Skip to main content

Gases

  • Chapter
  • First Online:
Experimental Innovations in Surface Science

Abstract

Beam dosers for quantitative exposure of surfaces to gases have become widely used in surface science research. This is because of the disadvantages in filling an ultrahigh vacuum system with gas in order to study adsorption processes. These disadvantages relate to the large gas loads needed for system dosing as compared to beam dosing. Such large gas loads result in adsorption on the walls of the vacuum chamber, which then contributes to slow achievement of base pressure after adsorption by the sample surface is complete. In addition, large gas loads in a vacuum system can cause displacement effects from the system walls leading to impurity adsorption, as well as regurgitation effects from ion pumps in which impurity gases are produced (see p. 72). Also, the use of quantitative and absolute calibration procedures for the gas flux coming from a collimated doser is much superior to dosing with a system dose using an ionization gauge or a mass spectrometer, both of which have serious problems with absolute calibration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Bozack, L. Muehlhoff, J.N. Russell Jr, W.J. Choyke, J.T. Yates Jr, J. Vac. Sci. Technol. A5, 1 (1987)

    Article  ADS  Google Scholar 

  2. P.L. Hagans, B.M. DeKoven, J.L. Womack, J. Vac. Sci. Technol. A7, 3375 (1989). Laser-drilled micron-size pinholes are produced in disks fitting VCR fittings by Precision Laser Services, 314 E. Wallace St., Ft. Wayne, IN 46803

    Google Scholar 

  3. Capillary array blanks, made without being coated with active surfaces for use as electron multipliers, are available from Galileo Electro-Optics Corporation, Galileo Park, P.O. Box 550, Sturbridge, MA 01518. Sizes up to 25-mm diameter are available

    Google Scholar 

  4. A. Winkler, J.T. Yates, Jr., J. Vac. Sci. and Technol. A6, 2929 (1988)

    Google Scholar 

  5. S.M. Gates, J.N. Russell Jr, J.T. Yates Jr, Surf. Sci. 146, 199 (1984)

    Article  ADS  Google Scholar 

  6. P.K. Leavitt, P.A. Thiel, J. Vac. Sci. Technol. A8, 148 (1990)

    Article  ADS  Google Scholar 

  7. M. Henderson, R.D. Ramsier, J.T. Yates Jr, J. Vac. Sci. Technol. A9, 2785 (1991)

    Article  ADS  Google Scholar 

  8. A.M. Glines, R.N. Carter, A.B. Anton, Rev. Sci. Instrum. 63, 1826 (1992)

    Article  ADS  Google Scholar 

  9. E.C. Henn, M.E. Bussell, C.T. Campbell, J. Vac. Sci. Technol. A9, 10 (1991)

    Article  ADS  Google Scholar 

  10. D.W. Goodman, T.E. Madey, M. Ono, J.T. Yates Jr, J. Catalysis 50, 279 (1977)

    Article  Google Scholar 

  11. D.W. Goodman, J.T. Yates Jr, T.E. Madey, Chem. Phys. Lett. 53, 479 (1978)

    Article  ADS  Google Scholar 

  12. S.M. Gates, J.N. Russell Jr, J.T. Yates Jr, Surf. Sci. 159, 233 (1985)

    Article  ADS  Google Scholar 

  13. D.E. Ibbotson, T.S. Wittrig, W.H. Weinberg, Surf. Sci. 110, 294 (1981)

    Article  ADS  Google Scholar 

  14. J.E. Deffeyes, A.H. Smith, P.C. Stair, Surf. Sci. 163, 79 (1985)

    Article  ADS  Google Scholar 

  15. D.M. Murphy, J. Vac. Sci. Technol. A7, 3075 (1989)

    Article  ADS  Google Scholar 

  16. D.E. Kuhl, R.G. Tobin, Rev. Sci. Instrum. 66, 3016 (1995)

    Article  ADS  Google Scholar 

  17. M.J. Bozack, L. Muehlhoff, J.N. Russell Jr, W.J. Choyke, J.T. Yates Jr, J. Vac. Sci. Technol. A5, 1 (1987)

    Article  ADS  Google Scholar 

  18. A.L. Linsebigler, V.S. Smentkowski, M.D. Ellison, J.T. Yates Jr, J. Am. Chem. Soc. 114, 465 (1992)

    Article  Google Scholar 

  19. M.A. Henderson, R.D. Ramsier, J.T. Yates Jr, J. Vac. Sci. Technol. A9, 2785 (1991)

    Article  ADS  Google Scholar 

  20. C.C. Cheng, R.M. Wallace, P.A. Taylor, W.J. Choyke, J.T. Yates Jr, J. Appl. Phys. 67, 3693 (1990)

    Article  ADS  Google Scholar 

  21. V.S. Smentkowski, J.T. Yates, Jr., J. Vac. Sci. Technol. A7, 3325 (1989); Surf. Sci. 232, 113 (1990)

    Google Scholar 

  22. A. Winkler, J.T. Yates Jr, J. Vac. Sci. Technol. A6, 2929 (1988)

    Article  ADS  Google Scholar 

  23. C.T. Campbell, S.M. Valone, J. Vac. Sci. Technol. 13, 408 (1985)

    Article  ADS  Google Scholar 

  24. D.A. King, M.B. Wells, Surf. Sci. 29, 454 (1972)

    Article  ADS  Google Scholar 

  25. T.E. Madey, Surf. Sci. 33, 355 (1972)

    Article  ADS  Google Scholar 

  26. A.A. Bell, R. Gomer, J. Chem. Phys. 44, 1065 (1966)

    Article  ADS  Google Scholar 

  27. C. Wang, R. Gomer, Surf. Sci. 84, 329 (1979)

    Article  ADS  Google Scholar 

  28. D.A. King, M.B. Wells, Surf. Sci. 33, 355 (1972)

    Article  Google Scholar 

  29. F. Zaera, Int. Rev. Phys. Chem. 21, 433 (2002)

    Article  Google Scholar 

  30. Author’s personal experience

    Google Scholar 

  31. W.G. Dorfeld, J.B. Hudson, R. Zuhr, Surf. Sci. 57, 460 (1976)

    Article  ADS  Google Scholar 

  32. S.T. Ceyer, D.J. Gladstone, M. McGonigal, M.T. Schulberg in Investigations of Surfaces and Interfaces—Part A, Physical Methods of Chemistry Series, 2nd Ed., Vol. IXA, edited by B.W. Rossiter and R.C. Baetzold (Wiley, New York, 1993)

    Google Scholar 

  33. S.M. Cohen, M.P. D’Evelyn, J. Vac. Sci. Technol. A9, 2414 (1991)

    Article  ADS  Google Scholar 

  34. Lenox Laser, 1 Green Glade Ct., Phoenix, MD 21131

    Google Scholar 

  35. Dr. V.A. Ukrainsev, Texas Instruments, P.O. Box 655012, MS 461, Dallas, TX 75265 (private communication)

    Google Scholar 

  36. Y.A. Gelman, B.S. Podol’skii, V.A. Ukraintsev, Pribory I Tekhnika Experimenta 6, 191 (1990)

    Google Scholar 

  37. I. Harrison, V.A. Ukraintsev, A.N., in Artsyukhovich, SPIE Proceedings, Laser Techniques for Surface Science, ed. by H.-L. Dai, S.J. Sibener, vol 2125, p. 285 (1994)

    Google Scholar 

  38. G. Scoles, Chemistry Department, Princeton University, Princeton, NJ 08544 (private communication). This method was devised at the FOM Laboratories in Amsterdam 40 years ago and is still in use

    Google Scholar 

  39. Michael Schmidt and Ulli Diebold, private communication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Yates Jr. .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yates, J.T. (2015). Gases. In: Experimental Innovations in Surface Science. Springer, Cham. https://doi.org/10.1007/978-3-319-17668-0_37

Download citation

Publish with us

Policies and ethics