Skip to main content

Quantum Noise in Gravitational-Wave Detectors and Applied Squeezed States

  • Chapter
  • First Online:
Quantum Enhancement of a 4 km Laser Interferometer Gravitational-Wave Detector

Part of the book series: Springer Theses ((Springer Theses))

  • 769 Accesses

Abstract

The development of low-frequency squeezed states is motivated by gravitational-wave detectors being limited by quantum noise. This chapter presents a background to the quantum noise limits in these detectors, along with the enhancements possible with squeezed state injection. The calculations presented are heavily based on the derivations from the works of Kimble et al. (Phys Rev D 65:022002, 2002, [1]) and Buonanno and Chen (Phys Rev D 64:042006, 2001; Phys Rev D 69:102004, 2004, [2, 3]). Cited frequently throughout this chapter, these works use estimated experiment parameters for LIGO and Advanced LIGO detectors. Section 4.1 provides an introduction of the influence of quantum noise in measurement, followed by a brief discussion in the main source of quantum noise in gravitational-wave detection (Sect. 4.2). Subsequently, the quantum noise of three Michelson configurations are explored: a simple Michelson interferometer (Sect. 4.3), a power-recycled Michelson with Fabry-Perot arm cavities (Sect. 4.4), and a Dual-recycled Michelson with Fabry-Perot arm cavities (Sect. 4.5). In each of the configurations, the effect of injected squeezed states is also explored. Section 4.6 concludes the chapter, discussing some of the assumptions used in calculations of quantum noise, as well as implications of injected squeezing towards strain sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Coating thermal noise is an active area of research [14].

References

  1. H.J. Kimble, Y. Levin, A.B. Matsko, K.S. Thorne, S.P. Vyatchanin, Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 022002 (2002)

    Article  ADS  Google Scholar 

  2. A. Buonanno, Y. Chen, Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors. Phys. Rev. D 64, 042006 (2001)

    Article  ADS  Google Scholar 

  3. A. Buonanno, Y. Chen, Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers. Phys. Rev. D 69, 102004 (2004)

    Article  ADS  Google Scholar 

  4. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, New York, 1991)

    Google Scholar 

  5. P.R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific, Singapore, 1994)

    Book  Google Scholar 

  6. C.M. Caves, Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys. Rev. Lett. 45, 75–79 (1980)

    Article  ADS  Google Scholar 

  7. V.B. Braginsky, M.L. Gorodetsky, F.Y. Khalili, A.B. Matsko, K.S. Thorne, S.P. Vyatchanin, Noise in gravitational-wave detectors and other classical-force measurements is not influenced by test-mass quantization. Phys. Rev. D 67, 082001 (2003)

    Article  ADS  Google Scholar 

  8. S.S.Y. Chua, B.J.J. Slagmolen, D.A. Shaddock, D.E. McClelland, Quantum squeezed light in gravitational-wave detectors. Class. Quantum Gravity 31, 183001 (2014)

    Google Scholar 

  9. C.M. Caves, Quantum-mechanical noise in an interferometer. Phys. Rev. D, 23(8) (1981)

    Google Scholar 

  10. W.G. Unruh, in Quantum Optics, Experimental Gravitation and Measurement Theory, ed. by P. Meystre, M.O. Scully (Plenum Press, New York, 1983), p. 647

    Google Scholar 

  11. M.T. Jaekel, S. Reynaud, Quantum limits in interferometric measurements. EPL (Europhys. Lett.) 13(4) 301 (1990)

    Google Scholar 

  12. B.J. Meers, Recycling in laser-interferometric gravitational-wave detectors. Phys. Rev. D 38, 2317 (1988)

    Article  ADS  Google Scholar 

  13. Gravitational Wave Interferometer Noise Calculator (GWINC) v3, https://awiki.ligo-wa.caltech.edu/aLIGO/GWINC

  14. G.M. Harry, A.M. Gretarsson, P.R. Saulson, S.E. Kittelberger, S.D. Penn, W.J. Startin, S. Rowan, M.M. Fejer, D.R.M. Crooks, G. Cagnoli, J. Hough, N. Nakagawa, Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings. Class. Quantum Gravity 19, 897–999 (2002)

    Google Scholar 

  15. S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, K. Danzmann, R. Schnabel, Experimental characterization of frequency-dependent squeezed light. Phys. Rev. A 71, 013806 (2005)

    Google Scholar 

  16. J. Harms, Y. Chen, S. Chelkowski, A. Franzen, H. Vahlbruch, K. Danzmann, R. Schnabel, Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors. Phys. Rev. D 68, 042001 (2003)

    Article  ADS  Google Scholar 

  17. F.Y. Khalili. Optimal configurations of filter cavity in future gravitational-wave detectors. Phys. Rev. D 81 (2010)

    Google Scholar 

  18. F. Magana-Sandoval, R. Adhikari, V. Frolov, J. Harms, J. Lee, S. Sankar, P.R. Saulson, J.R. Smith, Large-angle scattered light measurements for quantum-noise filter cavity design studies. J. Opt. Soc. Am. A 29(8), (2012)

    Google Scholar 

  19. T. Corbitt, N. Mavalvala, S.E. Whitcomb, Optical cavities as amplitude filters for squeezed fields. Phys. Rev. D 70, 022002 (2004)

    Article  ADS  Google Scholar 

  20. F.Y. Khalili, Increasing future gravitational-wave detectors’ sensitivity by means of amplitude filter cavities and quantum entanglement. Phys. Rev. D 77, 062003 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheon S. Y. Chua .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chua, S.S.Y. (2015). Quantum Noise in Gravitational-Wave Detectors and Applied Squeezed States. In: Quantum Enhancement of a 4 km Laser Interferometer Gravitational-Wave Detector. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-17686-4_4

Download citation

Publish with us

Policies and ethics