Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2140))

  • 834 Accesses

Abstract

I define and investigate period mappings of “Hodge-de Rham type” for submersive, but possibly nonproper, families \(f: X \rightarrow S\) of complex manifolds. The families f under consideration are—that is remarkable—not assumed locally topologically trivial. I rather assume that the sheaves \(\mathrm{R}^{q}f_{{\ast}}(\varOmega _{f}^{p})\) be locally finite free on S and compatible with base change for (p, q) of a fixed total degree n. Moreover, I assume that the Frölicher spectral sequence of f as well as the Frölicher spectral sequences of the fibers of f degenerate in the entries of total degree n. My main result interprets the differential of the period map in the very fashion that Griffiths (Am J Math 90(3):805–865, 1968) has uncovered for f a proper family of manifolds of Kähler type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Observe that the base of the family changes from S to the one-point space {s}.

  2. 2.

    When you consult Griffiths’s source, you will notice several conceptual differences to the text at hand. Most prominently, Griffiths works with de Rham and Dolbeault cohomology where I work with abstract sheaf cohomology. Besides, in his construction of the period mapping, he employs a \(\mathcal{C}^{\infty }\) diffeomorphism \(X_{t} \rightarrow X_{s}\) directly in order to obtain the isomorphism ϕ s, t n.

  3. 3.

    Think about how you would prove it. What theorems do you have to invoke?

  4. 4.

    For small categories (i.e., sets) \(\mathcal{C}\) this definition is an actual definition, in the sense that there is a formula in the language of in the language of Zermelo-Fraenkel set theory expressing it. When \(\mathcal{C}\) is large, however, the definition is rather a “definition scheme”—that is, it becomes an actual definition when spelled out for a particular instance of \(\mathcal{C}\).

  5. 5.

    Note that in order to get a real equality here, as opposed to only a \textquotedblleft canonical isomorphism,\textquotedblright you have to work with the correct sheafification functor.

  6. 6.

    Thus, a right splitting of t is nothing but a right inverse of the morphism \(t_{1,2}: t1 \rightarrow t2\).

  7. 7.

    In detail, what you have to prove is this: when I and J are two presheaves of modules on X, then the composition \(I \bar{\otimes } J \rightarrow I^{\#} \bar{\otimes } J^{\#} \rightarrow I^{\#} \otimes J^{\#}\) is isomorphic to the sheafification of \(I \bar{\otimes } J\), where \(\bar{\otimes }\) denotes the presheaf tensor product.

References

  1. T. Bröcker, K. Jänich, Introduction to Differential Topology (Cambridge University Press, New York, 1982), pp. vii+160

    Google Scholar 

  2. P. Deligne, Equations Différentielles à Points Singuliers Réguliers. Lecture Notes in Mathematics, vol. 163 (Springer, Heidelberg, 1970)

    Google Scholar 

  3. P. Deligne, Théorie de Hodge: II. Publications Mathématiques de l’I.H.É.S. 40(1), 5–57 (1971)

    Google Scholar 

  4. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150 (Springer, Heidelberg, 1995)

    Google Scholar 

  5. R. Godement, Topologie Algébrique et Théorie des Faisceaux, 3rd rev. Actualités Scientifiques et Industrielles, vol. 1252 (Hermann, Paris, 1973)

    Google Scholar 

  6. P.A. Griffiths, Periods of integrals on algebraic manifolds, II. (Local study of the period mapping.) Am. J. Math. 90(3), 805–865 (1968)

    Google Scholar 

  7. A. Grothendieck, Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné): I. Le langage des schémas. Publications Mathématiques de l’I.H.É.S. 4, 5–228 (1960)

    Google Scholar 

  8. A. Grothendieck, Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné): III. Étude cohomologique des faisceaux cohérents, Première partie. Publications Mathématiques de l’I.H.É.S. 11, 5–167 (1961)

    Google Scholar 

  9. A. Grothendieck, Techniques de construction en géométrie analytique. VII. Étude locale des morphismes: éléments de calcul infinitésimal. Séminaire Henri Cartan 13(2), 1–27 (1960–1961)

    Google Scholar 

  10. N.M. Katz, Algebraic solutions of differential equations (p-curvature and the Hodge filtration). Invent. Math. 18(1–2), 1–118 (1972). doi:10.1007/BF01389714

    Article  MATH  MathSciNet  Google Scholar 

  11. N.M. Katz, T. Oda, On the differentiation of de Rham cohomology classes with respect to parameters. J. Math. Kyoto Univ. 8, 199–213 (1968)

    MATH  MathSciNet  Google Scholar 

  12. J.P. May, A Concise Course in Algebraic Topology. Chigaco Lectures in Mathematics (The University of Chicago Press, Chicago, 1999)

    Google Scholar 

  13. The Stacks Project Authors, Stacks Project (2014). http://stacks.math.columbia.edu

  14. C. Voisin, Théorie de Hodge et géométrie algébrique complexe. Cours Spécialisées, vol. 10 (Société Mathématique de France, Paris, 2002)

    Google Scholar 

  15. R.O. Wells Jr., Differential Analysis on Complex Manifolds, 3rd ed. Graduate Texts in Mathematics, vol. 65 (Springer, New York, 2008), pp. xiv+299. doi:10.1007/978-0-387-73892-5

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kirschner, T. (2015). Period Mappings for Families of Complex Manifolds. In: Period Mappings with Applications to Symplectic Complex Spaces. Lecture Notes in Mathematics, vol 2140. Springer, Cham. https://doi.org/10.1007/978-3-319-17521-8_1

Download citation

Publish with us

Policies and ethics