Skip to main content

To What Extent Can Freshwater Crayfish Recognise Other Crayfish?

  • Chapter
  • First Online:
Social Recognition in Invertebrates

Abstract

The ability for sophisticated and flexible recognition by vertebrates has been known for a very long time, probably because it features so strongly in human social behaviour and is therefore easily recognised in other species. Recent years have seen increased interest in the occurrence and properties of this response in non-vertebrates where it may not be so easily identified. Studies have now been undertaken on a wide range of organisms exemplified by the chapters of this review collection but our understanding of this phenomenon is still at an early stage and we can make few generalisations beyond its wide occurrence. In retrospect, its incidence should not be surprising. The advantages that it confers are apparent so that, all things being equal, it should be selected for. What characteristics of life history and interaction with con-specifics are likely to predict its presence and what factors predict the level of sophistication and flexibility? These questions remain to be answered but, based on what has already been discovered, we postulate here that it will evolve wherever there is a capacity for analysis of sensory signals that carry identifying information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acquistapace P, Aquiloni L, Hazlett BA et al (2002) Multimodal communication in crayfish: ex recognition during mate search by male Austropotamobius pallipes. Can J Zool 80:2041–2045

    Article  Google Scholar 

  • Aggio J, Derby CD (2011) Chemical communication in lobsters. In: Breithaupt T, Thiel M (eds) Chemical communication in crustaceans. Springer, Berlin, pp 239–256

    Google Scholar 

  • Aquiloni L, Gherardi F (2008) Assessing mate size in the red swamp crayfish Procambarus clarkii: effects of visual versus chemical stimuli. Fresh Biol 53:461–469

    Article  Google Scholar 

  • Aquiloni L, Gherardi F (2010) Crayfish females eavesdrop on fighting males and use smell and sight to recognize the identity of the winner. Anim Behav 79:265–269

    Article  Google Scholar 

  • Aquiloni L, Massolo A, Gherardi F (2009) Sex identification in female crayfish is bimodal. Naturewissenschaften 96:103–110

    Article  CAS  Google Scholar 

  • Aquiloni L, Buric M, Gherardi F (2010) Crayfish females eavesdrop on fighting males before choosing the dominant mate. Curr Biol 18:R462–R463

    Article  Google Scholar 

  • Aquiloni L, Goncalves V, Inghilesi AF et al (2012) Who’s what? Prompt recognition of social status in crayfish. Behav Ecol Sociol 66:785–790

    Article  Google Scholar 

  • Atwood HL, Sandeman DC (eds) (1982) Neurobiology: structure and function. In: Bliss DE (ed) The biology of crustacea, vol 3. Academic Press, New York

    Google Scholar 

  • Baird HP, Patullo BW, Macmillan DL (2006) Reducing aggression between freshwater crayfish (Cherax destructor Clark: Decapoda, Parastacidae) by increasing habitat complexity. Aqua Res 37:1419–1428

    Article  Google Scholar 

  • Basil J, Sandeman D (2000) Crayfish (Cherax destructor) use tactile cues to detect and learn topographical changes in their environment. Ethology 106:247–259

    Article  Google Scholar 

  • Beall SP, Langley DJ, Edwards DH (1990) Inhibition of escape tailflip in crayfish during backward walking and the defence posture. J Exp Biol 152:577–582

    CAS  PubMed  Google Scholar 

  • Bergman DA, Moore PA (2005) Prolonged exposure to social odours alters subsequent social interactions in crayfish (Orconectes rusticus). Anim Behav 70:311–318

    Article  Google Scholar 

  • Bergman DA, Kozlowski C, McIntyre JC et al (2003) Temporal dynamics and communication of winner-effects in the crayfish, Orconectes rusticus. Behaviour 140:805–825

    Article  Google Scholar 

  • Berry FC, Breithaupt T (2010) To signal or not to signal? Chemical communication by urine-borne signals mirrors sexual conflict in crayfish. BMC Biol 8:25

    Article  PubMed Central  PubMed  Google Scholar 

  • Bouwma P, Hazlett BA (2001) Integration of multiple predator cues by the crayfish Orconectes propinquus. Anim Behav 61:771–776

    Article  Google Scholar 

  • Bovbjerg RV (1953) Dominance order in the crayfish Orconectes virilis (Hagen). Physiol Zool 26:173–178

    Google Scholar 

  • Bovbjerg RV (1956) Some factors affecting aggressive behaviour in crayfish. Physiol Zool 29:127–136

    Google Scholar 

  • Breithaupt T (2011) Chemical communication in crayfish. In: Breithaupt T, Thiel M (eds) Chemical communication in crustaceans. Springer, New York, pp 257–276

    Chapter  Google Scholar 

  • Breithaupt T, Eger P (2002) Urine makes the difference: chemical communication in fighting crayfish made visible. J Exp Biol 205:1221–1231

    PubMed  Google Scholar 

  • Breithaupt T, Thiel M (eds) (2011) Chemical communication in crustaceans. Springer, Berlin

    Google Scholar 

  • Bruski CA, Dunham DW (1987) The importance of vision in agonistic communication of the crayfish Orconectes rusticus: an analysis of bout dynamics. Behaviour 63:83–107

    Article  Google Scholar 

  • Bullock TH, Horridge GA (eds) (1965) Structure and function in the nervous systems of invertebrates. WH Freeman, San Francisco

    Google Scholar 

  • Bushman PJ, Atema J (1997) Shelter sharing and chemical courtship signals in the lobster Homarus americanus. Can J Fish Aq Sci 54:647–654

    Article  Google Scholar 

  • Callaghan DT, Weisbord CD, Dew WA et al (2012) The role of various sensory inputs in establishing social hierarchies in crayfish. Behaviour 149:1443–1458

    Article  Google Scholar 

  • Chiao CC, Cronin TW, Marshall NJ (2000) Eye design and color signaling in a stomatopod crustacean Gonodactylus smithii. Brain Behav Evol 56:107–122

    Article  CAS  PubMed  Google Scholar 

  • Cronin TW, Caldwell RL, Marshall J (2001) Sensory adaptation: tunable colour vision in a mantis shrimp. Nature 411:547–548

    Article  CAS  PubMed  Google Scholar 

  • Crook R, Patullo BW, Macmillan DL (2004) Multimodal individual recognition in the crayfish Cherax destructor. Mar Fresh Behav Physiol 37:271–286

    Article  Google Scholar 

  • Daws AG, Grills J, Konzen K et al (2002) Previous experiences alter the outcome of aggressive interactions between males in the crayfish Procambrus clarkii. Mar Fresh Behav Physiol 35:139–148

    Article  Google Scholar 

  • Daws AG, Hock K, Huber R (2011) Spatial structure of hierarchical groups: testing for processes of aggregation, clustering, and spatial centrality in crayfish (Orconectes rusticus). Mar Fresh Behav Physiol 44:209–222

    Article  Google Scholar 

  • Detto T, Backwell PRY, Hemmi JM et al (2006) Visually mediated species and neighbour recognition in fiddler crabs (Uca mjoebergi and Uca capricomis). Proc R Soc B 273:1661–1666

    Article  PubMed Central  PubMed  Google Scholar 

  • Drozdz JK, Viscek J, Brudzynski SM et al (2006) Behavioural responses of crayfish to a reflective environment. J Crust Biol 26:463–473

    Article  Google Scholar 

  • Dunham DW (1978) Effect of chela white on agonistic success in a diogenid hermit crab (Calcinus laevimanus). Mar Behav Physiol 5:137–144

    Article  Google Scholar 

  • Fisher J (1954) Evolution and bird sociality. In: Huxley J, Hardy AC, Ford EB (eds) Evolution as a process. Allen & Unwin, London, pp 71–83

    Google Scholar 

  • Gauthier I, Tarr MJ (1997) Becoming a “greeble” expert: exploring mechanisms for face recognition. Vision Res 37:1673–1682

    Article  CAS  PubMed  Google Scholar 

  • Gherardi F, Daniels WH (2003) Dominance hierarchies and status recognition in the crayfish Procambarus acutus acutus. Can J Zool 81:1269–1281

    Article  Google Scholar 

  • Gherardi F, Tricarico E, Atema J (2005) Unraveling the nature of individual recognition by odor in hermit crabs. J Chem Ecol 31:2877–2896

    Article  CAS  PubMed  Google Scholar 

  • Glantz RM (1974a) The visually evoked defense reflex of the crayfish: habituation, facilitation, and the influence of picrotoxin. J Neurobiol 5:263–280

    Article  CAS  PubMed  Google Scholar 

  • Glantz RM (1974b) Defence reflex and motion detector responsiveness to approaching targets: the motion detector trigger to the defence reflex pathway. J Comp Physiol 95:297–314

    Article  Google Scholar 

  • Glantz RM (1978) Visual input and motor output of command interneurons of the defence reflex pathway in the crayfish. In: Hoyle G (ed) Identified neurons and behavior of arthropods. Plenum, New York, pp 259–274

    Google Scholar 

  • Goessmann C, Hemelrijk C, Huber R (2000) The formation and maintenance of crayfish hierarchies: behavioral and self-structuring properties. Behav Ecol Sociobiol 48:418–428

    Article  Google Scholar 

  • Hallberg E, Skog M (2011) Chemosensory sensilla in crustaceans. In: Breithaupt T, Thiel M (eds) Chemical communication in crustaceans. Springer, Berlin, pp 103–122

    Google Scholar 

  • Hazlett BA (1972) Stimulus characteristics of an agonistic display of the hermit crab (Calcinus tibicen). Anim Behav 20:101–107

    Article  Google Scholar 

  • Hemsworth R, Villareal W, Patullo BW et al (2007) Crustacean social behavioral changes in response to isolation. Biol Bull 213:187–195

    Article  PubMed  Google Scholar 

  • Horner AJ, Schmidt M, Edwards DH et al (2008) Role of the olfactory pathway in agonistic behavior of crayfish, Procambarus clarkii. Invert Neurosci 8:11–18

    Article  PubMed  Google Scholar 

  • Issa FA, Adamson DJ, Edwards DH (1999) Dominance hierarchy formation in juvenile crayfish Procambarus clarkii. J Exp Biol 202:3497–3506

    PubMed  Google Scholar 

  • Johnson ME, Atema J (2005) The olfactory pathway for individual recognition in the American lobster Homarus americanus. J Exp Biol 208:2865–2872

    Article  PubMed  Google Scholar 

  • Johnson BR, Voigt R, Borroni PF et al (1984) Response properties of lobster chemoreceptors: tuning of primary taste neurons in walking legs. J Comp Physiol 155:5593–5604

    Google Scholar 

  • Karavanich C, Atema J (1998a) Individual recognition and memory in lobster dominance. Anim Behav 56:1553–1560

    Article  PubMed  Google Scholar 

  • Karavanich C, Atema J (1998b) Olfactory recognition of urine signals in dominance fights between male lobster, Homarus americanus. Behaviour 135:719–730

    Article  Google Scholar 

  • Kelly TM, Chapple WD (1990) Kinematic analysis of the defence response in crayfish. J Neurophysiol 64:64–76

    CAS  PubMed  Google Scholar 

  • Kennedy D, Bruno MS (1961) The spectral sensitivity of crayfish and lobster vision. J Gen Physiol 44:1089–1102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marshall NJ, Jones JP, Cronin TW (1996) Behavioural evidence for colour vision in stomatopod crustaceans. J Comp Physiol A 179:473–481

    Article  Google Scholar 

  • May HY, Mercier AJ (2006) Responses of crayfish to a reflective environment depend on dominance status. Can J Zool 84:1104–1111

    Article  Google Scholar 

  • McMahon A, Patullo BW, Macmillan DL (2005) Exploration in a T-maze by the crayfish Cherax destructor suggests bilateral comparison of antennal tactile information. Biol Bull 208:183–188

    Article  PubMed  Google Scholar 

  • Merrick JR (1991) The biology, conservation and management of Australian freshwater crayfishes. Macquarie University, New South Wales

    Google Scholar 

  • Moore PA (2007) Agonistic behavior in freshwater crayfish: the influence of intrinsic and extrinsic factors on aggressive encounters and dominance. In: Duffy JE, Thiel M (eds) Evolutionary ecology of social and sexual systems: crustaceans as model organisms. Oxford University Press, Oxford, pp 90–114

    Chapter  Google Scholar 

  • Patullo BW, Macmillan DL (2006) Corners and bubble wrap: the structure and texture of surfaces influence crayfish exploratory behavior. J Exp Biol 209:567–575

    Article  CAS  PubMed  Google Scholar 

  • Patullo BW, Baird HP, Macmillan DL (2009) Altered aggression in different sized groups of crayfish supports a dynamic social behaviour model. App Anim Behav Sci 120:231–237

    Article  Google Scholar 

  • Sandeman DC, Varju D (1988) A behavioral-study of tactile localization in the crayfish Cherax destructor. J Comp Physiol A 163:525–536

    Article  Google Scholar 

  • Seebacher F, Wilson RS (2007) Individual recognition in crayfish (Cherax dispar): the roles of strength and experience in deciding aggressive encounters. Biol Lett 3:471–474

    Article  PubMed Central  PubMed  Google Scholar 

  • Skog M (2009a) Male but not female olfaction is crucial for intermolt mating in European lobsters (Homarus gammarus L.). Chem Senses 34:159–169

    Article  PubMed  Google Scholar 

  • Skog M (2009b) Intersexual differences in European lobster (Homarus gammarus): recognition mechanisms and agonistic behaviours. Behaviour 146:1071–1091

    Article  Google Scholar 

  • Tibbets EA, Dale J (2007) Individual recognition: it is good to be different. Trends Ecol Evol 22:529–537

    Article  Google Scholar 

  • Van der Velden J, Zheng Y, Patullo BW et al (2008) Crayfish recognise the faces of fight opponents. PLoS One 3:e1695

    Article  PubMed Central  PubMed  Google Scholar 

  • Vannini M, Gherardi F (1981) Dominance and individual recognition in Potamon fluviatile (Decapoda, Brachyura): possible role of visual cues. Mar Behav Physiol 8:13–20

    Article  Google Scholar 

  • Wald G (1967) Visual pigments of crayfish. Nature 215:1131–1133

    Article  CAS  PubMed  Google Scholar 

  • Zulandt-Schneider RA, Schneider RWS, Moore PA (1999) Recognition of dominance status by chemoreception in the red swamp crayfish, Procambrus clarkii. J Chem Ecol 25:781–794

    Article  Google Scholar 

  • Zulandt-Schneider RA, Huber R, Moore PA (2001) Individual and status recognition in the crayfish, Orconectes rusticus: the effects of urine release on fight dynamics. Behaviour 138:137–153

    Article  Google Scholar 

Download references

Acknowledgments

We thank the two reviewers who helped to improve this manuscript and we gratefully acknowledge the contribution of the late Francesca Gherardi in the development of our understanding of so many aspects of crayfish behaviour.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Macmillan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patullo, B.W., Macmillan, D.L. (2015). To What Extent Can Freshwater Crayfish Recognise Other Crayfish?. In: Aquiloni, L., Tricarico, E. (eds) Social Recognition in Invertebrates. Springer, Cham. https://doi.org/10.1007/978-3-319-17599-7_3

Download citation

Publish with us

Policies and ethics