Skip to main content

Communication and Social Regulation in Termites

  • Chapter
  • First Online:
Social Recognition in Invertebrates

Abstract

Communication and social regulation are among the distinguishing features of termites: they are part of all basic aspects of termite biology, from ontogeny and caste differentiation to social behavior and cooperation. As in other highly social taxa, communication in termites predominantly relies on a complex network of chemical signals, which are complemented by vibration-based signals. In contrast to other social taxa, the role of visual cues is negligible. In this chapter, we review the recent literature on the different components that make up termite communication and social regulation systems by tracing termite evolution and examining the role played by different factors, such as sex and caste, and different behaviors, such as those related to defense, nestmate recognition, egg and brood care, foraging, and nest building, among others. The main characteristics of termites are compared to those of other social insects in the introduction. In the first section, we review the most important researches on termite communication and social regulation that are related to social activities in the basal phylogenetic lineages, and in the Termitidae (higher termites), the most advanced and diversified family. The abundant literature on the best studied genera, Reticulitermes, Coptotermes, and Heterotermes, which are considered for the purposes of this chapter to be intermediate termites, is reviewed and discussed separately in the second section. By using this approach, we seek to describe communication and social regulation systems in basal and primitive termites and illustrate how they have evolved to become more complex in intermediate and higher termites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T (1987) Evolution of life types in termites. In: Kawanno S, Connell JH, Hidaka T (eds) Evolution and coadaptation in biotic communities. University of Tokyo Press, Tokyo, pp 125–148

    Google Scholar 

  • Abe T (1990) Evolution of worker caste in termites. In: Veeresh GK, Mallik B, Viraktamath CA (eds) Social insects and the environment. Proceedings 11th international congress IUSSI 1990, Bangalore, India. Oxford & IBH, New Delhi, pp 29–30

    Google Scholar 

  • Adams ES (1991) Nest-mate recognition based on heritable odors in the termite Microcerotermes arboreus. Proc Natl Acad Sci USA 88:2031–2034

    PubMed Central  CAS  PubMed  Google Scholar 

  • Adams ES, Atkinson L, Bulmer MS (2007) Relatedness, recognition errors, and colony fusion in the termite Nasutitermes corniger. Behav Ecol Sociobiol 61:1195–1201

    Google Scholar 

  • Affolter J, Leuthold RH (2000) Quantitative and qualitative aspects of trail pheromones in Macrotermes subhyalinus (Isoptera, Termitidae). Insect Soc 47:256–262

    Google Scholar 

  • Atkinson L, Teschendorf G, Adams ES (2008) Lack of evidence for nepotism by workers tending queens of the polygynous termite Nasutitermes corniger. Behav Ecol Sociobiol 62:805–812

    Google Scholar 

  • Badertscher S, Gerber C, Leuthold RH (1983) Polyethism in food supply and processing in termite colonies of Macrotermes subhyalinus (Isoptera). Behav Ecol Sociobiol 12:115–119

    Google Scholar 

  • Bagine RKN, Brandl R, Kaib M (1990) Cuticular hydrocarbon profiles as a systematical tool: a case study in the termite genus Odontotermes. In: Veeresh GK, Mallik B, Viraktamath CA (eds) Social insects and the environment. Proceedings 11th international congress IUSSI 1990, Bangalore, India. Oxford & IBH, New Delhi, p 28

    Google Scholar 

  • Bagine RKN, Brandl R, Kaib M (1994) Species delimitation in Macrotermes (Isoptera: Macrotermitinae): evidence from epicuticular hydrocarbons, morphology, and ecology. Ann Entomol Soc Am 87:498–506

    Google Scholar 

  • Bagnères A-G (1989) Les hydrocarbures cuticulaires des insectes sociaux: Détermination et rôle dans la reconnaissance spécifique, coloniale et individuelle. Ph.D. thesis, Université Pierre et Marie Curie, Paris

    Google Scholar 

  • Bagnères A-G, Lorenzi C (2010) Chemical deception/mimicry using cuticular hydrocarbons. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry and chemical ecology. Cambridge University Press, Cambridge, pp 282–324

    Google Scholar 

  • Bagnères A-G, Wicker-Thomas C (2010) Chemical taxonomy with hydrocarbons. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 121–162

    Google Scholar 

  • Bagnères A-G, Clément J-L, Blum MS et al (1990a) Cuticular hydrocarbons and defensive compounds of Reticulitermes flavipes (Kollar) and R. santonensis (Feytaud): polymorphism and chemotaxonomy. J Chem Ecol 16:3213–3244

    PubMed  Google Scholar 

  • Bagnères A-G, Clément J-L, Lange C, Blum MS (1990b) Cuticular compounds in Reticulitermes termites: species, caste and colonial signature. In: Veeresh GK, Mallik B, Viraktamath CA (eds) Social insects and the environment. Proceedings 11th international congress IUSSI 1990, Bangalore, India. Oxford & IBH, New Delhi, pp 423–424

    Google Scholar 

  • Bagnères A-G, Killian A, Clément J-L, Lange C (1991) Interspecific recognition among termites genus Reticulitermes: evidence for a role for the cuticular hydrocarbons. J Chem Ecol 17:2397–2420

    PubMed  Google Scholar 

  • Bagnères A-G, Rivière G, Clément J-L (1998) Artificial neural network modeling of caste odor discrimination based on cuticular hydrocarbons in termites. Chemoecology 8:201–209

    Google Scholar 

  • Bagnères A-G, Uva P, Clément J-L (2003) Description d’une nouvelle espèce de termite: Reticulitermes urbis n. sp. (Isopt., Rhinotermitidae). Bull Soc Entomol Fr 108:433–435

    Google Scholar 

  • Bagnères A-G, Darrouzet E, Landré X, Christidès JP (2011) Endogenous synchronization of the chemical signature of Reticulitermes (Isoptera, Rhinotermitidae) worker termites. Ann Soc Entomol Fr 47:202–208

    Google Scholar 

  • Batista-Pereira LG, dos Santos MG, Correa AG et al (2004a) Cuticular hydrocarbons of Heterotermes tenuis (Isoptera: Rhinotermitidae): analyses and electrophysiological studies. Z Naturforsch 59:135–139

    CAS  Google Scholar 

  • Batista-Pereira LG, dos Santos MG, Corrêa AG et al (2004b) Electroantennographic responses of Heterotermes tenuis (Isoptera: Rhinotermitidae) to synthetic (3Z,6Z,8E)-dodecatrien-1-ol. J Braz Chem Soc 15:372–377

    CAS  Google Scholar 

  • Berenbaum MR, Robinson GE (2003) Chemical communication in a post-genomic world. Proc Natl Acad Sci USA 100:14513

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Press, Dordrecht, pp 363–387

    Google Scholar 

  • Bland JM, Park YI, Raina AK et al (2004) Trilinolein identified as a sex specific component of tergal glands in alates of Coptotermes formosanus. J Chem Ecol 30:835–849

    CAS  PubMed  Google Scholar 

  • Blomquist GJ, Bagnères A-G (2010) Insect hydrocarbons, biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Blomquist GJ, Howard RW, McDaniel CA (1979) Structures of the cuticular hydrocarbons of the termite Zootermopsis angusticollis (Hagen). Insect Biochemistry 9:365–370

    CAS  Google Scholar 

  • Blomquist GJ, Tillman JA, Mpuru S, Seybold SJ (1998) The cuticle and cuticular hydrocarbons of insects: structure, function, and biochemistry. In: Van der Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects: ants, wasps, bees and termites. Westview Press, Boulder, pp 34–54

    Google Scholar 

  • Blum MS (1987) Specificity of pheromonal signals: a search for its recognitive bases in terms of a unified chemisociality. In: Eder J, Rembold H (eds) Chemistry and biology of social insects. Verlag Perperny, Munich, pp 401–405

    Google Scholar 

  • Bonabeau E, Theraulaz G, Deneubourg JL et al (1997) Self-organization in social insects. Trends Ecol Evol 12:188–193

    CAS  PubMed  Google Scholar 

  • Bonabeau E, Theraulaz G, Deneubourg JL et al (1998) A model for the emergence of pillars, walls and royal chambers in termite nests. Phil Trans R Soc Lond B Biol Sci 353:1561–1576

    Google Scholar 

  • Bonavita-Courgourdan A, Clément J-L, Lange C (1987) Nestmate recognition: the role of cuticular hydrocarbons in the ant Camponotus vagus Scop. J Entomol Sci 22:1–10

    Google Scholar 

  • Bonckaert W, Drijfhout FP, d’Ettore P et al (2012) Hydrocarbon signature of egg maternity, caste membership and reproductive status in the common wasp. J Chem Ecol 38:42–51

    CAS  PubMed  Google Scholar 

  • Bordereau C (1985) The role of pheromones in termite caste differentiation. Curr Themes Trop Sci 3:221–226

    Google Scholar 

  • Bordereau C, Han SH (1986) Stimulatory influence of the queen and king on soldier differentiation in the higher termites Nasutitermes lujae and Cubitermes fungifaber. Insect Soc 33:296–305

    Google Scholar 

  • Bordereau C, Pasteels JM (2011) Pheromones and chemical ecology of dispersal and foraging in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 279–320

    Google Scholar 

  • Bordereau C, Robert A, Laduguie N et al (1993) Détection du (Z, Z, E)-3,6,8-dodecatrièn-1-ol par les ouvriers et les essaimants de deux espèces de termites champignonnistes: Pseudacanthotermes spiniger et P. militaris (Termitidae, Macrotermitidae). Act Coll Insectes Soc 8:145–149

    Google Scholar 

  • Bordereau C, Robert A, Van Tuyen V, Peppuy A (1997) Suicidal defensive behavior by frontal gland dehiscence in Globitermes sulphureus Haviland soldiers (Isoptera). Insect Soc 44:289–296

    Google Scholar 

  • Bordereau C, Cancello EM, Sémon E et al (2002) Sex pheromone identified after solid phase microextraction from tergal glands of female alates in Cornitermes bequaerti (Isoptera, Nasutitermitinae). Insect Soc 49:209–215

    Google Scholar 

  • Bordereau C, Lacey MJ, Sémon E et al (2010) Sex pheromones and trail-following pheromone in the basal termites Zootermopsis nevadensis (Hagen) and Z. angusticollis (Hagen) (Isoptera: Termopsidae: Termopsinae). Biol J Linnean Soc 100:519–530

    Google Scholar 

  • Bordereau C, Cancello EM, Sillam-Dussès D, Sémon E (2011) Sex-pairing pheromones and reproductive isolation in three sympatric Cornitermes species (Isoptera, Termitidae, Syntermitinae). J Insect Physiol 57:469–474

    CAS  PubMed  Google Scholar 

  • Bos N, Dreier S, Jørgensen CG et al (2012) Learning and perceptual similarity among cuticular hydrocarbons in ants. J Insect Physiol 58:138–146

    CAS  PubMed  Google Scholar 

  • Boucias DG, Cai Y, Sun Y et al (2013) The hingut lumen prokaryotic microbiota of the termtie Reticulitermes flavipes and its responses to dietery lignocelluloses composition. Mol Ecol 22:1836–1853

    CAS  PubMed  Google Scholar 

  • Breed MD (1987) Kin recognition in highly eusocial insects. In: Fletcher DJC, Michener CD (eds) Kin recognition in animals. Wiley, Chichester, New York, pp 243–285

    Google Scholar 

  • Breed MD, Buchwald R (2009) Cue diversity and social recognition. In: Gadau J, Fewell J (eds) Organization of insect societies—from genome to sociocomplexity. Harvard University Press, Cambridge, pp 173–194

    Google Scholar 

  • Brent CS (2009) Control of termite caste differentiation. In: Gadau J, Fewell J (eds) Organization of insect societies—from genome to sociocomplexity. Harvard University Press, Cambridge, pp 105–127

    Google Scholar 

  • Brown WV, Watson JAL, Carter FL, Lacey MJ, Barrett RA, McDaniel CA (1990) Preliminary examination of cuticular hydrocarbons of worker termites as chemotaxonomic characters for some Australian species of Coptotermes (Isoptera: Rhinotermitidae). Sociobiology 16:305–328

    Google Scholar 

  • Brown WV, Watson JAL, Lacey MJ (1996a) A chemotaxonomic survey using cuticular hydrocarbons of some species of the Australian harvester termite genus Drepanotermes (Isoptera: Termitidae). Sociobiology 27:199–221

    Google Scholar 

  • Brown WV, Watson JAL, Lacey MJ et al (1996b) Composition of cuticular hydrocarbons in the Australian harvester termite Drepanotermes perniger (Isoptera: Termitidae): variation among individuals, castes, colonies and locations. Sociobiology 27:181–197

    Google Scholar 

  • Bruinsma OM (1979) An analysis of building behaviour of the termite Macrotermes subhyalinus. Doctoral thesis, Agricultural University, Wageningen

    Google Scholar 

  • Buchli HHR (1958) L’origine des castes et les potentialities ontogéniques des termites européens du genre Reticulitermes Holmgren. Ann Sci Nat Zool 11:267–429

    Google Scholar 

  • Bulmer MS, Adams ES, Traniello JFA (2001) Variation in colony structure in the subterranean termite Reticulitermes flavipes. Behav Ecol Sociobiol 49:236–243

    Google Scholar 

  • Bussell JJ, Vosshall LB (2010) Chemical ecology: reprogramming a termite monarchy. Nature Chem Biol 6:637–638

    CAS  Google Scholar 

  • Cancello EM, DeSouza O (2004) A new species of Glossotermes (Isoptera): reappraisal of the generic status with transfer from the Rhinotermitidae to the Serritermitidae. Sociobiology 44:1–19

    Google Scholar 

  • Casarin FA, Arab A, Costa-Leonardo AM (2003) Influence of the labial gland’s semiochemicals on the feeding behavior of Coptotermes havilandi (Isoptera: Rhinotermitidae). Sociobiology 42:485–493

    Google Scholar 

  • Castle GB (1934) The damp-wood termites of the western United States, genus Zootermopsis (formerly, Termopsis). In: Kofoid CA (ed) Termites and termite control. University of California Press, Berkeley, pp 273–310

    Google Scholar 

  • Châline N, Sandoz JC, Martin SJ et al (2005) Learning and discrimination of individual cuticular hydrocarbons by honeybees (Apis mellifera). Chem Senses 30:327–335

    PubMed  Google Scholar 

  • Chan KK, Abel DS, Stay B (2011) Fine structure of corpora allata of castes with different rates of juvenile hormone production in the termite Reticulitermes flavipes. Arthropod Struct Dev 40:26–38

    PubMed  Google Scholar 

  • Chen JA, Henderson G, Grimm CC et al (1998) Termites fumigate their nests with naphtalene. Nature 392:558

    CAS  Google Scholar 

  • Chen JA, Henderson G, Laine RA (1999) Lignoceric acid and hexanoic acid: major components of soldier frontal gland secretions of the Formosan subterranean termite (Coptotermes formosanus). J Chem Ecol 25:817–824

    CAS  Google Scholar 

  • Chouvenc T, Su NY, Robert A (2009) Cellular encapsulation in the eastern subterranean termite, Reticulitermes flavipes (Isoptera), against infection by the entomopathogenic fungus Metarhizium anisopliae. J Invertebr Pathol 101:234–241

    PubMed  Google Scholar 

  • Chouvenc T, Efstathion CA, Elliot ML, Su NY (2013) Extended disease resistance emerging from the faecal nest of a subterranean termite. Proc R Soc B 280:20131885

    PubMed Central  PubMed  Google Scholar 

  • Clément J-L (1981) Recognition behavior in the genus Reticulitermes (Isoptera). C R Acad Sci 292:931–933

    Google Scholar 

  • Clément J-L (1982a) Signaux de contact responsables de l’agression interspécifique des termites du genre Reticulitermes (Isoptères). C R Acad Sci 294:635–638

    Google Scholar 

  • Clément J-L (1982b) Phéromones d’attraction sexuelle des termites européens du genre Reticulitermes (Rhinotermidae). Mécanismes comportementaux et isolements spécifiques. Biol Behav 7:55–69

    Google Scholar 

  • Clément J-L (1986) Open and closed societies in Reticulitermes termites (Isoptera, Rhinotermitidae): geographic and seasonal variation. Sociobiology 11:311–323

    Google Scholar 

  • Clément J-L, Bagnères A-G (1998) Nestmate recognition in termites. In: Van der Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects: ants, wasps, bees and termites. Westview Press, Boulder, pp 126–155

    Google Scholar 

  • Clément J-L, Lemaire M, Nagnan P et al (1988) Chemical ecology of European termites of the genus Reticulitermes: allomones, pheromones and kairomones. Sociobiology 14:165–174

    Google Scholar 

  • Clément J-L, Lloyd H, Nagnan P, Blum MS (1989) n-Tetradecyl propionate: identification as a sex pheromone of the eastern subterranean Reticulitermes flavipes (Isoptera, Rhinotermitidae). Sociobiology 31:131–142

    Google Scholar 

  • Clément J-L, Bagnères A-G, Uva P et al (2001) Biosystematics of Reticulitermes termites in Europe: morphological, chemical and molecular data. Insect Soc 48:202–215

    Google Scholar 

  • Connétable S, Robert A, Bouffault F, Bordereau C (1999) Vibratory alarm signals in two sympatric higher termite species: Pseudacanthotermes spiniger and P. militaris (Termitidae, Macrotermitinae). J Insect Behav 12:329–342

    Google Scholar 

  • Connétable S, Robert A, Bordereau C (2012) Dispersal flight and colony development in the fungus-growing termites Pseudacanthotermes spiniger and P. militaris. Insect Soc 59:269–277

    Google Scholar 

  • Constanzi E, Bagnères A-G, Lorenzi MC (2013) Changes in the hydrocarbon proportions of colony odor and their consequences on nestmate recognition in social wasps. PLoS ONE 8:e65107

    Google Scholar 

  • Costa JT (2006) The ecology of social evolution. In: Costa JT (ed) The other insect societies. Belknap Press of Harvard University Press, London, pp 16–45

    Google Scholar 

  • Costa-Leonardo AM, Haifig I (2010) Pheromones and exocrine glands in Isoptera. In: Litwack G (ed) Pheromones. Vitamins and hormones, vol 83. Elsevier, London, pp 521–546

    Google Scholar 

  • Costa-Leonardo AM, Haifig I (2014) Termite communication during different behavioral activities. In: Witzani G (ed) Biocommunication of animals. Springer Science+Business Media, Dordrecht. doi:10.1007/978-94-007-7414-8_10

  • Costa-Leonardo AM, Casarin FE, Lima JT (2009) Chemical communication in Isoptera. Neotrop Entomol 38:1–6

    Google Scholar 

  • Cvačka J, Jiroš P, Šobotník J et al (2006) Analysis of insect cuticular hydrocarbons using matrix-assisted laser desorption/ionization mass spectrometry. J Chem Ecol 32:409–434

    PubMed  Google Scholar 

  • D’Ettore P, Lenoir A (2010) Nestmate recognition. In: Lach L, Parr CL, Abbott KL (eds) Ant ecology. Oxford University Press, Oxford, pp 190–205

    Google Scholar 

  • Darlington JPEC (1982) The underground passages and storage pits used in foraging by a nest of the termite Macrotermes michaelseni in Kajiado, Kenya. J Zool 198:237–247

    Google Scholar 

  • Darrouzet E, Labédan M, Landré X et al (2014) Endocrine control of cuticular hydrocarbon profiles during worker-to-soldier differentiation in the termite Reticulitermes flavipes. J Insect Physiol 61:25–33

    CAS  PubMed  Google Scholar 

  • De Rhoode JC, Lefèvre T, Hunter MD (2013) Self-medication in animals. Science 340:150–151

    Google Scholar 

  • De Schreyer L (2011) Analyse de la signature chimique mixte et hybride des individus issus des croisements Reticulitermes flavipes et Reticulitermes grassei. Rapport de stage 2e année bachelier Chimie Biotechnologie. Institut R. Lambion CERIA Bruxelles/IRBI Tours. 61p.

    Google Scholar 

  • De Souza DJ, Lenoir A, Kasuya MC et al (2013) Ectosymbionts and immunity in the leaf-cutting ant Acromyrmex subterraneus subterraneus. Brain Behav Immun 28:182–187

    PubMed  Google Scholar 

  • Dong SL, Mao L, Henderson G (2009) Physical contact between soldier and worker is essential in soldier self-regulation of Coptotermes formosanus (Isoptera, Rhinotermitidae). Insect Soc 56:28–34

    Google Scholar 

  • Dronnet S, Chapuisat M, Vargo EL et al (2005) Genetic analysis of the breeding system of an invasive subterranean termite, Reticulitermes santonensis, in urban and natural habitats. Mol Ecol 14:1311–1320

    CAS  PubMed  Google Scholar 

  • Dronnet S, Lohou C, Christidès J-P, Bagnères A-G (2006) Cuticular hydrocarbon composition reflects genetic relationship among colonies of the introduced termite Reticulitermes santonensis Feytaud. J Chem Ecol 32:1027–1042

    CAS  PubMed  Google Scholar 

  • Dunn R, Messier S (1999) Evidence for the opposite of the dear enemy phenomenon in termites. J Insect Behav 12:461–464

    Google Scholar 

  • Eggleton P (2011) An introduction to termites: biology, taxonomy and functional morphology. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 1–26

    Google Scholar 

  • Eisner T, Kriston I, Aneshansley DJ (1976) Defensive behavior of a termite (Nasutitermes exitiosus). Behav Ecol Sociobiol 1:83–125

    Google Scholar 

  • Eliyahu D, Ross KG, Haight KL et al (2011) Venom alkaloid and cuticular hydrocarbon profiles are associated with social organization, queen fertility status and queen genotype in the fire ant Solenopsis invicta. J Chem Ecol 37:1242–1254

    PubMed Central  CAS  PubMed  Google Scholar 

  • Elliot KL, Stay B (2008) Changes in juvenile hormone synthesis in the termite Reticulitermes flavipes during development of soldiers and neotenic reproductives from groups of isolated workers. J Insect Physiol 54:492–500

    Google Scholar 

  • Engel MS, Grimaldi DA, Krishna K (2009) Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. Am Mus Novit 3650:1–27

    Google Scholar 

  • Evans TA, Lai JCS, Toledano E et al (2005) Termites assess wood size by using vibration signals. Proc Natl Acad Sci USA 102:3732–3737

    PubMed Central  CAS  PubMed  Google Scholar 

  • Evans TA, Inta R, Lai JCS, Lenz M (2007) Foraging vibration signals attract foragers and identify food size in the drywood termite, Cryptotermes secundus. Insect Soc 54:374–382

    Google Scholar 

  • Evans TA, Inta R, Lai JCS et al (2009) Termites eavesdrop to avoid competitors. Proc R Soc B 276:4035–4041

    PubMed Central  PubMed  Google Scholar 

  • Fan Y, Schal C, Vargo EL, Bagnères A-G (2004) Characterization of termite lipophorin and its involvement in hydrocarbon transport. J Insect Physiol 50:609–620

    CAS  PubMed  Google Scholar 

  • Florane CB, Bland JM, Husseneder C, Raina AK (2004) Diet-mediated inter-colonial aggression in the Formosan subterranean termite Coptotermes formosanus. J Chem Ecol 30:2559–2574

    CAS  PubMed  Google Scholar 

  • Forschler BT, Townsend ML (1996) Mark-release-recapture estimates of Reticulitermes spp. (Isoptera: Rhinotermitidae) colony foraging populations from Georgia, USA. Environ Entomol 25:952–962

    Google Scholar 

  • Fuller CA (2007) Fungistatic activity of freshly killed termite, Nasutitermes acajutlae, soldiers in the Caribbean. J Insect Sci 7:14

    PubMed Central  Google Scholar 

  • Gao Q, Bidochka MJ, Thompson GJ (2012) Effect of group size and caste ratio on individual survivorship and social immunity in a subterranean termite. Acta Ethol 15:55–63

    Google Scholar 

  • Gerber C, Badertscher S, Leuthold RH (1988) Polyethism in Macrotermes bellicosus (Isoptera). Insect Soc 35:226–240

    Google Scholar 

  • Gessner S, Leuthold RH (2001) Caste-specificity of pheromone trails in the termite Macrotermes bellicosus. Insect Soc 48:238–244

    Google Scholar 

  • Ghesini S, Marini M (2009) Caste differentiation and growth of laboratory colonies of Reticulitermes urbis (Isoptera, Rhinotermitidae). Insect Soc 56:309–318

    Google Scholar 

  • Gonçalves TT, DeSouza O, Billen J (2010) A novel exocrine structure of the bicellular unit type in the thorax of termites. Acta Zool 91:193–198

    Google Scholar 

  • Grassé PP (1959a) La reconstruction du nid et les coordinations inter-individuelles chez Bellicositermes natalensis et Cubitermes sp. La theorie de la stigmergie: Essai d’interpretation des termites constructeurs. Insect Soc 6:41–83

    Google Scholar 

  • Grassé PP (1959b) Nouvelles expériences sur le termite de Müller (Macrotermes muller) et considérations sur la théorie de la stigmergie. Insect Soc 14:73–102

    Google Scholar 

  • Grassé PP (1982) Termitologia. Tome I. Anatomie, Physiologie, Reproduction des termites. Masson, Paris

    Google Scholar 

  • Grassé PP (1984). Termitologia. Tome II. Fondation des société, Construction. Masson, Paris

    Google Scholar 

  • Grassé PP (1986). Termitologia. Tome III. Comportement, Socialité, Ecologie, Evolution, Systématique. Masson, Paris

    Google Scholar 

  • Grassé PP, Noirot C (1946) La production des sexués néoteniques chez le termite à cou jaune (Calotermes flavicollis F.): inhibition germinale et inhibition somatique. C R Acad Sci 223:869–871

    Google Scholar 

  • Grassé PP, Noirot C (1958) La société de Calotermes flavicollis (Insecte Isoptère) de sa fondation au premier essaimage. C R Acad Sci 246:1789–1795

    Google Scholar 

  • Greenberg SLW, Plavcan KA (1986) Morphology and chemistry of the mandibular gland complex in the primitive termite, Zootermopsis angusticollis (Hagen) (Isoptera: Hodotermitidae). Int J Insect Morphol Embryol 15:283–292

    Google Scholar 

  • Greenberg SLW, Stuart AM (1980) Control of neotenic development in a primitive termite (Isoptera: Hodotermitidae). J N Y Entomol Soc 88:49–50

    Google Scholar 

  • Greenberg SLW, Stuart AM (1982) Precocious reproductive development (neoteny) by larvae of a primitive termite Zootermopsis angusticollis (Hagen). Insect Soc 29:535–547

    Google Scholar 

  • Greene MJ, Gordon DM (2003) Cuticular hydrocarbons inform task decision. Nature 432:32

    Google Scholar 

  • Grozinger CM, Sharabash NM, Whitfield CW, Robinson GE (2003) Pheromone-mediated gene expression in the honey bee brain. Proc Natl Acad Sci USA 100:14519–14525

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guerrieri FJ, Nehring V, Jorgensen CG et al (2009) Ant recognize foes and not friend. Proc R Soc B 276:2461–2468

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guo L, Quilici DR, Chase J, Blomquist GJ (1991) Gut tract microorganisms supply the precursors for methyl-branched hydrocarbon biosynthesis in the termite, Zootermopsis nevadensis. Insect Biochem 21:327–333

    CAS  Google Scholar 

  • Hacker M, Kaib M, Bagine RKN et al (2005) Unrelated queens coexist in colonies of the termite Macrotermes michaelseni. Mol Ecol 14:1527–1532

    CAS  PubMed  Google Scholar 

  • Hanus R, Šobotník J, Cizek L (2005) Egg care by termite soldiers. Insect Soc 52:357–359

    Google Scholar 

  • Hanus R, Luxová A, Šobotník J et al (2009) Sexual communication in the termite Prorhinotermes simplex (Isoptera, Rhinotermitidae) mediated by a pheromone from female tergal glands. Insect Soc 56:111–118

    Google Scholar 

  • Hanus R, Vrkoslav V, Hrdý I et al (2010) Beyond cuticular hydrocarbons: evidence of proteinaceous secretion specific to termite kings and queens. Proc R Soc B 277:995–1002

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hanus R, Šobotník J, Krasulová J et al (2012) Nonadecadienone, a new termite trail-following pheromone identified in Glossotermes oculatus (Serritermitidae). Chem Senses 37:55–63

    CAS  PubMed  Google Scholar 

  • Hartke TR, Rosengaus RB (2013) Costs of pleometrosis in a polygamous termite. Proc R Soc B 280

    Google Scholar 

  • Haverty MI (1977) The proportion of soldiers in termite colonies: a list and a bibliography (Isoptera). Sociobiology 2:199–216

    Google Scholar 

  • Haverty MI (1979) Soldier production and maintenance of soldier proportions in laboratory experimental groups of Coptotermes formosanus Shiraki. Insect Soc 26:69–84

    Google Scholar 

  • Haverty MI, Howard RW (1981) Production of soldiers and maintenance of soldier proportions by laboratory experimental groups of Reticulitermes flavipes (Kollar) and Reticulitermes virginicus (Banks) (Isoptera: Rhinotermitidae). Insect Soc 28:32–39

    Google Scholar 

  • Haverty MI, Thorne BL (1989) Agonistic behavior correlated with hydrocarbon phenotypes in dampwood termites, Zootermopsis (Isoptera: Termopsidae). J Insect Behav 2:523–543

    Google Scholar 

  • Haverty MI, Page M, Nelson LJ, Blomquist GJ (1988) Cuticular hydrocarbons of dampwood termites, Zootermopsis: intra- and inter-colony variation and potential as taxonomic characters. J Chem Ecol 14:1035–1058

    CAS  PubMed  Google Scholar 

  • Haverty MI, Grace JK, Nelson LJ, Yamamoto RT (1996) Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). J Chem Ecol 22:1813–1834

    CAS  PubMed  Google Scholar 

  • Haverty MI, Copren KA, Getty GM, Lewis VR (1999) Agonistic behavior and hydrocarbon phenotypes of colonies of Reticulitermes (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 92:269–277

    Google Scholar 

  • Haverty MI, Woodrow RJ, Nelson LJ, Grace JK (2000) Cuticular hydrocarbons of termites of the Hawaiian Islands. J Chem Ecol 26:1167–1191

    CAS  Google Scholar 

  • Hayashi Y, Kitade O, Ji Kojima (2003) Parthenogenetic reproduction in neotenics of the subterranean termite Reticulitermes speratus (Isoptera, Rhinotermitidae). Entomol Sci 6:253–257

    Google Scholar 

  • Hayashi Y, Lo N, Miuata H, Kitade O (2007) Sex-linked genetic influence on caste determination in a termite. Science 318:985–987

    CAS  PubMed  Google Scholar 

  • Heidecker JL, Leuthold RH (1984) The organisation of collective foraging in the harvester termite Hodotermes mossambicus (Isoptera). Behav Ecol Sociobiol 14:195–202

    Google Scholar 

  • Hertel H, Hanspach A, Plarre R (2011) Differences in alarm responses in drywood and subterranean termites (Isoptera: Kalotermitidae and Rhinotermitidae) to physical stimuli. J Insect Behav 24:106–115

    Google Scholar 

  • Hewitt PH, Watson JAL, Nel JCC, Schoeman I (1972) Control of the change from group to pair by Hodotermes mossambicus reproductives. J Insect Physiol 18:143–150

    Google Scholar 

  • Himuro C, Yokoi T, Matsuura K (2011) Queen-specific volatile in a higher termite Nasutitermes takasagoensis (Isoptera: Termitidae). J Insect Physiol 57:962–965

    CAS  PubMed  Google Scholar 

  • Hinze B, Leuthold RH (1999) Age related polyethism and activity rhythms in the nest of the termite Macrotermes bellicosus (Isoptera, Termitidae). Insect Soc 46:392–397

    Google Scholar 

  • Hinze B, Crailsheim K, Leuthold RH (2002) Polyethism in food processing and social organisation in the nest of Macrotermes bellicosus (Isoptera, Termitidae). Insect Soc 49:31–37

    Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological, behavioral and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393

    CAS  PubMed  Google Scholar 

  • Howard KJ, Thorne BL (2011) Eusocial evolution in termites and hymenoptera. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 97–132

    Google Scholar 

  • Howard RW, McDaniel CA, Blomquist GJ (1978) Cuticular hydrocarbons of the eastern subterranean termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). J Chem Ecol 4:233–245

    CAS  Google Scholar 

  • Howard RW, McDaniel CA, Blomquist GJ (1980) Chemical mimicry as an integrating mechanism: cuticular hydrocarbons of a termitophile and its host. Science 210:431–433

    CAS  PubMed  Google Scholar 

  • Howard RW, McDaniel CA, Nelson DR et al (1982a) Cuticular hydrocarbons of Reticulitermes virginicus (Banks) and their role as potential species and caste-recognition cues. J Chem Ecol 8:1227–1239

    CAS  PubMed  Google Scholar 

  • Howard RW, McDaniel CA, Blomquist GJ (1982b) Chemical mimicry as an integrating mechanism for three termitophiles associated with Reticulitermes virginicus (Banks). Psyche 89:157–167

    Google Scholar 

  • Howard RW, Thorne BL, Levings SC, McDaniel CA (1988) Cuticular hydrocarbons as chemotaxonomic characters for Nasutitermes corniger (Motschulsky) and N. ephratae (Holmgren) (Isoptera: Termitidae). Ann Entomol Soc Am 81:395–399

    CAS  Google Scholar 

  • Howse PE (1964a) The significance of the sound produced by the termite Zootermopsis angusticollis (Hagen). Anim Behav 12:284–300

    Google Scholar 

  • Howse PE (1964b) An investigation into the mode of action of the subgenual organ in the termite, Zootermopsis angusticollis Emerson, and in the cockroach, Periplaneta americana L. J Insect Physiol 10:409–424

    Google Scholar 

  • Howse PE (1965) On the significance of certain oscillatory movements of termites. Insect Soc 12:335–346

    Google Scholar 

  • Howse PE (1984) Alarm, defence and chemical ecology of social insects. In: Lewis T (ed) Insect communication. Academic Press, London, Orlando, pp 151–167

    Google Scholar 

  • Hu XP, Song D, Gao X (2011) Biological changes in the Eastern subterranean termite, Reticulitermes flavipes (Isoptera, Rhinotermitidae) and its protozoa profile following starvation. Insect Soc 58:39–45

    Google Scholar 

  • Huang Q, Guan C, Shen Q et al (2012a) Aggressive behavior and the role of antennal sensillae in the termite Reticulitermes chinensis (Isoptera: Rhinotermitidae). Sociobiology 59:1239–1251

    Google Scholar 

  • Huang Q, Sun P, Zhou X, Lei C (2012b) Characterization of head transcriptome and analysis of gene expression involved in caste differentiation and aggression in Odontotermes formosanus (Shiraki). PLoS ONE 7(11):e50383

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hunt JH, Richard F-J (2013) Intracolony vibroacoustic communication in social insects. Insect Soc 60:403–417

    Google Scholar 

  • Husseneder C, Grace JK (2001) Evaluation of DNA fingerprinting, aggression tests, and morphometry as tools for colony delineation of the Formosan subterranean termite. J Insect Behav 14:173–186

    Google Scholar 

  • Husseneder C, Simms DM (2008) Size and heterozygosity influence partner selection in the Formosan subterranean termite. Behav Ecol 19:764–773

    PubMed Central  PubMed  Google Scholar 

  • Husseneder C, Kaib M, Epplen C et al (1997) Small-scale population structure of the termite Schedorhinotermes lamanianus: aggression modulated by genetic and environmental factors. Mitt Dtsch Ges Allg Angew Entomol 11:183–187

    Google Scholar 

  • Husseneder C, Brandl R, Epplen C et al (1998) Variation between and within colonies in the termite: morphology, genomic DNA, and behaviour. Mol Ecol 7:983–990

    CAS  Google Scholar 

  • Inta R, Lai JCS, Fu EW, Evans TA (2007) Termites live in a material world: exploration of their ability to differentiate between food sources. J R Soc Interface 4:735–744

    PubMed Central  PubMed  Google Scholar 

  • Inward DJG, Vogler AP, Eggleton P (2007a) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phyl Evol 44:953–967

    CAS  Google Scholar 

  • Inward DJG, Beccaloni G, Eggleton P (2007b) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol Lett 3:331–335

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ishikawa Y, Miura T (2012) Hidden aggression in termite workers: plastic defensive behaviour dependent upon social context. Anim Behav 83:737–745

    Google Scholar 

  • Jmhasly P, Leuthold RH (1999a) Intraspecific colony recognition in the termites Macrotermes subhyalinus and Macrotermes bellicosus (Isoptera, Termitidae). Insect Soc 46:164–170

    Google Scholar 

  • Jmhasly P, Leuthold RH (1999b) The system of underground passages in Macrotermes subhyalinus and comparison of laboratory bioassays to field evidence of intraspecific encounters in M. subhyalinus and M. bellicosus (Isoptera, Termitidae). Insect Soc 46:332–340

    Google Scholar 

  • Jmhasly P, Leuthold RH (1999c) Foraging territories of Macrotermes bellicosus and mutual territory dynamics between M. bellicosus and M. subhyalinus (Isoptera: Termitidae). Sociobiology 34:23–33

    Google Scholar 

  • Johns PM, Howard KJ, Breisch NL et al (2009) Nonrelatives inherit colony resources in a primitive termite. Proc Natl Acad Sci USA 106:17452–17456

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jones DT, Eggleton P (2011) Global geography of termites: a compilation of sources. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 477–498

    Google Scholar 

  • Kaib M (1990) Intra- and interspecific chemical signals in the termite Schedorhinotermes—production sites, chemistry, and behaviour. In: Gribakin FG, Wiese K, Popov AV (eds) Sensory systems and communication in arthropods. Birkhauser Verlag, Basel, Boston & Berlin, pp 26–32

    Google Scholar 

  • Kaib M, Brandl R (1992) Distribution, geographic variation and between-colony compatibility of Schedorhinotermes lamanianus in Kenya (Isoptera: Rhinotermitidae). In: Billen J (ed) Biology and evolution of social insects. Leuven University Press, Leuven, pp 121–131

    Google Scholar 

  • Kaib M, Ziesmann J (1992) The labial gland in the termite Schedorhinotermes lamanianus (Isoptera: Rhinotermitidae): morphology and function during communal food exploitation. Insect Soc 39:373–384

    Google Scholar 

  • Kaib M, Brandl R, Bagine RKN (1991) Cuticular hydrocarbon profiles: a valuable tool in termite taxonomy. Naturwissenschaften 78:176–179

    CAS  Google Scholar 

  • Kaib M, Husseneder C, Epplen C et al (1996) Kin-biased foraging in a termite. Proc R Soc B 263:1527–1532

    Google Scholar 

  • Kaib M, Franke S, Francke W, Brandl R (2002) Cuticular hydrocarbons in a termite: phenotypes and a neighbour-stranger effect. Physiol Entomol 27:189–198

    CAS  Google Scholar 

  • Kaib M, Jmhasly P, Wilfert L et al (2004) Cuticular hydrocarbons and aggression in the termite Macrotermes subhyalinus. J Chem Ecol 30:365–385

    CAS  PubMed  Google Scholar 

  • Keller L, Nonacs P (1993) The role of queen pheromones in social insects: queen control or queen signal? Anim Behav 45:787–794

    Google Scholar 

  • Kettler R, Leuthold RH (1995) Interspecific and intraspecific alarm response in the termite Macrotermes subhyalinus (Rambur). Insect Soc 42:145–156

    Google Scholar 

  • Kirchner WH, Minkley N (2003) Nestmate discrimination in the harvester termite Hodotermes mossambicus. Insect Soc 50:222–225

    Google Scholar 

  • Kirchner WH, Broecker I, Tautz J (1994) Vibrational alarm communication in the damp-wood termite Zootermopsis nevadensis. Physiol Entomol 19:187–190

    Google Scholar 

  • Kitade O, Hayashi Y, Kikuchi Y, Kawarasaki S (2004) Distribution and composition of colony founding associations of a subterranean termite, Reticulitermes kanmonensis. Entomol Sci 7:1–8

    Google Scholar 

  • Klochkov SG, Kozlovskii VI, Belyaeva NV (2005) Caste and population specificity of termite cuticule hydrocarbons. Chem Nat Compd 41:1–6

    CAS  Google Scholar 

  • Kobayashi K, Hasegawas E, Yamamoto Y et al (2013) Sex ratio biases in termites provide evidence for kin selection. Nat Commun 4:2048

    PubMed  Google Scholar 

  • Korb J (2006) Limited food induces nepotism in drywood termites. Biol Lett 2:364–366

    PubMed Central  PubMed  Google Scholar 

  • Korb J (2009) Termites: an alternative road to eusociality and the importance of group benefits in social insects. In: Gadau J, Fewell J (eds) Organization of insect societies—from genome to sociocomplexity. Harvard University Press, Cambridge, pp 128–147

    Google Scholar 

  • Korb J, Heinze J (2008) Ecology of social evolution. Springer, Berlin

    Google Scholar 

  • Korb J, Roux EA (2012) Why join a neighbour: fitness consequences of colony fusions in termites. J Evol Biol 25:2161–2170

    PubMed  Google Scholar 

  • Korb J, Schneider K (2007) Does kin structure explain the occurrence of workers in a lower termite? Evol Ecol 21:817–828

    Google Scholar 

  • Korb J, Roux EA, Lenz M (2003) Proximate factors influencing soldier development in the basal termite Cryptotermes secundus (Hill). Insect Soc 50:299–303

    Google Scholar 

  • Korb J, Weil T, Hoffmann K et al (2009) A gene necessary for reproductive suppression in termites. Science 324:758

    CAS  PubMed  Google Scholar 

  • Korb J, Buschmann M, Schafberg S et al (2012) Brood care and social evolution in termites. Proc R Soc B 279:2662–2671

    PubMed Central  PubMed  Google Scholar 

  • Korman AK, Pashley DP, Haverty MI, La Fage JP (1991) Allozymic relationships among cuticular hydrocarbon phenotypes of Zootermopsis species (Isoptera: Termopsidae). Ann Entomol Soc Am 84:1–9

    Google Scholar 

  • Kotoklo EA, Sillam-Dussès D, Ketoh G et al (2010) Identification of the trail-following pheromone of the pest termite Amitermes evuncifer (Isoptera: Termitidae). Sociobiology 55:579–588

    Google Scholar 

  • Krasnec MO, Breed MD (2012) Eusocial evolution and the recognition systems in social insects. Adv Exp Med Biol 739:78–93

    CAS  PubMed  Google Scholar 

  • Krasulová J, Hanus R, Kutalová K et al (2012) Chemistry and anatomy of the frontal gland in soldiers of the sand termite Psammotermes hybostoma (Rhinotermitidae). J Chem Ecol 38:557–565

    PubMed  Google Scholar 

  • Krishna K, Grimaldi DA, Krishna V, Engel MS (2013) Treatise on the isoptera of the world. Bull Am Mus Nat Hist 377:1–200

    Google Scholar 

  • Laduguie N, Robert A, Bonnard O et al (1994) Isolation and identification of (3Z,6Z,8E)-dodecatrien-1-ol in Reticulitermes santonensis Feytaud (Isoptera, Rhinotermitidae): roles in worker trail-following and in alate sex-attraction behavior. J Insect Physiol 40:781–787

    CAS  Google Scholar 

  • Lainé LV, Wright DJ (2003) The life cycle of Reticulitermes spp. (Isoptera: Rhinotermitidae): what do we know? Bull Entomol Res 93:267–278

    PubMed  Google Scholar 

  • Lebrun D (1972) Effets de l’implantation de glandes mandibulaires sur la différenciation imaginale de Calotermes flavicollis Fabr. C R Acad Sci 274D:2077–2079

    Google Scholar 

  • LeConte Y, Hefetz A (2008) Primer pheromones in social hymenoptera. Annu Rev Entomol 53:523–542

    CAS  Google Scholar 

  • Lefeuve P, Bordereau C (1984) Soldier formation regulated by a primer pheromone from the soldier frontal gland in a higher termite, Nasutitermes lujae. Proc Natl Acad Sci USA 81:7665–7668

    PubMed Central  CAS  PubMed  Google Scholar 

  • Legendre F, Whiting MF, Bordereau C et al (2008) The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol Phyl Evol 48:615–627

    CAS  Google Scholar 

  • Legendre F, Whiting MF, Grandcolas P (2013) Phylogenetic analyses of termite post-embryonic sequences illuminate caste and developmental pathway evolution. Evol Dev 15:146–157

    PubMed  Google Scholar 

  • Leis M, Sbrenna-Micciarelli A, Sbrenna G (1992) Communication in termites: preliminary observations on the vibratory movements of Kalotermes flavicollis (Fabr.) (Isoptera: Kalotermitidae). Ethol Ecol Evol 2:111–114

    Google Scholar 

  • Leis M, Angelini I, Sbrenna-Micciarelli A, Sbrenna G (1994) Further observations on intercaste communication in Kalotermes flavicollis: frequence of vibratory movements under different experimental conditions. Ethol Ecol Evol 3:11–16

    Google Scholar 

  • Leniaud L, Pichon A, Uva P, Bagnères A-G (2009) Unicoloniality in Reticulitermes urbis: a novel feature in a potentially invasive termite species. Bull Entomol Res 99:1–10

    CAS  PubMed  Google Scholar 

  • Leniaud L, Darrouzet E, Dedeine F et al (2011) Ontogenic potentialities of the worker caste in two subterranean termites. Evol Dev 13:138–148

    PubMed  Google Scholar 

  • Lenz M (1976) The dependence of hormone effects in termite caste determination on external factors. In: Lüscher M (ed) Phase and caste development in social insects (Endocrine aspects). Pergamon Press, Oxford, pp 73–89

    Google Scholar 

  • Lenz M (1985) Is inter- and intra-specific variability of lower termite neotenic numbers due to adaptive thresholds for neotenic elimination? Considerations from studies on Porotermes adamsoni (Froggatt) (Isoptera: Termopsidae). Curr Themes Trop Sci 3:125–145

    Google Scholar 

  • Leponce M, Roisin Y, Pasteels JM (1996) Intraspecific interactions in a community of arboreal nesting termites (Isoptera: Termitidae). J Insect Behav 9:799–817

    Google Scholar 

  • Leuthold RH, Bruinsma O (1978) Pairing behavior in Hodotermes mossambicus (Isoptera). Psyche 84:109–119

    Google Scholar 

  • Leuthold RH, Bruinsma O, Van Huis A (1976) Optical and pheromonal orientation and memory for homing distance in the harvester termite Hodotermes mossambicus (Hagen). Behav Ecol Sociobiol 1:127–139

    Google Scholar 

  • Levings SC, Adams ES (1984) Intraspecific and interspecific territoriality in Nasutitermes (Isoptera: Termitidae) in a Panamanian mangrove forest. J Anim Ecol 53:705–714

    Google Scholar 

  • Lewis VR, Nelson LJ, Haverty MI, Baldwin JA (2010) Quantitative changes in hydrocarbons over time in fecal pellets of Incisitermes minor may predict whether colonies are alive or dead. J Chem Ecol 36:1199–1206

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li G, Zou X, Lei C, Huang Q (2013) Antipredator behavior produced by heterosexual and homosexual tandem running in the termite Reticulitermes chinensis (Isoptera, Rhinotermitidae). Sociobiology 60:198–203

    Google Scholar 

  • Liebig J, Eliyahu D, Brent CS (2009) Cuticular hydrocarbon profiles indicate reproductive status in the termite Zootermopsis nevadensis. Behav Ecol Sociobiol 63:1799–1807

    Google Scholar 

  • Light SF (1944) Experimental studies on ectohormonal control of the development of supplementary reproductives in the termite genus Zootermopsis (formerly Termopsis). Univ Calif Pub Zool 53:1–40

    Google Scholar 

  • Light SF, Weesner FM (1955) The production and replacement of soldiers in incipient colonies of Reticulitermes hesperus banks. Insect Soc 2:347–354

    Google Scholar 

  • Lindström M, Norin T, Valterová I, Vrkoč J (1990) Chirality of the monoterpene alarm pheromones of termites. Naturwissenschaften 77:134–135

    Google Scholar 

  • Lo N, Eggleton P (2011) Termite phylogenetics and co-cladogenesis with symbionts. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 27–50

    Google Scholar 

  • Lo N, Kitade O, Miura T et al (2004) Molecular phylogeny of the Rhinotermitidae. Insect Soc 51:365–371

    Google Scholar 

  • Lo N, Hayashi Y, Kitade O (2009) Should environmental caste determination be assumed for termites? Am Nat 173:848–853

    PubMed  Google Scholar 

  • Long CE, Thorne BL (2006) Resource fidelity, brood distribution and foraging dynamics in complete laboratory colonies of Reticulitermes flavipes (Isoptera, Rhinotermitidae). Ethol Ecol Evol 18:113–125

    Google Scholar 

  • Long CE, Thorne BL, Breisch NL (2003) Termite colony ontogeny: a long-term assessment of reproductive lifespan, caste ratios and colony size in Reticulitermes flavipes (Isoptera, Rhinotermitidae). Bull Entomol Res 93:439–445

    CAS  PubMed  Google Scholar 

  • Luchetti A, Dedeine F, Velonà A, Mantovani B (2013a) Extreme genetic mixing within colonies of the wood-dwelling termite Kalotermes flavicollis (Isoptera, Kalotermitidae). Mol Ecol 22:3391–3402

    CAS  PubMed  Google Scholar 

  • Luchetti A, Velonà A, Mueller M, Mantovani B (2013b) Breeding systems and reproductive strategies in Italian Reticulitermes colonies (Isoptera, Rhinotermitidae). Insect Soc 60:203–211

    Google Scholar 

  • Lüscher M (1952) Die Production und Elimination von Ersatzgeschlechtstieren bei der Termite Kalotermes flavicollis Fabr. Z Vergl Physiol 34:123–141

    Google Scholar 

  • Lüscher M (1955) Zur Frage der Übertragung socialer Wirkstoffe bei Termiten. Naturwissenschaften 42:186

    Google Scholar 

  • Lüscher M (1956) Hemmende und fördernde Faktoren bei der Entstehung der Ersatzgeschlechtstiere bei der Termite Kalotermes flavicollis Fabr. Rev Suisse Zool 63:261–267

    Google Scholar 

  • Lüscher M (1961) Social control of polymorphism in termites. Symp R Entomol Soc Lond 1:57–67

    Google Scholar 

  • Lüscher M (1972) Environmental control of juvenile hormone (JH) secretion and caste differentiation in termites. Gen Comp Endocrinol 3:509–514

    Google Scholar 

  • Lüscher M (1974) Kasten und Kastendifferenzierung bei niederen Termiten. In: Schmidt GH (ed) Sozialpolymorphismus bei Insekten. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 694–739

    Google Scholar 

  • Lys JA, Leuthold RH (1991) Task-specific distribution of the two worker castes in extranidal activities in Macrotermes bellicosus (Smeathman): observation of behaviour during food acquisition. Insect Soc 38:161–170

    Google Scholar 

  • Maistrello L, Sbrenna G (1996) Frequency of some behavioural patterns in colonies of Kalotermes flavicollis (Isoptera Kalotermitidae): the importance of social interactions and vibratory movements as mechanisms for social integration. Ethol Ecol Evol 8:365–375

    Google Scholar 

  • Mao L, Henderson G (2010) Group size effect on worker juvenile hormone titers and soldiers differentiation in Formosan subterranean termite. J Insect Physiol 56:725–730

    CAS  PubMed  Google Scholar 

  • Marins A, de Souza O (2008) Nestmate recognition in Cornitermes cumulans termites (Insecta: Isoptera). Sociobiology 51:255–263

    Google Scholar 

  • Marten A, Kaib M, Brandl R (2009) Cuticular hydrocarbon phenotypes do not indicate cryptic species in fungus-growing termites (Isoptera: Macrotermitinae). J Chem Ecol 35:572–579

    CAS  PubMed  Google Scholar 

  • Matsuura K (2001) Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus. Oikos 92:20–26

    Google Scholar 

  • Matsuura K (2005) Distribution of termite egg-mimicking fungi (“termite balls”) in Reticulitermes spp. (Isoptera: Rhinotermitidae) nests in Japan and the United States. Appl Entomol Zool 40:53–61

    Google Scholar 

  • Matsuura K (2006) Termite-egg mimicry by a sclerotium-forming fungus. Proc R Soc B 273:1203–1209

    PubMed Central  PubMed  Google Scholar 

  • Matsuura K (2011) Sexual and asexual reproduction in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 255–277

    Google Scholar 

  • Matsuura K (2012) Multifunctional queen pheromone and maintenance of reproductive harmony in termite colonies. J Chem Ecol 38:746–754

    CAS  PubMed  Google Scholar 

  • Matsuura K, Kobayashi N (2007) Size, hatching rate, and hatching period of sexually and asexually eggs in the facultatively parthenogenetic termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Appl Entomol Zool 42:241–246

    Google Scholar 

  • Matsuura K, Nishida T (2001) Colony fusion in a termite: what makes the society “open”? Insect Soc 48:378–383

    Google Scholar 

  • Matsuura K, Yamamoto Y (2011) Workers do not mediate the inhibitory power of queens in a termite, Reticulitermes speratus (Isoptera, Rhinotermitidae). Insect Soc 58:513–518

    Google Scholar 

  • Matsuura K, Kobayashi N, Yashiro T (2007) Seasonal patterns of egg production in field colonies of the termite, Reticulitermes speratus (Isoptera: Rhinotermitidae). Popul Ecol 49:179–183

    Google Scholar 

  • Matsuura K, Vargo EL, Kawatsu K et al (2009a) Queen succession through asexual reproduction in termites? Science 323:1687

    CAS  PubMed  Google Scholar 

  • Matsuura K, Yashiro T, Shimizu K et al (2009b) Cuckoo fungus mimics termite eggs by producing the cellulose-digesting enzyme β-glucosidase. Curr Biol 19:30–36

    CAS  PubMed  Google Scholar 

  • Matsuura K, Himuro C, Yokoi T et al (2010) Identification of a pheromone regulating caste differentiation in termites. Proc Natl Acad Sci USA 107:12963–12968

    PubMed Central  CAS  PubMed  Google Scholar 

  • McMahan EA (1970) Polyethism in workers of Nasutitermes costalis (Holmgren). Insect Soc 17:113–120

    Google Scholar 

  • Miller EM (1942) The problem of castes and caste differentiation in Prorhinotermes simplex (Hagen). Bull Univ Miami 15:3–27

    Google Scholar 

  • Minkley N, Fujita AI, Brune A, Kirchner WH (2006) Nest specificity of the bacterial community in termite guts (Hodotermes mossambicus). Insect Soc 53:339–344

    Google Scholar 

  • Misof B, Liu S, Meusemann K et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767

    Google Scholar 

  •    Miura T, Matsumoto T (1995) Worker polymorphism and division of labor in the foraging behavior of the black marching termite Hospitalitermes medioflavus, on Borneo Island. Naturwissenschaften 82:564–567

    CAS  Google Scholar 

  • Miura T, Matsumoto T (1998) Foraging organization of the open-air processional lichen-feeding termite Hospitalitermes (Isoptera: Termitidae) in Borneo. Insect Soc 45:17–32

    Google Scholar 

  • Miura T, Scharf ME (2011) Molecular basis underlying caste differentiation in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 211–253

    Google Scholar 

  • Miura T, Roisin Y, Matsumoto T (1998) Developmental pathways and polyethism of neuter castes in the processional nasute termite Hospitalitermes medioflavus (Isoptera: Termitidae). Zool Sci 15:843–848

    Google Scholar 

  • Miyata H, Furuichi H, Kitade O (2004) Patterns of neotenic differentiation in a subterranean termite, Reticulitermes speratus (Isoptera: Rhinotermitidae). Entomol Sci 7:309–314

    Google Scholar 

  • Mizumoto N, Matsuura K (2013) Colony-architecture of shelter tubes by termites. Insect Soc 60:525–530

    Google Scholar 

  • Monnin T (2006) Chemical recognition of reproductive status in social insects. Ann Zool Fennici 43:515–530

    Google Scholar 

  • Muller H, Korb J (2008) Male or female soldiers? An evaluation of several factors which may influence soldier sex ratio in lower termites. Insect Soc 55:213–219

    Google Scholar 

  • Myles TG (1999) Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33:1–91

    Google Scholar 

  • Myles TG, Chang F (1984) The caste system and caste mechanisms of Neotermes connexus (Isoptera: Kalotermitidae). Sociobiology 9:1–321

    Google Scholar 

  • Nagin R (1972) Caste determination in Neotermes jouteli (Banks). Insect Soc 19:39–61

    Google Scholar 

  • Nalepa CA, Evans TA, Lenz M (2011) Antennal cropping during colony foundation in termites. Zookeys 148:185–196

    PubMed  Google Scholar 

  • Nel JJC (1968) Aggressive behaviour of the harvester termites Hodotermes mossambicus (Hagen) and Trinervitermes trinervoides (Sjostedt). Insect Soc 15:156

    Google Scholar 

  • Neoh KB, Indiran Y, Lenz M, Lee CY (2012) Does lack of intraspecific aggression or absence of nymphs determine acceptance of foreign reproductives in Macrotermes? Insect Soc 59:223–230

    Google Scholar 

  • Nguyen TT, Kanaori K, Hojo MK et al (2011) Chemical identification and ethological function of soldier-specific secretion in Japanese subterranean termite Reticulitermes speratus (Rhinotermitidae). Biosci Biotechnol Biochem 75:1818–1822

    CAS  PubMed  Google Scholar 

  • Noirot C (1969) Glands and secretion. In: Krishna K, Weesner FM (eds) Biology of termites, vol 1. Academic Press, London and New York, pp 89–123

    Google Scholar 

  • Noirot C (1982) La caste des ouvriers, élément majeur du succès évolutif des termites. Rivista Biol 75:157–195

    Google Scholar 

  • Noirot C (1989) Social structure in termite societies. Ethol Ecol Evol 1:1–17

    Google Scholar 

  • Nutting WL (1969) Flight and colony foundation. In: Krishna K, Weesner FM (eds) Biology of termites, vol 1. Academic Press, London and New York, pp 233–282

    Google Scholar 

  • Ohta M, Matsuura F, Henderson G, Laine RA (2007) Novel free ceramides as components of the soldier defense gland of the Formosan subterranean termite (Coptotermes formosanus). J Lipid Res 48:656–664

    CAS  PubMed  Google Scholar 

  • Okot-Kotber BM (1985) Mechanisms of caste determination in a higher termite, Macrotermes michaelseni (Isoptera, Macrotermitinae). Curr Themes Trop Sci 3:267–306

    Google Scholar 

  • Okot-Kotber BM, Ujváry I, Mollaaghababa R et al (1991) Physiological influence of fenoxycarb pro-insecticides and soldier head extracts of various termite species on soldier differentiation in Reticulitermes flavipes (Isoptera). Sociobiology 19:77–90

    Google Scholar 

  • Oloo GW, Leuthold RH (1979) Influence of food on trail-laying and recruitment behavior in Trinervitermes bettonianus (Termitidae: Nasutitermitinae). Entomol Exp Appl 26:267–278

    Google Scholar 

  • Olugbemi BO (2013) Intra- and inter-colonial agonistic behavior in the termite Microcerotermes fuscotibialis Sjostedt (Isoptera, Termitidae, Termitinae). J Insect Behav 26:69–78

    Google Scholar 

  • Ozaki M, Wada-Katsumata A, Fujikawa K et al (2005) Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309:311–314

    CAS  PubMed  Google Scholar 

  • Park YI, Raina A (2003) Factors regulating caste differentiation in the Formosan subterranean termite with emphasis on soldier formation. Sociobiology 41:49–60

    Google Scholar 

  • Park YI, Raina AK (2005) Regulation of juvenile hormone titers by soldiers in the Formosan subterranean termite, Coptotermes formosanus. J Insect Physiol 51:385–391

    CAS  PubMed  Google Scholar 

  • Pearce MJ, Cowie RH, Pack AS, Reavey D (1990) Intraspecific aggression, colony identity and foraging distances in Sudanese Microtermes spp. (Isoptera: Termitidae: Macrotermitinae). Ecol Entomol 15:71–77

    Google Scholar 

  • Peeters C, Liebig J (2009) Fertility signaling as a general mechanism of regulating reproductive division of labor in ants. In: Gadau J, Fewell J (eds) Organization of insect societies: from genome to socio-complexity. Harvard University Press, Cambridge, pp 220–242

    Google Scholar 

  • Pellens R, D’Haese CA, Bellés X et al (2007) The evolutionary transition from subsocial to eusocial behavior in Dictyoptera: phylogenetic evidence for modification of the “shift-in-dependant-care” hypothesis with a new subsocial cockroach. Mol Phyl Evol 43:616–626

    CAS  Google Scholar 

  • Peppuy A, Robert A, Sémon E et al (2001) (Z)-Dodec-3-en-1-ol, a novel termite trail pheromone identified after solid phase microextraction from Macrotermes annandalei. J Insect Physiol 47:445–453

    CAS  PubMed  Google Scholar 

  • Peppuy A, Robert A, Bordereau C (2004) Species-specific sex pheromones secreted from new sexual glands in two sympatric fungus-growing termites from northern Vietnam, Macrotermes annandalei and M. barneyi. Insect Soc 51:91–98

    Google Scholar 

  • Perdereau E, Bagnères A-G, Dupont S, Dedeine F (2010a) High occurrence of colony fusion in a European population of the American termite Reticulitermes flavipes. Insect Soc 57:393–402

    Google Scholar 

  • Perdereau E, Dedeine F, Christidès J-P, Bagnères A-G (2010b) Variations in worker cuticular hydrocarbons and soldier isoprenoid defensive secretions within and among introduced and native populations of the subterranean termite, Reticulitermes flavipes. J Chem Ecol 36:1189–1198

    CAS  PubMed  Google Scholar 

  • Perdereau E, Dedeine F, Christidès J-P et al (2011) Competition between invasive and indigenous species: an insular case study of subterranean termites. Biol Inv 13:1457–1470

    Google Scholar 

  • Perdereau E, Bagnères A-G, Bankhead-Dronnet S et al (2013) Global genetic analysis reveals the putative native source of the invasive termite, Reticulitermes flavipes. Mol Ecol 22:1105–1119

    CAS  PubMed  Google Scholar 

  • Pichon A, Kutnik M, Leniaud L et al (2007) Development of experimentally orphaned termite worker colonies of two Reticulitermes species. Sociobiology 50:1200–1208

    Google Scholar 

  • Pickens AL (1932) Observation on the genus Reticulitermes Holmgren. Pan-Pac Entomol 8:178–180

    Google Scholar 

  • Piskorski R, Hanus R, Vašíčková S, Cvačka J, Šobotník J, Svatoš A, Valterová I (2007) Nitroalkenes and sesquiterpene hydrocarbons from the frontal gland of three Prorhinotermes termite species. J Chem Ecol 33:1787–1794

    Google Scholar 

  • Piskorski R, Hanus R, Kalinová B et al (2009) Temporal and geographic variations in the morphology and chemical composition of the frontal gland in imagoes of Prorhinotermes species (Isoptera: Rhinotermitidae): geographic and temporal variations. Biol J Linnean Soc 98:384–392

    Google Scholar 

  • Polizzi JM, Forschler BT (1999) Factors that affect aggression among the worker caste of Reticulitermes spp. subterranean termites (Isoptera: Rhinotermitidae). J Insect Behav 12:133–146

    Google Scholar 

  • Prestwich GD, Robles S, Mohamed M (1987) Biochemical basis for caste differentiation in termites. In: Eder J, Rembold H (eds) Chemistry and biology of social insects. Verlag J. Peperny, Munchen, pp 314–315

    Google Scholar 

  • Quennedey A, Peppuy A, Courrent A et al (2004) Ultrastructure of posterior sternal glands of Macrotermes annandalei (Silvestri): new members of the sexual glandular set found in termites (Insecta). J Morphol 262:683–691

    PubMed  Google Scholar 

  • Quennedey A, Sillam-Dussès D, Robert A, Bordereau C (2008) The fine structural organization of sternal glands of pseudergates and workers in termites (Isoptera): a comparative survey. Arthropod Struct Dev 37:168–185

    PubMed  Google Scholar 

  • Quintana A, Reinhard J, Faure R et al (2003) Interspecific variation in terpenoid composition of defensive secretions of European Reticulitermes termites. J Chem Ecol 39:639–652

    Google Scholar 

  • Raina AK, Bland JM, Dickens JC et al (2003) Premating behavior of dealates of the Formosan subterranean termite and evidence for the presence of a contact sex pheromone. J Insect Behav 16:233–245

    Google Scholar 

  • Ratnieks FLW, Foster KR, Wenseleers T (2006) Conflict resolution in insect societies. Annu Rev Entomol 51:581–608

    CAS  PubMed  Google Scholar 

  • Reinhard J, Clément J-L (2002) Alarm reaction of European Reticulitermes termites to soldier head capsule volatiles (Isoptera, Rhinotermitidae). J Chem Ecol 15:95–107

    Google Scholar 

  • Reinhard J, Kaib M (1995) Interaction of pheromones during food exploitation by the termite Schedorhinotermes lamanianus. Physiol Entomol 20:266–272

    Google Scholar 

  • Reinhard J, Kaib M (2001a) Trail communication during foraging and recruitment in the subterranean termite Reticulitermes santonensis De Feytaud (Isoptera, Rhinotermitidae). J Insect Behav 14:157–171

    Google Scholar 

  • Reinhard J, Kaib M (2001b) Food exploitation in termites: Indication for a general feeding-stimulating signal in labial gland secretion of isoptera. J Chem Ecol 27:189–201

    CAS  PubMed  Google Scholar 

  • Reinhard J, Hertel H, Kaib M (1997a) Systematic search for food in the subterranean termite Reticulitermes santonensis De Feytaud (Isoptera, Rhinotermitidae). Insect Soc 44:147–158

    Google Scholar 

  • Reinhard J, Hertel H, Kaib M (1997b) Feeding stimulating signal in labial gland secretion of the subterranean termite Reticulitermes santonensis. J Chem Ecol 23:2371–2381

    CAS  Google Scholar 

  • Reinhard J, Lacey MJ, Ibarra F et al (2002) Hydroquinone: a general phagostimulating pheromone in termites. J Chem Ecol 28:1–14

    CAS  PubMed  Google Scholar 

  • Reinhard J, Quintana A, Sreng L, Clément J-L (2003) Chemical signals inducing attraction and alarm in European Reticulitermes termites (Isoptera, Rhinotermitidae). Sociobiology 42:675–691

    Google Scholar 

  • Renoux J (1976) Le polymorphisme de Schedorhinotermes lamanianus (Sjöstedt) (Isoptera: Rhinotermitidae). Insect Soc 23:279–494

    Google Scholar 

  • Richard F-J, Hunt JH (2013) Intracolony chemical communication in social insects. Insect Soc 60:275–291

    Google Scholar 

  • Röhrig A, Kirchner WH, Leuthold RH (1999) Vibrational alarm communication in the African fungus-growing termite genus Macrotermes (Isoptera, Termitidae). Insect Soc 46:71–77

    Google Scholar 

  • Roisin Y, Korb J (2011) Social organisation and the status of workers in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 133–164

    Google Scholar 

  • Roisin Y, Everaerts C, Pasteels JM, Bonnard O (1990) Caste-dependent reactions to soldier defensive secretion and chiral alarm/recruitment pheromone in Nasutitermes princeps. J Chem Ecol 16:2865–2875

    CAS  PubMed  Google Scholar 

  • Rojas MG, Werle C, Cottrell N, Morales-Ramos JA (2005) Changes in the ratios of four cuticular hydrocarbons in Formosan subterranean termite workers (Coptotermes formosanus) (Isoptera: Rhinotermitidae) due to diet. Sociobiology 46:131–140

    Google Scholar 

  • Rosengaus RB, Jordan C, Lefebvre ML, Traniello JFA (1999) Pathogen alarm behavior in a termite: a new form of communication in social insects. Naturwissenschaften 86:544–548

    CAS  PubMed  Google Scholar 

  • Rosengaus RB, Levebvre ML, Traniello JFA (2000) Inhibition of fungal spore germination by Nasutitermes: evidence for a possible antiseptic role of soldier defensive secretions. J Chem Ecol 26:21–39

    CAS  Google Scholar 

  • Runcie CD (1987) Behavioral evidence for multicomponent trail pheromone in the termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). J Chem Ecol 13:1967–1978

    CAS  PubMed  Google Scholar 

  • Rupf T, Roisin Y (2008) Coming out of the woods: do termites need a specialized worker caste to search for new food sources? Naturwissenschaften 95:811–819

    CAS  PubMed  Google Scholar 

  • Sands WA (1982) Agonistic behavior of African soldierless Apicotermitinae (Isoptera: Termitidae). Sociobiology 7:61–72

    Google Scholar 

  • Saran RK, Millar JG, Rust MK (2007) Role of (3Z,6Z,8E)-dodecatrien-1-ol in trail following, feeding, and mating behavior of Reticulitermes hesperus. J Chem Ecol 33:369–389

    CAS  PubMed  Google Scholar 

  • Sbrenna G, Sbrenna-Micciarelli A, Leis M, Pavan G (1992) Vibratory movements and sound production in Kalotermes flavicollis (Isoptera: Kalotermitidae). In: Billen J (ed) Biology and evolution of social insects. Leuven University Press, Leuven, pp 233–238

    Google Scholar 

  • Scharf ME, Wu-Scharf D, Pittendrigh BR et al (2003) Caste- and development-associated gene expression in a lower termite. Genom Biol 4:R62

    Google Scholar 

  • Schedel A, Kaib M (1987) Polyethism during foraging in Schedorhinotermes lamanianus in unprotected areas: the role of exocrine glands. In: Eder J, Rembold H (eds) Chemistry and biology of social insects. Verlag J. Peperny, Munich, p 416

    Google Scholar 

  • Schinghammmer MA, Zhou X, Kambhampati S et al (2011) A novel gene from the takeout family involved in termite trail-following behavior. Gene 474:12–21

    Google Scholar 

  • Schuurman G, Dangerfield JM (1995) Assessment of intraspecific aggression in Macrotermes michaelseni (Isoptera: Macrotermitinae). Sociobiology 26:33–38

    Google Scholar 

  • Schwander T, Lo N, Beekman M et al (2010) Nature versus nurture in social insect caste differentiation. Trend Ecol Evol 25:275–282

    Google Scholar 

  • Sen R, Raychoudhury R, Cai Y et al (2013) Differential impacts of juvenile hormone, soldier head extract and alternate caste phenotypes on host and symbiont transcriptome composition in the gut of the termite Reticulitermes flavipes. BMC Genom 14:491

    CAS  Google Scholar 

  • Sevala VL, Bagnères A-G, Kuenzli M et al (2000) Cuticular hydrocarbons of the dampwood termite, Zootermopsis nevadensis: caste differences and role of lipophorin in transport of hydrocarbons and hydrocarbon metabolites. J Chem Ecol 26:765–789

    CAS  Google Scholar 

  • Shellman-Reeve JS (1994) Limited nutrients in a dampwood termite: nest preference, competition and cooperative nest defence. J Anim Ecol 63:921–932

    Google Scholar 

  • Shellman-Reeve JS (1997) The spectrum of eusociality in termites. In: Choe JC, Crespi BJ (eds) The evolution of social behaviour in insects and arachnids. Cambridge University Press, Cambridge, pp 52–93

    Google Scholar 

  • Shellman-Reeve JS (1999) Courting strategies and conflicts in a monogamous, biparental termite. Proc R Soc B 266:137–144

    PubMed Central  Google Scholar 

  • Shellman-Reeve JS (2001) Genetic relatedness and partner preference in a monogamous, wood-dwelling termite. Anim Behav 61:869–876

    Google Scholar 

  • Shelton TG, Grace JK (1996) Review of agonistic behaviors in the Isoptera. Sociobiology 28:155–176

    Google Scholar 

  • Sillam-Dussès D, Sémon E, Lacey MJ et al (2007) Trail-following pheromones in basal termites, with special reference to Mastotermes darwiniensis. J Chem Ecol 33:1960–1977

    PubMed  Google Scholar 

  • Sillam-Dussès D, Kalinová B, Jiroš P et al (2009a) Identification by GC-EAD of the two-component trail-following pheromone of Prorhinotermes simplex (Isoptera, Rhinotermitidae, Prorhinotermitinae). J Insect Physiol 55:751–757

    PubMed  Google Scholar 

  • Sillam-Dussès D, Sémon E, Robert A, Bordereau C (2009b) (Z)-Dodec-3-en-1-ol, a common major component of the trail-following pheromone in the termites Kalotermitidae. Chemoecology 19:103–108

    Google Scholar 

  • Sillam-Dussès D, Sémon E, Robert A et al (2010) Identification of multi-component trail pheromones in the most evolutionarily derived termites, the Nasutitermitinae (Termitidae). Biol J Linnean Soc 99:20–27

    Google Scholar 

  • Sillam-Dussès D, Krasulová J, Vrkoslav V et al (2012) Comparative study of the labial gland secretion in termites (Isoptera). PLoS ONE 7(10):e46431

    PubMed Central  PubMed  Google Scholar 

  • Simpson SJ, Sword GA, Lo N (2011) Polyphenism in insects. Curr Biol 21:738–749

    Google Scholar 

  • Singer TL (1998) Roles of hydrocarbons in the recognition systems of insects. Amer Zool 38:394–405

    CAS  Google Scholar 

  • Smith AA, Hölldobler B, Liebig J (2009) Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Curr Biol 19:78–81

    CAS  PubMed  Google Scholar 

  • Šobotník J, Weyda F, Hanus R (2003) Ultrastructure of epidermal glands in neotenic reproductives of the termite Prorhinotermes simplex (Isoptera: Rhinotermitidae). Arthropod Struct Dev 32:201–208

    Google Scholar 

  • Šobotník J, Hanus R, Kalinová B et al (2008) (E, E)-α-Farnesene, an alarm pheromone of the termite Prorhinotermes canalifrons. J Chem Ecol 34:478–486

    PubMed  Google Scholar 

  • Šobotník J, Jirošová A, Hanus R (2010) Chemical warfare in termites. J Insect Physiol 56:1012–1021

    PubMed  Google Scholar 

  • Šobotník J, Bourguignon T, Hanus R et al (2012) Explosive backpacks in old termite workers. Science 337:436

    PubMed  Google Scholar 

  • Springhetti A (1970) Influence of the king and queen on the differentiation of soldiers in Kalotermes flavicollis Fabr. (Isoptera). Monitore Zool Ital 4:99–105

    Google Scholar 

  • Stuart AM (1963) Studies on the communication of alarm in the termite Zootermopsis nevadensis (Hagen), Isoptera. Physiol Zool 36:85–96

    Google Scholar 

  • Stuart AM (1967) Alarm, defense, and construction behavior relationships in termites (Isoptera). Science 156:1123–1125

    CAS  PubMed  Google Scholar 

  • Stuart AM (1979) The determination and regulation of the neotenic reproductive caste in the lower termites (Isoptera): with special reference to the genus Zootermopsis (Hagen). Sociobiology 4:223–237

    Google Scholar 

  • Stuart AM (1981) The role of pheromones in the initiation of foraging, recruitment and defence by the soldiers of a tropical termite, Nasutitermes corniger (Motschulsky). Chem Senses 6:409–420

    CAS  Google Scholar 

  • Stuart AM (1988) Preliminary studies on the significance of head-banging movements in termites with special reference to Zootermopsis angusticollis (Hagen) (Isoptera: Hodotermitidae). Sociobiology 14:49–60

    Google Scholar 

  • Su NY, Haverty MI (1991) Agonistic behavior among colonies of the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), from Florida and Hawaii: lack of correlation with cuticular hydrocarbon composition. J Insect Behav 4:115–128

    Google Scholar 

  • Sun Q, Zhou X (2013) Corpse management in social insects. Int J Biol Sci 9:313–321

    PubMed Central  PubMed  Google Scholar 

  • Sutton PA, Wilde MJ, Martin SJ et al (2013) Studies of long chain lipids in insects by high temperature gas chromatography and high temperature gas chromatography-mass spectrometry. J Chromatogr A 1297:236–240

    CAS  PubMed  Google Scholar 

  • Takahashi S, Gassa A (1995) Roles of cuticular hydrocarbons in intra- and inter-specific recognition behavior of two Rhinotermitidae species. J Chem Ecol 21:1837–1845

    CAS  PubMed  Google Scholar 

  • Takematsu Y, Kambara K (2012) Nestmate recognition and cuticular hydrocarbons of two sympatric species of Reticulitermes in Japan (Isoptera: Rhinotermitidae). Sociobiology 59:1205–1215

    Google Scholar 

  • Takematsu Y, Yamaoka R (1997) Taxonomy of Glyptotermes (Isoptera, Kalotermitidae) in Japan with reference to cuticular hydrocarbon analysis as chemotaxonomic characters. Esakia 37:1–14

    Google Scholar 

  • Tarver MR, Schmelz EA, Rocca JR et al (2009) Effects of soldier-derived terpenes on soldier caste differentiation in the termite Reticulitermes flavipes. J Chem Ecol 35:256–264

    CAS  PubMed  Google Scholar 

  • Tarver MR, Zhou X, Scharf ME (2010) Socio-environmental and endocrine influences on developmental and caste-regulatory gene expression in the eusocial termite Reticulitermes flavipes. BMC Mol Biol 11:28

    PubMed Central  PubMed  Google Scholar 

  • Tarver MR, Schmelz EA, Scharf ME (2011) Soldier caste influences on candidate primer phreromone levels and juvenile hormone-dependent caste differentiation in workers of the termite Reticulitermes flavipes. J Insect Physiol 57:771–777

    CAS  PubMed  Google Scholar 

  • Thorne BL (1982) Termite-termite interactions: workers as an agonistic caste. Psyche 89:133–150

    Google Scholar 

  • Thorne BL, Haverty MI (1991) A review of intracolony, intraspecific, and interspecific agonism in termites. Sociobiology 19:115–145

    Google Scholar 

  • Thorne BL, Page M (1990) Surface hydrocarbon components of two species of Nasutitermes from Trinidad. J Chem Ecol 16:2441–2450

    PubMed  Google Scholar 

  • Thorne BL, Traniello JFA (2002) Comparative social biology of basal taxa of ants and termites. Annu Rev Entomol 48:283–306

    PubMed  Google Scholar 

  • Thorne BL, Traniello JFA, Adam ES et al (1999) Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera, Rhinotermitidae): a review of the evidence from behavioral, ecological, and genetic studies. Ethol Ecol Evol 11:149–169

    Google Scholar 

  • Thorne BL, Breisch NL, Muscedere ML (2003) Evolution of eusociality and the soldier caste in termites: influence of intraspecific competition and accelerated inheritance. Proc Natl Acad Sci USA 100:12808–12813

    PubMed Central  CAS  PubMed  Google Scholar 

  • Traniello JFA (1981) Enemy deterrence in the recruitment strategy of a termite: soldier-organized foraging in Nasutitermes costalis. Proc Natl Acad Sci USA 78:1976–1979

    PubMed Central  CAS  PubMed  Google Scholar 

  • Traniello JFA (1982) Recruitment and orientation components in a termite trail pheromone. Naturwissenschaften 69:343–345

    Google Scholar 

  • Traniello JFA, Beshers SN (1985) Species-specific alarm recruitment responses in a neotropical termite. Naturwissenschaften 72:491–492

    Google Scholar 

  • Traniello JFA, Busher C (1985) Chemical regulation of polyethism during foraging in the neotropical termite Nasutitermes costalis. J Chem Ecol 11:319–332

    CAS  PubMed  Google Scholar 

  • Traniello JFA, Leuthold RH (2000) Behavior and ecology of foraging in termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, London, pp 141–168

    Google Scholar 

  • Tsunoda K, Matsuoka H, Yoshimura T et al (1999) Foraging populations and territories of Reticulitermes speratus (Isoptera: Rhinotermitidae). J Econ Entomol 92:604–609

    Google Scholar 

  • Uva P, Clément J-L, Bagnères A-G (2004a) Colonial and geographic variations in agonistic behaviour, cuticular hydrocarbons and mtDNA of Italian populations of Reticulitermes lucifugus (Isoptera, Rhinotermitidae). Insect Soc 51:163–170

    Google Scholar 

  • Uva P, Clément J-L, Austin JW et al (2004b) Origin of a new Reticulitermes termite (Isoptera, Rhinotermitidae) inferred from mitochondrial and nuclear DNA data. Mol Phyl Evol 30:344–353

    CAS  Google Scholar 

  • Valterová I, Křeček J, Vrkoč J (1989) Intraspecific variation in the defence secretions of Nasutitermes ephratae soldiers and the biological activity of some of their components. Biochem Syst Ecol 17:327–332

    Google Scholar 

  • Valterová I, Vrkoč J, Lindström M, Norin T (1992) On the natural occurrence of (-)3-carene, a component of termite defense. Naturwissenschaften 79:416–417

    Google Scholar 

  • Valterová I, Vrkoč J, Norin T (1993) The enantiomeric composition of monoterpene hydrocarbons in the defensive secretions of Nasutitermes termites (Isoptera): inter- and intraspecific variations. Chemoecology 4:120–123

    Google Scholar 

  • Van Oystaeyen A, Caliari Oliviera R et al (2014) Conserved class of queen pheromoens stops social insect workers from reproducting. Science 343:287–290

    PubMed  Google Scholar 

  • Van Zweden JS, d’Ettorre P (2010) Nestmate recognition in social insects and the role of hydrocarbons. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 222–243

    Google Scholar 

  • Vargo EL (2000) Polymorphism at trinucleotide microsatellite loci in the subterranean termite Reticulitermes flavipes. Mol Ecol 9:817–820

    CAS  PubMed  Google Scholar 

  • Vargo EL, Henderson G (2000) Identification of polymorphic microsatellite loci in the Formosan subterranean termite Coptotermes formosanus Shiraki. Mol Ecol 9:1935–1938

    CAS  PubMed  Google Scholar 

  • Vargo EL, Husseneder C (2009) Biology of subterranean termites: insights from molecular studies of Reticulitermes and Coptotermes. Annu Rev Entomol 54:379–403

    CAS  PubMed  Google Scholar 

  • Vargo EL, Husseneder C (2011) Genetic structure of termite colonies and populations. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 133–164

    Google Scholar 

  • Vargo EL, Labadie PE, Matsuura K (2012) Asexual queen succession in the subterranean termite Reticulitermes virginicus. Proc R Soc London B 279:813–819

    Google Scholar 

  • Vargo EL, Leniaud L, Swoboda LE et al (2013) Clinal variation in colony breeding structure and level of inbreeding in the subterranean termites Reticulitermes flavipes and R. grassei. Mol Ecol 22:1447–1462

    PubMed  Google Scholar 

  • Vasquez GM, Schal C, Silverman J (2009) Colony fusion in Argentine ants is guided by workers and queen cuticular hydrocarbon profile similarity. J Chem Ecol 35:922–932

    CAS  PubMed  Google Scholar 

  • Vauchot B, Provost E, Bagnères A-G et al (1996) Regulation of the chemical signatures of two termite species, Reticulitermes santonensis and R. (l.) grassei, living in mixed colonies. J Insect Physiol 42:309–321

    CAS  Google Scholar 

  • Vauchot B, Provost E, Bagnères A-G et al (1998) Differential adsorption of allospecific hydrocarbons by the cuticles of two termite species, Reticulitermes santonensis and R. lucifugus grassei, living in a mixed colony. J Insect Physiol 44:59–66

    CAS  Google Scholar 

  • Vrkoč J, Křeček J, Hrdý I (1978) Monoterpenic alarm pheromones in two Nasutitermes species. Acta Entomol Bohemoslov 75:1–8

    Google Scholar 

  • Watanabe D, Gotoh H, Miura T et al (2011) Soldier presence suppresses presoldier differentiation through a rapid decrease of JH in the termite Reticulitermes speratus. J Insect Physiol 57:791–795

    CAS  PubMed  Google Scholar 

  • Watson JAL, McMahan EA (1978) Polyethism in the Australian harvester termite Drepanotermes (Isoptera, Termitinae). Insect Soc 25:53–62

    Google Scholar 

  • Wei JQ, Mo JC, Pan CY et al (2007) The intestinal microbes inducing the agonistic behavior of inter-colonial individuals in Coptotermes formosanus (Isoptera: Rhinotermitidae). Sociobiology 50:245–256

    Google Scholar 

  • Weil T, Rehli M, Korb J (2007) Molecular basis for the reproductive division of labour in a lower termite. BMC Genomics 8

    Google Scholar 

  • Weil T, Hoffmann K, Kroiss J et al (2009a) Scent of a queen-cuticular hydrocarbons specific for female reproductives in lower termites. Naturwissenschaften 96:315–319

    CAS  PubMed  Google Scholar 

  • Weil T, Korb J, Rehli M (2009b) Comparison of queen-specific gene expression in related lower termite species. Mol Biol Evol 26:1841–1850

    CAS  PubMed  Google Scholar 

  • Wheeler MW, Tarver MR, Coy MR et al (2010) Characterization of four esterase genes and esterase activity from the gut of the termite Reticulitermes flavipes. Archiv Insect Biochem Physiol 73:30–48

    CAS  Google Scholar 

  • Wilson DS, Clark AB (1977) Above ground predator defence in the harvester termite, Hodotermes mossambicus (Hagen). J Ent Soc Sthn Africa 40:271–282

    Google Scholar 

  • Wilson-Rich N, Spivak M, Fefferman NH, Starks PT (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Annu Rev Entomol 54:405–423

    CAS  PubMed  Google Scholar 

  • Wolfrum U, Kaib M (1988) Kastenspezifisches Verhalten der Termite Schedorhinotermes lamanianus und dessen Beziehung zu Unterschieden in Ultrastruktur, Haufigkeit und Topographie antennaler Sensillen. Mitt Dtsch Ges Allg Angew Entomol 6:86–90

    Google Scholar 

  • Woodrow RJ, Grace JK, Nelson LJ, Haverty MI (2000) Modification of cuticular hydrocarbons of Cryptotermes brevis (Isoptera: Kalotermitidae) in response to temperature and relative humidity. Environ Entomol 29:1100–1107

    CAS  Google Scholar 

  • Yamamoto Y, Matsuura K (2011) Queen pheromone regulates egg production in a termite. Biol Lett 7:727–729

    PubMed Central  PubMed  Google Scholar 

  • Yamamoto Y, Kobayashi T, Matsuura K (2012) The lack of chiral specificity in a termite queen pheromone. Physiol Entomol 37:192–195

    CAS  Google Scholar 

  • Yashiro T, Matsuura K (2007) Distribution and phylogenic analysis of termite egg-mimicking fungi “termite balls” in Reticulitermes termites. Ann Entomol Soc Am 100:532–538

    CAS  Google Scholar 

  • Zalkow LH, Howard RH, Gelbaum LT et al (1981) Chemical ecology of Reticulitermes flavipes (Kollar) and R. virginicus (Banks): chemistry of the soldier cephalic secretions. J Chem Ecol 7:717–731

    CAS  PubMed  Google Scholar 

  • Zhang S, Mo J, Teng L et al (2006) Inter-colonial variation in the compositions of the frontal gland secretions of Coptotermes formosanus (Isoptera: Rhinotermitidae). Sociobiology 47:553–561

    Google Scholar 

  • Zhao CJ, Rickards RW, Trowell SC (2004) Antibiotics from Australian terrestrial invertebrates. Part 1: antibacterial trinervitadienes from the termite Nasutitermes triodiae. Tetrahedron 60:10753–10759

    CAS  Google Scholar 

  • Zhou X, Oi FM, Scharf ME (2006) Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc Natl Acad Sci USA 103:4499–4504

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu F, Xu P, Barbosa RME et al (2013) RNAi-based demonstration of direct link between specific odorant receptors and mosquito oviposition behavior. Insect Biochem Mol Biol 43:916–923

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zimmermann RB (1983) Sibling manipulation and indirect fitness in termites. Behav Ecol Sociobiol 12:143–145

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Jessica Pearce for English revision and Ed Vargo for precious comments on the manuscript. RH acknowledges the support by the Academy of Sciences of the Czech Republic (RVO 61388963).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Geneviève Bagnères .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bagnères, AG., Hanus, R. (2015). Communication and Social Regulation in Termites. In: Aquiloni, L., Tricarico, E. (eds) Social Recognition in Invertebrates. Springer, Cham. https://doi.org/10.1007/978-3-319-17599-7_11

Download citation

Publish with us

Policies and ethics