Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The Heisenberg Uncertainty Principle manifests itself in many different parameter-pairs. Squeezed states of those parameter-pairs and their diverse generating apparatus have been and are being developed. Examples include number squeezing with atoms (Gross et al., Nature 464:1165–1169, 2010, [1]), atomic spin squeezing (Hamley et al., Nature Phys. 8:305–308, 2012, [2]), optical polarisation squeezing (Korolkova et al., Phys Rev A 65:052306, 2002; Corney et al., Simulations and experiments on polarisation squeezing in optical fibre, 2008, [3, 4]), and ponderomotive squeezing (Corbitt et al., Phys Rev A 73:023801, 2006; Marino et al., Phys Rev Lett, 2010; Brooks et al., Nature 488:476–480, 2012, [57]). This chapter reviews the type of squeezed vacuum generator that is currently applicable for gravitational-wave detector enhancement. A simplified overview of a squeezed state generator is covered, with key components and physicals processes treated in detail. The recommended sources for further detail are the works of Buchler (Electro-optic control of quantum measurements, 2008, [8]), McKenzie (Squeezing in the audio gravitational wave detection band, 2008, [9]) and Vahlbruch (Squeezed light for gravitational wave astronomy, 2004, [10]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is the low-power field from Sect. 5.2.

References

  1. C. Gross, T. Zibold, E. Nicklas, J. Estève, M.K. Oberthaler, Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010)

    Article  ADS  Google Scholar 

  2. C.D. Hamley, C.S. Gerving, T.M. Hoang, E.M. Bookjans, M.S. Chapman, Spin-nematic squeezed vacuum in a quantum gas. Nat. Phys. 8, 305–308 (2012)

    Google Scholar 

  3. N. Korolkova, G. Leuchs, R. Loudon, T.C. Ralph, C. Silberhorn, Polarization squeezing and continuous-variable polarization entanglement. Phys. Rev. A 65, 052306 (2002)

    Google Scholar 

  4. J.F. Corney, J. Heersink, R. Dong, V. Josse, P.D. Drummond, G. Leuchs, U.L. Andersen, Simulations and experiments on polarisation squeezing in optical fibre (2008)

    Google Scholar 

  5. T. Corbitt, Y. Chen, F. Khalili, D.Ottaway, S. Vyatchanin, S.Whitcomb, et al., Squeezed-state source using radiation-pressure-induced rigidity. Phys. Rev. A 73, 023801 (2006)

    Google Scholar 

  6. F. Marino, F.S. Cataliotti, A. Farsi, M.S. de Cumis, F. Marin, Classical signature of ponderomotive squeezing in a suspended mirror resonator. Phys. Rev. Lett. (2010)

    Google Scholar 

  7. D.W.C. Brooks, T. Botter, S. Schreppler, T.P. Purdy, N. Brahms, D.M. Stamper-Kurn, Non-classical light generated by quantum-noise-driven cavity optomechanics. Nature 488, 476–480 (2012)

    Article  ADS  Google Scholar 

  8. B.C. Buchler, Electro-optic control of quantum measurements. Ph.D. thesis, Physics Department, Australian National University, Canberra, Australia, 2008

    Google Scholar 

  9. K. McKenzie, Squeezing in the audio gravitational wave detection band. Ph.D. thesis, Physics Department, Australian National University, Canberra, Australia, 2008

    Google Scholar 

  10. H. Vahlbruch, Squeezed light for gravitational wave astronomy. Ph.D. thesis, Albert Einstein Institute and Leibniz University of Hannover, Hannover, Germany, 2008

    Google Scholar 

  11. T. Eberle,V. Händchen, J. Duhme, T. Franz, R.F. Werner, R. Schnabel, Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source. Phys. Rev. A 83, 052329 (2011)

    Google Scholar 

  12. N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, A. Furusawa, Teleportation of nonclassical wave packets of light. Science 332 (2011)

    Google Scholar 

  13. R. Boyd, Nonlinear Optics (Academic Press, San Diego, 1992)

    Google Scholar 

  14. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, New York, 1991)

    Google Scholar 

  15. D.S. Hum, M.M. Fejer, Quasi-phasematching. C.R. Phys. 8, 180–198 (2007)

    Google Scholar 

  16. M.L. Bortz, M.A. Arbore, M.M. Fejer, Quasi-phase-matched optical parametric amplification and oscillation in perodically poled LiNbO3 waveguides. Opt. Lett. 20(1) (1995)

    Google Scholar 

  17. D.F. Walls, G. Milburn, Quantum Optics, 2nd edn. (Springer, Berlin, 2008)

    Book  MATH  Google Scholar 

  18. T. Aoki, G. Takahashi, A. Furusawa, Squeezing at 946 nm with periodically poled KTiOPO\(_{4}\). Opt. Express 14, 6930–6935 (2006)

    Article  ADS  Google Scholar 

  19. S.S.Y. Chua, B.J.J. Slagmolen, D.A. Shaddock, D.E. McClelland, Quantum squeezed light in gravitationalwave detectors. Class. Quantum Gravity 31, 183001 (2014)

    Google Scholar 

  20. L.G. Kazovsky, N.S. Kopeika, Heterodyne detection through rain, snow, and turbid media: affective receiver size at optical through millimeter wavelengths. Appl. Opt. 22(5) (1983)

    Google Scholar 

  21. A.L. Betz, M.A. Johnson, R.A. McLaren, E.C. Sutton, Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus. Astrophys. J. 208(2), L141 (1976)

    Article  ADS  Google Scholar 

  22. M.D. Levenson, B.A. Paldus, R.N. Zare, Optical heterodyne detection for cavity ring-down spectroscopy. US Patent, 6094267 (2000)

    Google Scholar 

  23. T. Hirano, H. Yamanaka, M. Ashikaga, T. Konishi, R. Namiki, Quantum cryptography using pulsed homodyne detection. Phys. Rev. A 68 (2003)

    Google Scholar 

  24. D.C. Noll, D.G. Nishimura, Homodyne detection in magnetic resonance imaging. IEEE Trans. Med. Imaging 10(2) (1991)

    Google Scholar 

  25. A. Khalaidovski, H. Vahlbruch, N.Lastzka, C. Gräf, K. Danzmann, H. Grote, et al., Long-term stable squeezed vacuum state of light for gravitational wave detectors. Class. Quantum Gravity 29, 075001 (2012)

    Google Scholar 

  26. C.M. Mow-Lowry, B.S. Sheard, M.B. Gray, D.E. McClelland, S.E. Whitcomb, Experimental demonstration of a classical analog to quantum noise cancellation for use in gravitational wave detection. Phys. Rev. Lett. 92, 161102 (2004)

    Google Scholar 

  27. A. Abramovici, J. Chapsky, Feedback Control Systems—A Fast-Track Guide for Scientists and Engineers (Kluwer Academic Publishers, Boston, 2000)

    Google Scholar 

  28. M. Rakhmanov, R.L. Savage Jr., D.H. Reitze, D.B. Tanner, Dynamic resonance of light in fabry perot cavities. Phys. Rev. A 305, 239–244 (2002)

    Google Scholar 

  29. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31(2), 97–105 (1983)

    Article  ADS  Google Scholar 

  30. E.D. Black, An introduction to Pound-Drever-Hall laser frequency stabilization. Am. J. Phys. 69, 79 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheon S. Y. Chua .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chua, S.S.Y. (2015). Squeezed State Generation for Gravitational-Wave Detection. In: Quantum Enhancement of a 4 km Laser Interferometer Gravitational-Wave Detector. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-17686-4_5

Download citation

Publish with us

Policies and ethics