Skip to main content

Interaction with the Sun

  • Chapter
  • First Online:
A Solar Car Primer
  • 2130 Accesses

Abstract

This chapter focuses on three topics. First, how to estimate the rate at which solar energy strikes a planar surface, such as a solar cell, oriented at some position with respect to the sun, at a given time and location on the earth is explained. Then, a method for calculating the solar energy transmitted through a glazing is discussed. The final section explains how the solar energy irradiating a solar cell is converted into electric energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The sun’s rays diverge from parallelism by only about 16 min of arc. They may be assumed parallel for our design purposes.

  2. 2.

    This may be shown for the conditions of the example by applying the relations for the sin and cos of the difference of two angles to Eq. 3.8

  3. 3.

    See the comparison of several models in Duffie and Beckman (1991).

  4. 4.

    This relation is sometimes called Bouger’s law.

  5. 5.

    The production of electron-hole pairs by radiation is called the photoelectric effect.

  6. 6.

    Note that the Voc is less than three times that for standard conditions. A logarithmic dependence on the irradiation causes the open circuit voltage to drop at low irradiances.

  7. 7.

    The term load usually means the current drawn by the device being powered, although it can also mean the power drawn.

  8. 8.

    If the cells are not actively cooled, as by a water spray.

References

  • Angrist, S. W. (1982). Direct energy conversion. Boston: Allyn and Bacon, Inc.

    Google Scholar 

  • Benford, F., & Bock, J. E. (1939). A time analysis of sunshine. Transactions of the American Illuminating Engineering Society, 34, 200.

    Google Scholar 

  • Brandemuehl, M. J., & Beckman, W. A. (1980). Transmission of diffuse radiation through CPC and flat-plate collector covers. Solar Energy, 24, 511.

    Article  Google Scholar 

  • Collares-Pereira, M., & Rabl, A. (1979). The average distribution of solar radiation—correlations between diffuse and hemispherical and between daily and hourly insolation values. Solar Energy, 22, 155.

    Article  Google Scholar 

  • Cooper, P. I. (1969). The absorption of solar radiation in solar stills. Solar Energy, 12(3), 333.

    Article  Google Scholar 

  • Craparo, J. C., & Thacher, E. F. (1995). A solar-electric vehicle simulation code. Solar Energy, 55(3), 221.

    Article  Google Scholar 

  • Duffie, J. A., & Beckman, W. A. (1991). Solar engineering of thermal processes (2nd ed.). New York: Wiley.

    Google Scholar 

  • Erbs, D. G., Klein, S. A., & Duffie, J. A. (1982). Estimation of the diffuse radiation fraction for hourly, daily, and monthly-average global radiation. Solar Energy, 28, 293.

    Article  Google Scholar 

  • Habte, A., Lopez, A., Sengupta, M., & Wilcox, S. (2014). Temporal and spatial comparison of gridded TMY, TDY, and TGY Data Sets, NREL/TP-5000-60886. Colorado: National Renewable Energy Laboratory, Golden.

    Book  Google Scholar 

  • Hodgman, C. D. (Ed.). (1957). Handbook of Chemistry and Physics (38th ed.). Cleveland: Chemical Rubber Company.

    Google Scholar 

  • Hsieh, J. S. (1986). Solar energy engineering. Englewood Cliffs: Prentice-Hall Inc.

    Google Scholar 

  • Hu, C., & White, R. M. (1983). Solar cells. New York: McGraw-Hill, Inc.

    Google Scholar 

  • Klein, S. A. (1977) Calculation of monthly average radiation on tilted surfaces. Solar Energy, 19, p. 325.

    Article  Google Scholar 

  • Knapp, C. L., Stoffel, T. L., & Whitaker, S. D. (1980). Insolation data manual, SERI/SP-755-789. Washington, D.C.: Government Printing Office.

    Google Scholar 

  • Liu, B. Y. H., & Jordan, R. C. (1960). The interrelationship and characteristic distribution of direct, diffuse, and total solar radiation. Solar Energy, 4(3), 1.

    Article  Google Scholar 

  • Liu, B. Y. H., & Jordan, R. C. (1963). The long-term average performance of flat-plate solar energy collectors. Solar Energy, 7, 53.

    Article  Google Scholar 

  • Liu, B. Y. H., & Jordan, R. C. (1977). Availability of solar energy for flat-plate solar heat collectors. In R. C. Jordan & B. Y. H. Liu (Eds.), Applications of solar energy for heating and cooling of buildings. Atlanta: ASHRAE.

    Google Scholar 

  • McCarney, S., Olson, K., & Weiss, J. (1987). Photovoltaics: A manual for design and installation of stand-alone photovoltaic systems, appropriate technology associates, Carbondale, Colorado.

    Google Scholar 

  • Rauschenback, H. S. (1980). Solar cell array design handbook. New York: Van Nostrand-Reinhold.

    Book  Google Scholar 

  • Schoeman, J. J., & van Wyk, J. D. (1982). A simplified maximal power controller for terrestrial photovoltaic panel arrays. IEEE PESC Record, p. 361.

    Google Scholar 

  • Siegel, R. (1973). Net radiation method for enclosure systems involving partially transparent walls. NASA-TN-D-7384.

    Google Scholar 

  • Smith, R. E., & West, G. S. (1983). Space and planetary environmental criteria for use in space vehicle development 1982 (Revision Vol. 1). NASA TM 82478.

    Google Scholar 

  • Spencer, J. W. (1971). Fourier series representation of the position of the sun. Search, 2(5), 172.

    Google Scholar 

  • TMY. (1981). Typical meteorological year user’s manual (TD-9734). Asheville: National Climatic Center.

    Google Scholar 

  • TMY3. (2008). National solar radiation data base 1991-2005 update: Typical meteorological year 3, http://rredc-nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by_state_and_city.html.

  • Whillier, A. (1953).Solar energy collection and its utilization for house heating.ScD. Thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Wilcox, S., & Marion, W. (2008). Users manual for TMY3 data sets, technical report NREL/TP-581-43156. Golden: National Renewable Energy Laboratory.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Forsta Thacher .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thacher, E. (2015). Interaction with the Sun. In: A Solar Car Primer. Springer, Cham. https://doi.org/10.1007/978-3-319-17494-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17494-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17493-8

  • Online ISBN: 978-3-319-17494-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics