Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this section, the application of ML is investigated in further detail. First ML is briefly introduced in more detail with respect to the manufacturing domain. Based on this brief general elaboration, SVM algorithms are selected as a suitable ML technique to match the detailed requirements of the stated research problem. In the final subsection, the application of SVM is discussed towards its objective of identification of state drivers in manufacturing programmes. Within this last subsection, the application and evaluation approach of the SVM application are presented and the derived hypotheses are detailed based on the decision to use the SVM algorithm to conclude the section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The content of this section has been partly published in accordance with (Universität Bremen 2007) in (Wuest et al. 2012).

  2. 2.

    The content of this section has been partly published in accordance with (Universität Bremen 2007) in (Wuest et al. 2013).

References

  • Abe, S. (2010). Feature selection and extraction. In S. Abe (Ed.) Support vector machines for pattern classification—advances in pattern recognition (p. 471). London: Springer. doi:10.1007/978-1-84996-098-4.

  • Alpaydın, E. (2010). Introduction to machine learning (2nd ed.). Cambridge, USA: The MIT Press.

    MATH  Google Scholar 

  • Apte, C., Weiss, S., & Grout, G. (1993). Predicting defects in disk drive manufacturing: A case study in high dimensional classification. In IEEE annual computer science conference on artificial Intelligence in application pp. (212–218). Los Alamitos.

    Google Scholar 

  • Azadeh, A., Saberi, M., Kazem, A., Ebrahimipour, V., Nourmohammadzadeh, A., & Saberi, Z. (2013). A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted data and noise based on ANN and support vector machine with hyper-parameters optimization. Applied Soft Computing, 13(3), 1478–1485. doi:10.1016/j.asoc.2012.06.020.

    Article  Google Scholar 

  • Ben-hur, A., & Weston, J. (2010). A user’s guide to support vector machines. In Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol. 609 (pp. 223–239). Totowa, NJ: Humana Press. doi:10.1007/978-1-60327-241-4_13.

  • Bi, J., Bennett, K. P., Embrechts, M., Breneman, C. M., & Song, M. (2003). Dimensionality reduction via sparse support vector machines. The Journal of Machine Learning Research, 3, 1229–1243.

    MATH  Google Scholar 

  • Bishop, C. M. (2006). Pattern recognition and machine learning (p. 749). New York: Springer.

    MATH  Google Scholar 

  • Borin, A., Ferrão, M. F., Mello, C., Maretto, D. A., & Poppi, R. J. (2006). Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk. Analytica Chimica Acta, 579(1), 25–32. doi:10.1016/j.aca.2006.07.008.

    Article  Google Scholar 

  • Borovicka, T., Jirina, J. M., Kordik, P., & Jirina, M. (2012). Selecting representative data sets. In Advances in data mining knowledge discovery and applications (pp. 43–70).

    Google Scholar 

  • Bradley, P., & Mangasarian, O. (1998). Feature selection via concave minimization and support vector machines. In J. Shavlik (Eds.), Proceedings of the Fifteenth International Conference on Machine Learning (ICML ’98) San Francisco, California (pp. 82–90).

    Google Scholar 

  • Burbidge, R., Trotter, M., Buxton, B., & Holden, S. (2001). Drug design by machine learning: Support vector machines for pharmaceutical data analysis. Computers & Chemistry, 26(1), 5–14.

    Article  Google Scholar 

  • Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121–167.

    Article  Google Scholar 

  • Cawley, G. C., & Talbot, N. L. C. (2010). Over-fitting in model selection and subsequent selection bias in performance evaluation. Journal of Machine Learning Research, 11, 2079–2107.

    MATH  MathSciNet  Google Scholar 

  • Çaydaş, U., & Ekici, S. (2010). Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. Journal of Intelligent Manufacturing, 23(3), 639–650. doi:10.1007/s10845-010-0415-2.

    Article  Google Scholar 

  • Chang, Y., & Lin, C. (2008). Feature ranking using linear SVM. In JMLR: Workshop and Conference Proceedings 3 (pp. 53–64).

    Google Scholar 

  • Cherkassky, V., & Ma, Y. (2009). Another look at statistical learning theory and regularization. Neural Networks The Official Journal of the International Neural Network Society, 22(7), 958–969. doi:10.1016/j.neunet.2009.04.005.

    Article  Google Scholar 

  • Chinnam, R. B. (2002). Support vector machines for recognizing shifts in correlated and other manufacturing processes. International Journal of Production Research, 40(17), 4449–4466. doi:10.1080/00207540210152920.

    Article  MATH  Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.

    MATH  Google Scholar 

  • Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Doltsinis, S., Ferreira, P., & Lohse, N. (2012). Reinforcement learning for production ramp-up: A Q-batch learning approach. In 11th international conference on machine learning and applications (pp. 610–615). Ieee. doi:10.1109/ICMLA.2012.113.

  • El-naqa, I., Yang, Y., Wernick, M. N., Galatsanos, N. P., & Nishikawa, R. M. (2002). A support vector machine approach for detection of microcalcifications. IEEE Transactions on Medical Imaging, 21(12), 1552–1563.

    Article  Google Scholar 

  • Fung, G. M., & Mangasarian, O. L. (2004). A feature selection newton method for support vector machine classification. Computational Optimization and Applications, 28(2), 185–202. doi:10.1023/B:COAP.0000026884.66338.df.

    Article  MATH  MathSciNet  Google Scholar 

  • Fung, G. M., & Mangasarian, O. L. (2006). Breast tumor susceptibility to chemotherapy via support vector machines. Computational Management Science, 3, 103–112.

    Article  MATH  MathSciNet  Google Scholar 

  • Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D., Schummer, M., & Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16(10), 906–914.

    Article  Google Scholar 

  • Gardner, R., & Bicker, J. (2000). Using machine learning to solve tough manufacturing problems. International Journal of Industrial Engineering-Theory Applications and Practice, 7(4), 359–364.

    Google Scholar 

  • Guo, X., Sun, L., Li, G., & Wang, S. (2008). A hybrid wavelet analysis and support vector machines in forecasting development of manufacturing. Expert Systems with Applications, 35(1–2), 415–422. doi:10.1016/j.eswa.2007.07.052.

    Article  Google Scholar 

  • Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). A gene selection method for cancer classification using support vector machines. Machine Learning, 46, 389–422. doi:10.1155/2012/586246.

    Article  MATH  Google Scholar 

  • Hamel, L. (2009). Knowledge discovery with support vector machines. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Harding, J. A., Shahbaz, M., Srinivas & Kusiak, A. (2006). Data mining in manufacturing: A review. Journal of Manufacturing Science and Engineering, 128(4), 969. doi:10.1115/1.2194554.

  • Huang, Z., Chen, H., Hsu, C.-J., Chen, W.-H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: A market comparative study. Decision Support Systems, 37(4), 543–558. doi:10.1016/S0167-9236(03)00086-1.

    Article  Google Scholar 

  • Huang, L., Zhang, H. H., Zeng, Z.-B., & Bushel, P. R. (2013). Improved sparse multi-class svm and its application for gene selection in cancer classification. Cancer Informatics, 12, 143–153. doi:10.4137/CIN.S10212.

    Article  Google Scholar 

  • Keerthi, S. S., & Lin, C.-J. (2003). Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation, 15(7), 1667–1689. doi:10.1162/089976603321891855.

    Article  MATH  Google Scholar 

  • Khemchandani, R., & Chandra, S. (2009). Knowledge based proximal support vector machines. European Journal of Operational Research, 195(3), 914–923. doi:10.1016/j.ejor.2007.11.023.

    Article  MATH  MathSciNet  Google Scholar 

  • Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31, 249–268.

    MATH  MathSciNet  Google Scholar 

  • Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. New York, NY: Springer. doi:10.1007/978-1-4614-6849-3.

    Book  MATH  Google Scholar 

  • Kwak, D.-S., & Kim, K.-J. (2012). A data mining approach considering missing values for the optimization of semiconductor-manufacturing processes. Expert Systems with Applications, 39(3), 2590–2596. doi:10.1016/j.eswa.2011.08.114.

    Article  MathSciNet  Google Scholar 

  • Larose, D. (2005). Discovering knowledge in data—An introduction to data mining. Hoboken: Wiley.

    Book  MATH  Google Scholar 

  • Lessmann, S., Sung, M.-C., & Johnson, J. E. V. (2009). Identifying winners of competitive events: A SVM-based classification model for horserace prediction. European Journal of Operational Research, 196(2), 569–577. doi:10.1016/j.ejor.2008.03.018.

    Article  MATH  Google Scholar 

  • Li, H., Liang, Y., & Xu, Q. (2009). Support vector machines and its applications in chemistry. Chemometrics and Intelligent Laboratory Systems, 95(2), 188–198. doi:10.1016/j.chemolab.2008.10.007.

    Article  Google Scholar 

  • Lu, S. C.-Y. (1990). Machine learning approaches to knowledge synthesis and integration tasks for advanced engineering automation. Computers in Industry, 15(1990), 105–120.

    Article  Google Scholar 

  • Mangasarian, O. L., & Wild, E. W. (2007). Feature selection for nonlinear kernel support vector machines. In Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007) (pp. 231–236). Ieee. doi:10.1109/ICDMW.2007.30.

  • Manning, C. D., Raghavan, P., & Schütze, H. (2009). An introduction to information retrieval. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Martens, D., Baesens, B., Van Gestel, T., & Vanthienen, J. (2007). Comprehensible credit scoring models using rule extraction from support vector machines. European Journal of Operational Research, 183(3), 1466–1476. doi:10.1016/j.ejor.2006.04.051.

    Article  MATH  Google Scholar 

  • McCann, M., Li, Y., Maquire, L., & Johnston, A. (2010). Causality challenge: Benchmarking relevant signal components for effective monitoring and process control. Journal of Machine Learning Research: Workshop and Conference Proceedings, 6, 277–288.

    Google Scholar 

  • Monostori, L. (2002). AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing. In 15th triennial world congress (p. 12). Barcelona, Spain.

    Google Scholar 

  • Negnevitsky, M. (2005). Artificial intelligence: A guide to intelligent systems. Essex, UK: Addison Wesley.

    Google Scholar 

  • Nilsson, N. J. (2005). Introduction to machine learning (p. 188). Stanford, USA: Stanford University.

    Google Scholar 

  • Pham, D. T., & Afify, A. A. (2005). Machine-learning techniques and their applications in manufacturing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(5), 395–412. doi:10.1243/095440505X32274.

    Article  Google Scholar 

  • Priore, P., de la Fuente, D., Puente, J., & Parreño, J. (2006). A comparison of machine-learning algorithms for dynamic scheduling of flexible manufacturing systems. Engineering Applications of Artificial Intelligence, 19(3), 247–255. doi:10.1016/j.engappai.2005.09.009.

    Article  Google Scholar 

  • Rejani, Y. I. A., & Selvi, S. T. (2009). Early detection of breast cancer using SVM classifier technique. International Journal on Computer Science and Engineering, 1(3), 127–130.

    Google Scholar 

  • Ribeiro, B. (2005). Support vector machines for quality monitoring in a plastic injection molding process. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews) 35(3), 401–410. doi:10.1109/TSMCC.2004.843228.

  • Salahshoor, K., Kordestani, M., & Khoshro, M. S. (2010). Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers. Energy, 35(12), 5472–5482. doi:10.1016/j.energy.2010.06.001.

    Article  Google Scholar 

  • Samuel, A. (1959). Some studies in machine learning using the game of checkers. IBM Journal 3(3), 210–229.

    Google Scholar 

  • Sánchez, A. V. D. (2003). Advanced support vector machines and kernel methods. Neurocomputing, 55(1–2), 5–20. doi:10.1016/S0925-2312(03)00373-4.

    Article  Google Scholar 

  • Scheidat, T., Leich, M., Alexander, M., & Vielhauer, C. (2009). Support vector machines for dynamic biometric handwriting classification. In Proceedings of AIAI Workshops (pp. 118–125).

    Google Scholar 

  • Smola, A., & Vishwanathan, S. V. N. (2008). Introduction to machine learning. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Sun, J., Rahman, M., Wong, Y., & Hong, G. (2004). Multiclassification of tool wear with support vector machine by manufacturing loss consideration. International Journal of Machine Tools and Manufacture, 44(11), 1179–1187. doi:10.1016/j.ijmachtools.2004.04.003.

    Article  Google Scholar 

  • Sutton, R. S., & Barto, A. G. (2012). Reinforcement learning: An introduction (2nd ed.). Cambridge, USA: The MIT Press.

    Google Scholar 

  • Tay, F. E. H., & Cao, L. J. (2002). Modified support vector machines in financial time series forecasting. Neurocomputing, 48, 847–861.

    Article  MATH  Google Scholar 

  • Ulaş, A., Yıldız, O. T., & Alpaydın, E. (2012). Cost-conscious comparison of supervised learning algorithms over multiple data sets. Pattern Recognition, 45(4), 1772–1781. doi:10.1016/j.patcog.2011.10.005.

    Article  Google Scholar 

  • Universität Bremen. (2007). Promotionsordnung der Universität Bremen für die mathematischen, natur- und ingenieurwissenschaftlichen Fachbereiche vom 14. März 2007. Retrieved August 13, 2013, from http://www.math.uni-bremen.de/cms/media.php/59/PromO%20FB%202-5%20_14%203%2007_.6442.pdf.

  • Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.

    Book  MATH  Google Scholar 

  • Vapnik, V. (1998). Statistical learning theory. Hoboken: Wiley.

    MATH  Google Scholar 

  • Whitehall, B. L., Lu, S. C.-Y., & Stepp, R. E. (1990). CAQ: A machine learning tool for engineering. Artificial Intelligence in Engineering, 5(4), 189–198. doi:10.1016/0954-1810(90)90020-5.

    Article  Google Scholar 

  • Widodo, A., & Yang, B.-S. (2007). Support vector machine in machine condition monitoring and fault diagnosis. Mechanical Systems and Signal Processing, 21(6), 2560–2574. doi:10.1016/j.ymssp.2006.12.007.

    Article  Google Scholar 

  • Wiering, M., & Van Otterlo, M. (2012). Reinforcement learning: State-of-the-art. New York: Springer.

    Book  Google Scholar 

  • Wu, Q. (2010). Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system. Journal of Computational and Applied Mathematics, 233(10), 2481–2491. doi:10.1016/j.cam.2009.10.030.

    Article  MATH  MathSciNet  Google Scholar 

  • Wuest, T., Irgens, C., & Thoben, K.-D. (2012). Analysis of manufacturing process sequences, using machine learning on intermediate product states (as process proxy data). In C. Emmanouilidis, M. Taisch, & D. Kiritsis (Eds.), APMS 2012, Part II, IFIP AICT 398 (pp. 1–8). Heidelberg: Springer.

    Google Scholar 

  • Wuest, T., Irgens, C., & Thoben, K.-D. (2013). An approach to monitoring quality in manufacturing using supervised machine learning on product state data. Journal of Intelligent Manufacturing, 25(5), 1167–1180.

    Article  Google Scholar 

  • Zhang, T. (2002). On the dual formulation of regularized linear systems with convex risks. Machine Learning, 46, 91–129.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Wuest .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wuest, T. (2015). Application of Machine Learning to Identify State Drivers. In: Identifying Product and Process State Drivers in Manufacturing Systems Using Supervised Machine Learning. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-17611-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17611-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17610-9

  • Online ISBN: 978-3-319-17611-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics