Skip to main content

The Doubly Resonant, Travelling-Wave Squeezed Light Source

  • Chapter
  • First Online:
Quantum Enhancement of a 4 km Laser Interferometer Gravitational-Wave Detector

Part of the book series: Springer Theses ((Springer Theses))

  • 724 Accesses

Abstract

Squeezed states applicable for enhancing gravitational-wave detectors is the driver behind the development of large squeezing magnitudes at audio-detection band frequencies. This chapter describes the squeezed light source that achieved a greater than 10 dB squeezing measurement across the audio gravitational-wave detection band (10 Hz–10 kHz). This squeezing level was generated using a doubly resonant, travelling-wave optical parametric oscillator (OPO) with a wedged nonlinear crystal, and controlled using a modified coherent sideband locking technique. This chapter presents the development and results of the doubly resonant, travelling-wave squeezed light source, grouped into four topics:

  1. 1.

    The features of the squeezed light source OPO and modified coherent sideband locking scheme are first presented. Sections 6.1 and 6.2 present the design choices and parameters of the OPO. Section 6.3 introduces the coherent sideband locking technique, followed by the changes implemented for the modified coherent sideband locking technique.

  2. 2.

    Various experiment parameters and properties that impact on the squeezing measurement are then presented. These are categorised into properties affecting squeezing magnitude measurement (Sect. 6.4), and properties affecting low frequency squeezing measurement (Sect. 6.5).

  3. 3.

    Upgrades of the squeezed light source resulting from the understanding of the above properties are then detailed in Sect. 6.6. The upgraded squeezed light source configuration is presented in Sect. 6.7.

  4. 4.

    Lastly, the results of measurements from the squeezer are presented and characterised in Sect. 6.8. This includes the first measurement of greater than 10 dB squeezing across the audio gravitational-wave detection band (\(11.6\pm 0.4\) dB above 200 Hz), and 5900 s of continuously controlled squeezing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From Eq. 9 of [16], \(A\) is calculated as \(A=\frac{1-g}{1+g}\).

References

  1. Y. Takeno, M. Yukawa, H. Yonezawa, A. Furusawa, Observation of \(-9\) dB quadrature squeezing with improvement of phase stability in homodyne measurement. Opt. Express 15, 7 (2007)

    Article  Google Scholar 

  2. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, R. Schnabel, Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection. Phys. Rev. Lett. 104, 251102 (2010)

    Article  ADS  Google Scholar 

  3. H. Yonezawa, K. Nagashima, A. Furusawa, Generation of squeezed light with a monolithic optical parametric oscillator: Simultaneous achievement of phase matching and cavity resonance by temperature control. Opt. Express 18(19) (2010)

    Google Scholar 

  4. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, New York, 1991)

    Book  Google Scholar 

  5. G.D. Boyd, D.A. Kleinman, Parametric interaction of focussed gaussian light beams. J. Appl. Phys. 39(8) (1968)

    Google Scholar 

  6. D.A.B. Miller, A.C. Gossard, W. Wiegmann, Optical bistability due to increasing absorption. Opt. Lett. 9, 162 (1984)

    Article  ADS  Google Scholar 

  7. R. Boyd, Nonlinear Optics (Academic Press, San Diego, 1992)

    Google Scholar 

  8. S. Pearl, H. Lotem, Y. Shimony, S. Rosenwaks, Optimization of laser intracavity second-harmonic generation by a linear dispersion element. J. Opt. Soc. Am. B 16(10), 1705–1711 (1999)

    Article  ADS  Google Scholar 

  9. K. McKenzie, M. Gray, S. Goßler, P.K. Lam, D. McClelland, Squeezed state generation for interferometric gravitational-wave detection. Class. Quantum Gravity 23, S245–S250 (2006)

    Article  ADS  Google Scholar 

  10. G. Imeshev, M. Proctor, M.M. Fejer, Phase correction in double-pass quasi-phase-matched second-harmonic generation with a wedged crystal. Opt. Lett. 23(3), 165–167 (1998)

    Article  ADS  Google Scholar 

  11. I. Juwiler, A. Arie, A. Skliar, G. Rosenman, Efficient quasi-phase-matched frequency doubling with phase compensation by a wedged crystal in a standing-wave external cavity. Opt. Lett. 24(17), 1236–1238 (1999)

    Article  ADS  Google Scholar 

  12. N. Grosse, W.P. Bowen, K. McKenzie, P.K. Lam, Harmonic entanglement with second-order nonlinearity. Phys. Rev. Lett. 96, 063601 (2006)

    Article  ADS  Google Scholar 

  13. M. Stefszky, C.M. Mow-Lowry, K. McKenzie, S. Chua, B.C. Buchler, T. Symul, D.E. McClelland, P.K. Lam, An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing. J. Phys. B: At. Mol. Opt. Phys. 44, 015502 (2011)

    Article  ADS  Google Scholar 

  14. K. McKenzie, E. Mikhailov, K. Goda, P.K. Lam, N. Grosse, M. Gray, N. Mavalvala, D. McClelland, Quantum noise locking. J. Opt. B: Quantum Semiclass. Opt. 7, S421–S428 (2005)

    Article  ADS  Google Scholar 

  15. A. Khalaidovski, H. Vahlbruch, N. Lastzka, C. Gräf, K. Danzmann, H. Grote, R. Schnabel, Long-term stable squeezed vacuum state of light for gravitational wave detectors. Class. Quantum Gravity 29, 075001 (2012)

    Article  ADS  Google Scholar 

  16. S. Chelkowski, H. Vahlbruch, K. Danzmann, R. Schnabel, Coherent control of broadband vacuum squeezing. Phys. Rev. A 75, 0043814 (2007)

    Article  ADS  Google Scholar 

  17. H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, R. Schnabel, Coherent control of vacuum squeezing in the gravitational-wave detection band. Phys. Rev. Lett. 97, 011101 (2006)

    Article  ADS  Google Scholar 

  18. S.S.Y. Chua, M. Stefszky, C. Mow-Lowry, B. Buchler, S. Dwyer, D. Shaddock, P.K. Lam, D. McClelland, Backscatter tolerant squeezed light source for advanced gravitational-wave detectors. Opt. Lett. 36(23), 4680 (2011)

    Article  ADS  Google Scholar 

  19. S.S.Y. Chua, B.J.J. Slagmolen, D.A. Shaddock, D.E. McClelland, Quantum squeezed light in gravitationalwave detectors. Class. Quantum Gravity 31, 183001 (2014)

    Article  Google Scholar 

  20. P.K. Lam, T. Ralph, D. McClelland, B. Buchler, H.-A. Bachor, J Gao, Optimization and transfer of vacuum squeezing from an optical parametric oscillator. J. Opt. B: Quantum Semiclass. Opt. 1, 469–474 (1999)

    Google Scholar 

  21. T. Aoki, G. Takahashi, A. Furusawa, Squeezing at 946 nm with periodically poled KTiOPO\(_{4}\). Opt. Express 14, 6930–6935 (2006)

    Article  ADS  Google Scholar 

  22. A. Franzen, B. Hage, J. DiGuglielmo, J. Fiurás̆ek, R. Schnabel, Experimental demonstration of continuous variable purification of squeezed states. Phys. Rev. Lett. 97 150505 (2006)

    Google Scholar 

  23. K. McKenzie, N. Grosse, W. Bowen, S. Whitcomb, M. Gray, D. McClelland, P.K. Lam, Squeezing in the audio gravitational-wave detection band. Phys. Rev. Lett. 93(16), 161105 (2004)

    Article  ADS  Google Scholar 

  24. H. Vahlbruch, S. Chelkowski, K. Danzmann, R. Schnabel, Quantum engineering of squeezed states for quantum communication and metrology. New J. Phys. 9, 371 (2007)

    Article  ADS  Google Scholar 

  25. M. Stefszky, C. Mow-Lowry, S. Chua, D. Shaddock, B. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P.K. Lam, D. McClelland, Balanced homodyne detection of optical quantum states at audio-band frequencies and below. Class. Quantum Gravity 29, 145015 (2012)

    Article  ADS  Google Scholar 

  26. P. Horowitz, W. Hill, The Art of Electronics, 2nd edn. (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  27. F. Seifert, Power stabilization of high power lasers for second generation gravitational wave detectors. Ph.D. thesis, Gottfried Wilhelm Lebniz Universität, Hannover, Germany, 2010

    Google Scholar 

  28. P. Kwee, Laser characterization and stabilization for precision interferometry. Ph.D. thesis, Gottfried Wilhelm Leibniz Universität, Hannover, Germany, 2010

    Google Scholar 

  29. S. Chua, K. McKenzie, B.C. Buchler, D.E. McClelland, Impact of non-stationary events on low frequency homodyne detection. J. Phys.: Conf. Ser. 122, 012023 (2008)

    ADS  Google Scholar 

  30. Raicol Crystals Ltd., http://www.raicol.com/

  31. Photon LaserOptik GmbH, http://www.photon-laseroptik.de/

  32. LaserOptik GmbH, http://www.laseroptik.de/

  33. H. Vahlbruch, Squeezed light for gravitational wave astronomy. Ph.D. thesis, Albert Einstein Institute and Leibniz University of Hannover, Hannover, Germany, 2008

    Google Scholar 

  34. ATFilms, http://www.atfilms.com/

  35. T. Day, A.C. Nilsson, M.M. Fejer, A.D. Farinas, E.K. Gustafson, C.D. Nabors, R.L. Byer, 30 Hz-linewidth, diode-laser-pumped, Nd:GGG nonplanar ring oscillators by active frequency stabilisation. Electron. Lett. 25, 810 (1989)

    Article  ADS  Google Scholar 

  36. Innolight GmbH, http://www.innolight.de/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheon S. Y. Chua .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chua, S.S.Y. (2015). The Doubly Resonant, Travelling-Wave Squeezed Light Source. In: Quantum Enhancement of a 4 km Laser Interferometer Gravitational-Wave Detector. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-17686-4_6

Download citation

Publish with us

Policies and ethics