Skip to main content

Arctic Carbon Cycle: Patterns, Impacts and Possible Changes

  • Chapter
The New Arctic

Abstract

Land and ocean uptake and release of carbon dioxide and methane play important roles for regulating their atmospheric concentrations. For example, over the industrialised period the terrestrial biosphere and global oceans have acted as net sinks of carbon dioxide, having absorbed CO2 corresponding to more than 50 % of the accumulated emissions from fossil fuel burning, cement production and land-use change. This uptake has clearly reduced the human footprint on climate development. However, we cannot expect that the strength of these sinks will remain unaltered in the future as the processes that are involved are sensitive to climate change. This is in particular the case for the Arctic where ocean circulation changes, sea-ice and permafrost thaw and increased land and ocean primary production—all excerting direct influence on CO2 and methane—are expected to occur. Further, the ocean uptake of CO2 leads to ocean acidification that may have deletorious effects on many marine organisms. The Arctic Ocean appears particularly vulnerable to this threat. In this contribution we provide an overview of the land and ocean components of the Arctic carbon cycle and their climate change sensitivities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, L. G., Olsson, K., Jones, E. P., Chierici, M., & Fransson, A. (1998). Anthropogenic carbon dioxide in the Arctic Ocean: Inventory and sinks. Journal of Geophysical Research, 103, 27707–27716.

    Article  CAS  Google Scholar 

  • Anderson, L. G., Falck, E., Jones, E. P., Jutterström, S., & Swift, J. H. (2004). Enhanced uptake of atmospheric CO2 during freezing of seawater: A field study in Storfjorden, Svalbard. Journal of Geophysical Research, 109, C06004. doi:10.1029/2003JC002120.

    Article  Google Scholar 

  • Anderson, L. G., Jutterström, S., Hjalmarsson, S., Wåhlström, I., & Semiletov, I. P. (2009). Out-gassing of CO2 from Siberian Shelf Seas by terrestrial organic matter decomposition. Geophysical Research Letters, 36, L20601. doi:10.1029/2009GL040046.

    Article  Google Scholar 

  • Anderson, L. G., Andersson, P., Björk, G., Jones, E. P., Jutterström, S., & Wåhlström, I. (2013). Source and formation of the upper halocline of the Arctic Ocean. Journal of Geophysical Research, 118, 410–421. doi:10.1029/2012JC008291.

    Google Scholar 

  • Azetsu-Scott, K., Clarcke, A., Falkner, K., Hamilton, J., Jones, E. P., Lee, C., Petrie, B., Prinsenberg, S., Starr, M., & Yeats, P. (2010). Calcium carbonate saturation states in the waters of the Canadian Arctic Archipelago and the Labrador Sea. Journal of Geophysical Research, 115, C11021.

    Article  Google Scholar 

  • Bates, N. R., & Mathis, J. T. (2009). The Arctic Ocean marine carbon cycle: Evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences, 6, 2433–2459.

    Article  CAS  Google Scholar 

  • Beaulieu, E., Goddéris, Y., Donnadieu, Y., Labat, D., & Roelandt, C. (2012). High sensitivity of the continental-weathering carbon dioxide sink to future climate change. Nature Climate Change, 2(5), 346–349.

    Article  CAS  Google Scholar 

  • Berndt, C., Feseker, T., Treude, T., Krastel, S., Liebetrau, V., Niemann, H., Bertics, V. J., Dumke, I., Duennbier, K., Ferre, B., Graves, C., Gross, F., Hissmann, K., Huhnerbach, V., Krause, S., Lieser, K., Schauer, J., & Steine, L. (2014). Temporal constraints on hydrate-controlled methane seepage off Svalbard. Science, 343, 284–287.

    Article  CAS  Google Scholar 

  • Biastoch, A., Treude, T., Rüpke, L. H., Riebesell, U., Roth, C., Burwicz, E. B., Park, W., Latif, M., Böning, C. W., Madec, G., & Wallmann, K. (2011). Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification. Geophysical Research Letters, 38, L08602. doi:10.1029/2011GL047222.

    Article  Google Scholar 

  • Boden, T. A., Marland, G., & Andres, R. J. (2013). Global, regional and national fossil fuel emissions. Oak Ridge: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy.

    Google Scholar 

  • Boetius, A., Albrecht, S., Bakker, K., Bienhold, C., Felden, J., Fernández-Méndez, M., Hendricks, S., Katlein, C., Lalande, C., Krumpen, T., Nicolaus, M., Peeken, I., Rabe, B., Rogacheva, A., Rybakova, E., Somavilla, R., & Wenzhöfer, F.; RV Polarstern ARK27-3-Shipboard Science Party. (2013). Export of algal biomass from the melting Arctic sea ice. Science, 339(6126), 1430–1432. doi:10.1126/science.1231346.

  • Callaghan, J., et al. (2005). Chapter 7: Arctic tundra and polar desert ecosystems. In ACIA. Arctic climate impact assessment (pp. 243–352). Cambridge: Cambridge University Press, 1042 p.

    Google Scholar 

  • Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton, R. A., & Marland, G. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10288–11029.

    Article  Google Scholar 

  • Carmack, E. C., & Chapman, D. C. (2003). Wind-driven shelf/basin exchange on an Arctic shelf: The joint roles of ice cover extent and shelf-break bathymetry. Geophysical Research Letters, 30(14), 1778. doi:10.1029/2003GL017526.

    Article  Google Scholar 

  • Curry, B., Lee, C. M., & Petrie, B. (2011). Volume, freshwater and heat fluxes through Davis Strait 2004-2005. Journal of Physical Oceanography, 41, 429–436.

    Article  Google Scholar 

  • Dickinson, R. E., & Cicerone, R. J. (1986). Future global warming from atmospheric trace gasses. Nature, 319, 109–115.

    Article  CAS  Google Scholar 

  • Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281(5374), 237–240.

    Article  CAS  Google Scholar 

  • Forbes, D. L. (Ed.). (2011). State of the arctic coast 2010- scientific review and outlook. International Arctic Science Committee, Land-Ocean Interactions in the Coastal Zonse, Arctic Monitoring and Assessment Programme, International Permafrost Association. Helmholtz-Zentrum, Geesthact, 178p. http://arcticcoasts.org

  • Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. P., & Fraser, P. J. (1991). Three-dimensional model synthesis of the global methane cycle. Journal of Geophysical Research, 96, 13033–13065.

    Article  CAS  Google Scholar 

  • Gammon, R. H., Cline, J., & Wisegarver, D. (1982). Chlorofluoromethanes in the northeast Pacific Ocean: Measured vertical distributions and application as transient tracers of upper ocean mixing. Journal of Geophysical Research, 87, 9441–9454.

    Article  CAS  Google Scholar 

  • Houghton, J. T., Jenkins, G. J., & Ephraums, J. J. (1990). Climate change, the IPCC scientific assessment. New York: Cambridge University Press. 365 pp.

    Google Scholar 

  • Houghton, R. A., House, J. I., Pongratz, J., van der Werf, G. R., DeFries, R. S., Hansen, M. C., Le Quéré, C., & Ramankuttu, N. (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 9, 5125–5142.

    Article  CAS  Google Scholar 

  • Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer, G., Fisk, J. P., Hibbard, K., Houghton, R. A., Janetos, A., Jones, C. D., Kindermann, G., Kinoshita, T., Klein Goldewijk, K., Riahi, K., Shevliakova, E., Smith, S., Stehfest, E., Thomson, A., Thornton, P., van Vuuren, D. P., & Wang, Y. P. (2011). Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117–161.

    Article  Google Scholar 

  • Jeansson, E., Olsen, A., Eldevik, T., Skjelvan, I., Omar, A. M., Lauvset, S., Nilsen, J. E. Ø., Bellerby, R. G. J., Johannessen, T., & Falck, E. (2011). The Nordic Seas carbon budget: Sources, sinks and uncertainties. Global Biogeochemical Cycles, 25, GB4010.

    Article  Google Scholar 

  • Jonasson, S., Chapin, F. S., III, & Shaver, G. R. (2001). Biogeochemistry in the Arctic: Patterns, processes and controls. In E.-D. Schulze, M. Heimann, S. P. Harrison, E. A. Holland, J. J. Lloyd, I. C. Prentice, & D. Schimel (Eds.), Global biogeochemical cycles in the climate system (pp. 139–150). San Diego: London.

    Chapter  Google Scholar 

  • Jones, E. P., & Anderson, L. G. (1986). On the origin of the chemical properties of the Arctic Ocean halocline. Journal of Geophysical Research, 91, 10759–10767.

    Article  Google Scholar 

  • Joos, F., & Spahni, R. (2008). Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proceedings of the National Academy of Science, 105, 1425–1430.

    Article  CAS  Google Scholar 

  • Keeling, R. F., Piper, S. C., Bollenbacher, A. F., & Walker, J. S. (2008). Atmospheric CO2 records from sites in the SIO air sampling network. In Trends: A compendium of data on global change. Oak Ridge: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy.

    Google Scholar 

  • Khatiwala, S., Tanhua, T., Mikaloff Fletcher, S., Gerber, M., Doney, S. C., Graven, H. D., Gruber, N., McKinley, G. A., Murata, A., Ríos, A. F., & Sabine, C. L. (2013). Global storage of anthropogenic carbon. Biogeosciences, 10, 2169–2191.

    Article  CAS  Google Scholar 

  • Kicklighter, D. W., Hayes, D. J., McClelland, J. W., Peterson, B. J., McGuire, D., & Melillo, J. M. (2013). Insights and issues with simulating terrestrial DOC loading of Arctic river networks. Ecological Applications, 23(8), 1817–1836.

    Article  Google Scholar 

  • Kort, E. A., et al. (2012). Atmospheric observations of Arctic Ocean methane emissions up to 82° north. Nature Geoscience, 5, 318–321. doi:10.1038/NGEO1452.

    Article  CAS  Google Scholar 

  • Le Quéré, C., Moriarty, R., Andrew, R. M., Peters, G. P., Ciais, P., Friedlingstein, P., Jones, S. D., Sitch, S., Tans, P., Arneth, A., Boden, T. A., Bopp, L., Bozec, Y., Canadell, J. G., Chevallier, F., Cosca, C. E., Harris, I., Hoppema, M., Houghton, R. A., House, J. I., Jain, A. K., Johannessen, T., Kato, E., Keeling, R. F., Kitidis, V., Klein Goldewijk, K., Koven, C., Landa, C., Landschützer, P., Lenton, A., Lima, I. D., Marland, G. H., Mathis, J. T., Metzl, N., Nojiri, Y., Olsen, A., Ono, T., Peters, W., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Rödenbeck, C., Saito, S., Sailsbury, J. E., Schuster, U., Schwinger, J., Séférian, R., Segschneider, J., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Werf, G., Viovy, N., Wang, Y.-P., Wanninkhof, R., Wiltshire, A., & Zeng, N. (2014). Global carbon budget 2014. Earth System Science Data Discuss, 6, 1–90.

    Article  Google Scholar 

  • MacDonald, R. W., Anderson, L. G., Christensen, J., Miller, L. A., Semiletov, I. P., & Stein, R. (2010). The Arctic Ocean. In K.-K. Liu, L. Atkinson, R. Quinones, & L. Talaue-McManus (Eds.), Carbon and nutrient fluxes in continental margins: a global synthesis (pp. 289–303). Berlin: Springer.

    Google Scholar 

  • MacGilchrist, G. A., Naveira Garabato, A. C., Tsubouchi, T., Bacon, S., Torres-Valdés, S., & Azetsu-Scott, K. (2014). The Arctic Ocean carbon sink. Deep-Sea Research Part I, 86, 39–55.

    Article  CAS  Google Scholar 

  • Mathis, J. T., Cross, J. N., & Bates, N. R. (2011). The role of ocean acidification in systematic carbonate mineral supression in the Bering Sea. Geophysical Research Letters, 38, L19602.

    Article  Google Scholar 

  • McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Euskirchen, E., Kimball, J. S., Koven, C., Lafleur, P., Miller, P. A., Oechel, W., Peylin, P., Williams, M., & Yi, Y. (2012). An assessment of the carbon balance of Arctic tundra: Comparisons among observations, process models, and atmospheric inversion. Biogeosciences, 9, 3185–3204.

    Article  CAS  Google Scholar 

  • Oechel, W. C., Cowles, S., Grulke, N., Hastings, S. J., Lawrence, B., Prudhomme, T., Riechers, G., Strain, B., Tissue, D., & Vourlitis, G. (1994). Transient nature of CO2 fertilisation in Arctic tundra. Nature, 371, 500–503.

    Article  CAS  Google Scholar 

  • Olsen, A., Omar, A. M., Jeansson, E., Anderson, L. G., & Bellerby, R. G. J. (2010). Nordic Seas transit-time distributions and antropogenic CO2. Journal of Geophysical Research, 115, C5005.

    Article  Google Scholar 

  • Pérez, F. F., Vázquez-Rodríguez, M., Louarn, E., Padín, X. A., Mercier, H., & Ríos, A. F. (2008). Temporal variability of the antropogenic CO2 storage in the Imringer Sea. Biogeosciences, 5, 1669–1679.

    Article  Google Scholar 

  • Pipko, I. I., Semiletov, I. P., Pugach, S. P., Wåhlström, I., & Anderson, L. G. (2011). Interannual variability of air-sea CO2 fluxes and carbonate system parameters in the East Siberian Sea. Biogeosciences, 8, 1987–2007.

    Article  CAS  Google Scholar 

  • Prather, M. J., Holmes, C. D., & Hsu, J. (2012). Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry. Geophysical Research Letters, 39, L09803.

    Article  Google Scholar 

  • Rogner, H., Aguilera, R. F., Archer, C. L., Bertani, R., Bhattacharya, S. C., Dusseault, M. B., Gagnon, L., & Yakushev, V. (2012). Chapter 7: Energy resources and potentials; global energy assessment – Toward a sustainable future. Global energy assessment. In GEA (Ed.), Global energy assessment – Toward a sustainable future. Cambridge/New York/Laxenburg: Cambridge University Press, International Institute for Applied Systems Analysis (ISBN: 9781 107005198).

    Google Scholar 

  • Sarmiento, J. L., & Gruber, N. (2006). Ocean biogeochemical dynamics. Princeton/Oxford: Princeton University Press. 503 pp.

    Google Scholar 

  • Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., & Osterkamp, T. E. (2009). The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459, 556–559.

    Article  CAS  Google Scholar 

  • Shakhova, N., et al. (2010a). Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. Journal of Geophysical Research, 115, C08007. doi:10.1029/2009JC005602.

    Article  Google Scholar 

  • Shakhova, N., et al. (2010b). Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science, 327, 1246–1250. doi:10.1126/science.1182221.

    Article  CAS  Google Scholar 

  • Smedsrud, L. H., Esau, I., Ingvaldsen, R. B., Eldevik, T., Haugan, P. M., Li, C., Lien, V. S., Olsen, A., Omar, A. M., Otterå, O. H., Risebrobakken, B., Sandø, A. B., Semenov, V. A., & Sorokina, S. A. (2013). The role of the Barents Sea in the Arctic climate system. Reviews of Geophysics. doi:10.1002/rog.20017.

    Google Scholar 

  • Snyder, P. K., & Liess, S. (2014). The simulated atmospheric response to expansion of the Arctic boreal forest biome. Climate Dynamics, 42, 487–503.

    Article  Google Scholar 

  • Steinacher, M., Joos, F., Frölicher, T. L., Plattner, G.-K., & Doney, S. C. (2009). Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences, 6, 515–533.

    Article  CAS  Google Scholar 

  • Tanhua, T., Körtzinger, A., Friis, K., Waugh, D. W., & Wallace, D. W. R. (2007). An estimate of anthropogenic CO2 inventory from decadal changes in oceanic carbon content. Proceedings of the National Academy of Sciences of the United States of America, 104, 3037–3042.

    Article  CAS  Google Scholar 

  • Tanhua, T., Jones, E. P., Jeansson, E., Jutterström, S., Smethie, W. M., Jr., Wallace, D. W. R., & Anderson, L. G. (2009). Ventilation of the Arctic Ocean: Mean ages and inventories of anthropogenic CO2 and CFC-11. Journal of Geophysical Research, 114, C01002.

    Article  Google Scholar 

  • Tank, S. E., Raymond, P. A., Striegl, R. G., McClelland, J. W., Holmes, R. M., Fiske, G. J., & Peterson, B. J. (2012). A land-to-ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean. Global Biogeochemical Cycles, 26, GB4018.

    Google Scholar 

  • Van Amstel, A. (2012). Methane. A review. Journal of Integrative Environmental Sciences, 9, supl. 1, 5–30.

    Article  Google Scholar 

  • Wagner, A., Lohmann, G., & Prange, M. (2011). Arctic river discharge trends since 7 ka BP. Global Planetary Change, 79, 48–60.

    Article  Google Scholar 

  • Westbrook, G. K., et al. (2009). Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophysical Research Letters, 36, L15608. doi:10.1029/2009GL039191.

    Article  Google Scholar 

  • Woodward, F. I. (1987). Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature, 327, 617–618.

    Article  Google Scholar 

  • Wu, P. L., Wood, R., & Stott, P. (2005). Human influence on increasing Arctic river discharges. Geophysical Research Letters, 32, L02703. doi:10.2019/2004GL021570.

    Google Scholar 

  • Yamamoto-Kawai, M., McLaughlin, F. A., Carmack, E. C., Nishino, S., & Shimada, K. (2009). Aragonite undersaturation in the Arctic Ocean: Effects of ocean acidification and sea-ice melt. Science, 326, 1098–1100.

    Article  CAS  Google Scholar 

  • Yu, Z., Beilman, D. W., Frolking, S., MacDonald, G. M., Roulet, N. T., Camill, P., & Charman, D. J. (2011). Peatlands and their role in the global carbon cycle. Eos, 92, 97–99.

    Article  Google Scholar 

Download references

Acknowledgement

Figure 8.2 kindly prepared by Miss. Kristin Linga

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Are Olsen PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Olsen, A., Anderson, L.G., Heinze, C. (2015). Arctic Carbon Cycle: Patterns, Impacts and Possible Changes. In: Evengård, B., Nymand Larsen, J., Paasche, Ø. (eds) The New Arctic. Springer, Cham. https://doi.org/10.1007/978-3-319-17602-4_8

Download citation

Publish with us

Policies and ethics