 37:3295–3305

    Google Scholar 

  • Roberts RJ, Church M (1986) The sediment budget in severely disturbed watersheds, Queen Charlotte Ranges, British Columbia. Can J Earth Sci 16:1092–1106

    Google Scholar 

  • Roseberry JC, Schmeeckle MW, Furbish DJ (2012) A probabilistic description of the bed load sediment flux: 2. Particle activity and motions. J Geophys Res Earth Surf 117

    Google Scholar 

  • Rouse H (1939) An analysis of sediment transportation in light of fluid turbulence. Report no. SCS-TP-25, Sediment Division, U.S. Department of Agriculture, Soil Conservation Service, Washington, DC

    Google Scholar 

  • Ryan SE, Emmett WW (2002) The nature of flow and sediment movement in Little Granite Creek near Bondurant, Wyoming. U. S. Forest Service, General technical report RMRS-GTR -90, 48 p

    Google Scholar 

  • Ryan SE (2001) The influence of sediment supply on rates of bed load transport: a case study of three streams on the San Juan National Forest. In: Proceeding of the seventh federal interagency sedimentation conference, March 25–29, 2001, Reno, Nevada, pp III-48–III-54

    Google Scholar 

  • Ryan SE, Troendle CA (1996) Bed load transport patterns in coarse-grained channels under varying conditions of flows. In: Proceeding of the sixth federal interagency sedimentation conference on sedimentation technologies for management of natural resources in the 21st century, vol 2, March 10–14, 1996, Las Vegas, pp VI-22–VI-27

    Google Scholar 

  • Ryan SE, Troendle CA (1997) Measuring bedload in coarse-grained mountain channels procedures, problems, and recommendations. In: Water resources education, training, and practice. Opportunities for the next century, American Water Resources Association, Keystone, Colorado, pp 949–958

    Google Scholar 

  • Sawada T, Ashida K, Takahashi T (1983) Relationship between channel pattern and sediment transport in a steep gravel bed river. Z Geomorph NF Suppl Bd 16:55–66

    Google Scholar 

  • Sawada T, Ashida K, Takahashi T (1985) Sediment transport in mountain basins. Paper presented at international symposium on erosion, debris flow and disaster prevention, Tsukuba, Japan

    Google Scholar 

  • Sayre WW, Hubbell DW (1965) Transport and dispersion of labeled bed material. U.S. Geology survey professional paper 433-C, North Loup River, Nebraska, 48 pp

    Google Scholar 

  • Schick AP, Hassan MA, Lekach J (1987) A vertical exchange model for coarse bedload movement: numerical considerations. Catena Suppl 10:73–83

    Google Scholar 

  • Schmidt K-H, Ergenzinger P (1992) Bedload entrainment, travel lengths, step lengths, rest periods—studied with passive (iron, magnetic) and active (radio) tracer techniques. Earth Surf Process Land 17:147–165

    Google Scholar 

  • Schneider JM, Turowski JM, Rickenmann D, Hegglin R, Arrigo S, Mao L, Kirchner JW (2014) Scaling relationships between bed load volumes, transport distances, and stream power in steep mountain channels. J Geophys Res Earth Surf 119:533–549. doi:10.1002/2013JF002874

    Google Scholar 

  • Schoklitsch A (1962) Handbuch des Wasserbaues, 3rd edn. Springer, Vienna

    Google Scholar 

  • Schumer R, Benson DA, Meerschaert MM, Baeumer B (2003) Fractal mobile/immobile solute transport. Water Resour Res 39:1296. doi:10.1029/2003WR002141

    Google Scholar 

  • Sear DA (1996) Sediment transport processes in pool-riffle sequences. Earth Surf Proc Land 21:241–262

    Google Scholar 

  • Seminara G, Parker G, Solari L (2002) Bed load at low shields stress on arbitrarily sloping beds: failure of the Bagnolg hypothesis. Water Resour Res 38(11):1249

    Google Scholar 

  • Shields A (1936) Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung, Mitt. Preuss. Versuchsanst.Wasserbau Schiffbau; english translation by W. P. Ott and J. C. van Uchelen, 36 pp, U.S. Dep. of Agric. Soil Conser. Serv. Coop. Lab., California, Institute of Technology, Pasadena

    Google Scholar 

  • Sidle RC (1988) Bedload transport regime of a small forested stream. Water Resour Res 24:207–218

    Google Scholar 

  • Smith RD, Sidle RC, Porter PE (1993a) Effects on bedload transport of experimental removal of woody debris from a forest gravel-bed stream. Earth Surf Proc Land 18:455–468

    Google Scholar 

  • Smith RD, Sidle RC, Porter PE, Noel JR (1993b) Effects of experimental removal of woody debris on the channel morphology of a forest, gravel bed stream. J Hydrol 152:153–178

    Google Scholar 

  • Solari L, Parker G (2000) The curious case of mobility reversal in sediment mixtures. J Hydraul Eng 126:185–197

    Google Scholar 

  • Stelczer K (1981) Bedload transport: theory and practice. Littleton, Colorado, Water Resources Publication, 295 pp

    Google Scholar 

  • Sterling S, Church M (2002) Sediment trapping characteristics of a pit trap and a Helley-Smith sampler in a cobble-gravel bed river. Water Resour Res 38:19-1–19-11. doi:10.1029/2000WR000052

  • Sun Z, Donahue J (2000) Statistically derived bed load formula for any fraction of nonuniform sediment. J Hydraul Eng ASCE 126(2):105–111. doi:10.1061/(ASCE)0733-9429(2000)126:2(105)

  • Sutherland DG, Ball MH, Hilton SJ, Lisle TE (2002) Evolution of a landslide-induced sediment wave in the Navarro River, California. Geol Soc Am Bull 114:1036–1048

    Google Scholar 

  • Swanson FJ, Janda RJ, Dunne T, Swanston DN (eds) (1982a). Sediment budgets and routing in forested drainage basins. United States Department of Agriculture, Forest Service, General technical report PNW-141, 165 pp

    Google Scholar 

  • Swanson FJ, Janda RJ, Dunne T (1982b) Summary: sediment budgets and routing in forested drainage basins. In: Swanson FJ, Janda RJ, Dunne T, Swanston DN (eds) Sediment budgets and routing in forested drainage basins. United States Department of Agriculture, General Technical Report Number PNW-141, pp 157–165

    Google Scholar 

  • Troendle CA, Nankervis JM, Ryan SE (1996) Sediment transport from small, steep-gradient watersheds in Colorado and Wyoming. In: Sixth federal interagency sedimentation conference on sedimentation technologies for management of natural resources in the 21st century, March 10–14, 1996, Las Vegas, NV, pp IX-39–IX-45

    Google Scholar 

  • Turowski JM (2010) Probability distributions of bed load transport rates: a new derivation and comparison with field data. Water Resour Res 46:W08501. doi:10.1029/2009WR008488

    Google Scholar 

  • Valyrakis M, Diplas P, Dancey CL (2011) Entrainment of coarse grains in turbulent flows: an extreme value theory approach. Water Resour Res 47(9):W09512. doi:10.1029/2010WR010236

    Google Scholar 

  • Van Rijn LC (1984) Sediment transport, part I: bed load transport. J Hydraul Eng 110(10):1431–1456

    Google Scholar 

  • Vanoni VA (1966) Sediment transportation mechanics: Initiation of motion. J Hydraul Div ASCE 92(2):291–314

    Google Scholar 

  • Vanoni VA (1984) Fifty years of sedimentation. J Hydraul Eng 110(8):1022–1057

    Google Scholar 

  • Wathen SJ, Ferguson RI, Hoey TB, Werrity A (1995) Unequal mobility of sand and gravel in weakly bimodal river sediments. Water Resour Res 31(8):287–296. doi:10.1029/95WR01229

    Google Scholar 

  • White FM (2011) Fluid mechanics, 7th edn. McGaw-Hill International Editions

    Google Scholar 

  • White WR, Day TJ (1982) Transport of graded gravel bed material. In: Hey RD, Bathurst JC, Thorne CR (eds) Gravel-bed rivers, fluvial processes, engineering and management. Wiley, New York, pp 181–223

    Google Scholar 

  • Whittaker JG (1987) Sediment transport in step-pool streams. In: Thorne CR, Bathurst JC, Hey RD (eds) Sediment transport in gravel-bed rivers. Wiley, Chichester, pp 545–579

    Google Scholar 

  • Wiberg PL, Smith JD (1987) Calculations of the critical shear stress for motion of uniform and heterogeneous sediments. Water Resour Res 23:1471–1480

    Google Scholar 

  • Wilcock PR, Crowe JC (2003) Surface-based tranport model for mixed-size sediment. J Hydraul Eng 129(2):120–128. doi:10.1061/(ASCE)0733-9429(2003)129:2(120)

    Google Scholar 

  • Wilcock PR (1998) Two-fraction model of initial sediment motion in gravel-bed rivers. Science 280(410). doi:10.1126/science.280.5362.410

  • Wilcock PR, Kenworthy ST (2002) A two-fraction model for the transport of sand/gravel mixtures. Water Resour Res 38(10):1194. doi:10.1029/2001WR000684

    Google Scholar 

  • Wilcock PR, Southard JB (1988) Experimental study of incipient motion in mixed-size sediment. Water Resour Res 24(7):1137–1151

    Google Scholar 

  • Wilcock PR (1997a) The components of fractional transport rate. Water Resour Res 33(1):247–258. doi:10.1029/96WR02666

    Google Scholar 

  • Wilcock PR, McArdell BW (1993) Surface-based fractional transport rates: mobilization thresholds and partial transport of a sand-gravel sediment. Water Resour Res 29(4):1297–1312. doi:10.1029/92WR02748

    Google Scholar 

  • Wilcock PR, McArdell BW (1997) Partial transport of a sand/gravel sediment. Water Resour Res 33(1):235–245. doi:10.1029/96WR02672

    Google Scholar 

  • Wilcock PR (1997b) Entrainment, displacement and transport of tracer gravels. Earth Surf Proc Land 22:1125–1138

    Google Scholar 

  • Wilcock PR, Barta AF, Shea CC, Kondolf GM, Matthews WVG, Pitlick JC (1996) Observations of flow and sediment entrainment on a large gravel-bed river. Water Resour Res 32:2897–2909

    Google Scholar 

  • Williams GR et al. (1937). Selected bibliography on erosion and silt movement. Water supply paper 797, US Department of Interior Geological Survey

    Google Scholar 

  • Wong M, Parker G, DeVries P, Brown TM, Burges SJ (2007) Experiments on dispersion of tracer stones under lower-regime plane-bed equilibrium bed load transport. Water Resour Res 43:W03440. doi:10.1029/2006WR005172

    Google Scholar 

  • Wu F-C, Yang K-H (2004) A stochastic partial transport model for mixed-size sediment: application to assessment of fractional mobility. Water Resour Res 40:W04501. doi:10.1029/2003WR002256

    Google Scholar 

  • Wu F-C, Chou Y-J (2003) Rolling and lifting probabilities for sediment entrainment. J Hydraul Eng 129(2):110–119. doi:10.1061/(ASCE)0733-9429(2003)129:2(110)

    Google Scholar 

  • Yalin MS (1977) Mechanics of sediment transport. 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  • Zimmerman A, Church M (2001) Channel morphology, gradient profiles and bed stresses during spring runoff in a step-pool channel. Geomorphology 40:311–328

    Google Scholar 

  • Zimmermann AE, Church M, Hassan MA (2010) Step-pool stability: testing the jammed state hypothesis. J Geophys Res 115:F02008. doi:10.1029/2009JF001365

    Google Scholar 

Download references

Acknowledgments

First author acknowledges that this work was partially funded by FEDER, program COMPETE, and by national funds through Portuguese Foundation for Science and Technology (FCT) project RECI/ECM-HID/0371/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui M. L. Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferreira, R.M.L., Hassan, M.A., Ferrer-Boix, C. (2015). Principles of Bedload Transport of Non-cohesive Sediment in Open-Channels. In: Rowiński, P., Radecki-Pawlik, A. (eds) Rivers – Physical, Fluvial and Environmental Processes. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-17719-9_13

Download citation

Publish with us

Policies and ethics