Skip to main content

Organization of the Genetic System: Proteins as Vehicles of Distinction

  • Chapter
  • First Online:
DNA Information: Laws of Perception

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM))

Abstract

The transcriptional regulatory networks (TRNs) integrate all the known interactions between the numerous transcription factors and their target genes. However, in the TRN, the DNA sites mediating the effects of the transcription factors appear as purely static entities providing the unique “addresses” for their cognate binding proteins, whereas in fact all these gene regulatory interactions are embedded in the physical chromosome, and are modulated by its configuration dynamics. By virtue of its construction, the TRN lacks all information about the structural dynamics of the DNA and its role in regulating the genetic activity. Notably, a gene is a discontinuous entity that can be expressed or not, thus being subject to “on or off” logic and therefore, belonging to the digital information type. Conversely, the physicochemical properties of DNA are determined not by individual base pairs, but by the additive interactions of successive base steps. The thermodynamic stability and superhelical density of the DNA are by definition continuous variables subject to “more or less” logic and belong to analog information type. It is this latter information that largely determines the chromosomal configuration dynamics, interactions between the remote DNA sites, and ultimately, the expression of the linear genetic code. Analysis of genetic regulation is greatly facilitated by introducing a formalism, allowing the dissection, and quantification of the inputs of digital and analog control mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We cannot elaborate here on the topic of various effects of small regulatory RNAs; for recent reviews see, e.g., Li and Izpisua Belmonte (2015), Ipsaro and Joshua-Tor (2015).

References

  • Arnold GF, Tessman I (1988) Regulation of DNA superhelicity by rpoB mutations that suppress defective Rho-mediated transcription termination in Escherichia coli. J Bacteriol 170:4266–4271

    PubMed Central  CAS  PubMed  Google Scholar 

  • Balke VL, Gralla JD (1987) Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli. J Bacteriol 169:4499–4506

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beber ME, Muskhelishvili G, Hütt M-T (2015a) Effect of database drift on network topology and enrichment analyses: a case study for RegulonDB (Database, submitted)

    Google Scholar 

  • Beber ME, Muskhelishvili G, Hütt M-T (2015b) Interplay of digital and analog control in gene expression profiles (BMC Syst Biol, submitted)

    Google Scholar 

  • Bensaid A, Almeida A, Drlica K, Rouviere-Yaniv J (1996) Cross-talk between topoisomerase I and HU in Escherichia coli. J Mol Biol 256:292–300

    Article  CAS  PubMed  Google Scholar 

  • Blot N, Mavathur R, Geertz M et al (2006) Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genome. EMBO Rep 7:710–715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bordes P, Conter A, Morales V et al (2003) DNA supercoiling contributes to disconnect σS accumulation from σS-dependent transcription in Escherichia coli. Mol Microbiol 48:561–571

    Article  CAS  PubMed  Google Scholar 

  • Brázdaa V, Čechováa J, Coufala J et al (2012) Superhelical DNA as a preferential binding target of 14-3-3γ protein. J Biomol Struct Dynamics 30:371–378

    Article  Google Scholar 

  • Cabrera JE, Jin DJ (2003) The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues. Mol Microbiol 50:1493–1505

    Article  CAS  PubMed  Google Scholar 

  • Conrad TM, Frazier M, Joyce AR et al (2010) RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proc Natl Acad Sci USA 107:20500–20505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Drlica K, Franco RJ, Steck TR (1988) Rifampin and rpoB mutations can alter DNA supercoiling in Escherichia coli. J Bacteriol 170:4983–4985

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fogg JM, Randall GL, Pettitt BM, de Sumners WL, Harris SA, Zechiedrich L (2012) Bullied no more: when and how DNA shoves proteins around. Q Rev Biophys 45(3):257–299

    Article  CAS  PubMed  Google Scholar 

  • Forterre P, Gadelle D (2009) Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res 37:679–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geertz M, Travers A, Mehandziska S et al (2011) Structural coupling between RNA polymerase composition and DNA supercoiling in coordinating transcription: a global role for the omega subunit? MBio 2(4) e00034-11

    Google Scholar 

  • Harris SA, Laughton CA, Liverpool TB (2008) Mapping the phase diagram of the writhe of DNA nanocircles using atomistic molecular dynamics simulations. Nucleic Acids Res 36:21–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hatfield GW, Benham CJ (2002) DNA topology-mediated control of global gene expression in Escherichia coli. Annu Rev Genet 36:175–203

    Article  CAS  PubMed  Google Scholar 

  • Hengge-Aronis R (2002) Stationary phase gene regulation: what makes an Escherichia coli promoter sigmaS-selective? Curr Opin Microbiol 5(6):591–595

    Article  CAS  PubMed  Google Scholar 

  • Hsieh LS, Burger RM, Drlica K (1991) Bacterial DNA supercoiling and [ATP]/[ADP]. Changes associated with a transition to anaerobic growth. J Mol Biol 219:443–450

    Article  CAS  PubMed  Google Scholar 

  • Ipsaro JJ, Joshua-Tor L (2015) From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol 22:20–28

    Article  CAS  PubMed  Google Scholar 

  • Ishihama A (2000) Functional modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol 54:499–518

    Article  CAS  PubMed  Google Scholar 

  • Japaridze A (2015) PhD Thesis. École Polytechnique Fédérale de Lausanne

    Google Scholar 

  • Keane OM, Dorman C (2003) The gyr genes of Salmonella enterica serovar Typhimurium are repressed by the factor for inversion stimulation, Fis. Mol Gen Genet 270:56–65

    Article  CAS  Google Scholar 

  • Kouzine F, Levens D, Baranello L (2014) DNA topology and transcription. Nucleus 5(3):195–202

    Article  PubMed  Google Scholar 

  • Kusano S, Ding Q, Fujita N, Ishihama A (1996) Promoter selectivity of Escherichia coli RNA polymerase Eσ70 and Eσ38 holoenzymes. Effect of DNA supercoiling. J Biol Chem 271:1998–2004

    Article  CAS  PubMed  Google Scholar 

  • Ladurner AG (2009) Chromatin places metabolism center stage. Cell 138:18–20

    Article  CAS  PubMed  Google Scholar 

  • Li M, Izpisua Belmonte JC (2015) Roles for noncoding RNAs in cell-fate determination and regeneration. Nat. Struct Mol Biol 22:2–4

    Article  CAS  PubMed  Google Scholar 

  • Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci USA 84:7024–7027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malik M, Bensaid A, Rouviere-Yaniv J, Drlica K (1996) Histone-like protein HU and bacterial DNA topology: suppression of an HU deficiency by gyrase mutations. J Mol Biol 256:66–76

    Article  CAS  PubMed  Google Scholar 

  • Marr C, Geertz M, Hütt M, Muskhelishvili G (2008) Two distinct logical types of network control in gene expression profiles. BMC Syst Biol 2:18

    Article  PubMed Central  PubMed  Google Scholar 

  • Maturana H, Varela FJ (1987) The tree of knowledge. Shambhala, Boston

    Google Scholar 

  • McClellan JA, Boublíková P, Palecek E, Lilley DM (1990) Superhelical torsion in cellular DNA responds directly to environmental and genetic factors. Proc Natl Acad Sci USA 87:8373–8377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Menzel R, Gellert M (1983) Regulation of the genes for E. coli DNA gyrase: homeostatic control of DNA supercoiling. Cell 34:105–113

    Article  CAS  PubMed  Google Scholar 

  • Monod J (1977) ​Zufall und Notwendigkeit: Philosophische Fragen der modernen Biologie. Deutscher Taschenbuch Verlag

    Google Scholar 

  • Muskhelishvili G, Buckle M, Heumann H, Kahmann R, Travers AA (1997) FIS activates sequential steps during transcription initiation at a stable RNA promoter. EMBO J 16:3655–3665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muskhelishvili G, Travers A (2003) Transcription factor as a topological homeostat. Front Biosci 8:279–285

    Article  Google Scholar 

  • Muskhelishvili G, Sobetzko P, Geertz M, Berger M (2010) General organisational principles of the transcriptional regulation system: a tree or a circle? Mol BioSyst 6:662–676

    Article  CAS  PubMed  Google Scholar 

  • Muskhelishvili G, Travers A (2013) Integration of syntactic and semantic properties of the DNA code reveals chromosomes as thermodynamic machines converting energy into information. Cell Mol Life Sci 70:4555–4567

    Article  CAS  PubMed  Google Scholar 

  • Muskhelishvili G, Travers A (2014) Order from the order: how a spatiotemporal genetic program is encoded in a 2D genetic map of the bacterial chromosome. J Mol Microbiol Biotechnol 24:332–343

    Article  CAS  PubMed  Google Scholar 

  • Naughton C, Avlonitis N, Corless S, Prendergast JG, Mati IK, Eijk PP, Cockroft SL, Bradley M, Ylstra B, Gilbert N (2013) Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures. Nat Struct Mol Biol 20(3):387–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Novershtern N, Subramanian A, Lawton LN et al (2011) Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144:296–309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ouafa ZA, Reverchon S, Lautier T, Muskhelishvili G, Nasser W (2012) Bacterial nucleoid-associated proteins modulate the DNA supercoiling response of major virulence genes in the plant pathogen Dickeya dadantii. Nucleic Acids Res 40:4306–4319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pemberton I, Muskhelishvili G, Travers A, Buckle M (2002) FIS modulates the kinetics of successive interactions of RNA polymerase with the core and upstream regions of the E. coli tyrT promoter. J Mol Biol 318:651–663

    Article  CAS  PubMed  Google Scholar 

  • Peter BJ, Arsuaga J, Breier et al (2004) Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol 5:R87

    Article  PubMed Central  PubMed  Google Scholar 

  • Rao SPS, Huntley MH, Durand NC et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680

    Article  CAS  PubMed  Google Scholar 

  • Salgado H, Peralta-Gil M, Gama-Castro S et al (2013) Regulon DB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res (Database issue):D203–D213

    Google Scholar 

  • Schneider R, Travers A, Muskhelishvili G (1997) FIS modulates growth-phase-dependent topological transitions of DNA in Escherichia coli. Mol Microbiol 26:519–530

    Article  CAS  PubMed  Google Scholar 

  • Schneider R, Travers A, Kutateladze T, Muskhelishvili G (1999) A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli. Mol Microbiol 34:953–964

    Article  CAS  PubMed  Google Scholar 

  • Snoep JL, van der Weijden CC, Andersen HW et al (2002) DNA supercoiling in Escherichia coli is under tight and subtle homeostatic control, involving gene-expression and metabolic regulation of both topoisomerase I and DNA gyrase. Eur J Biochem 269:1662–1669

    Article  CAS  PubMed  Google Scholar 

  • Sobetzko P, Travers A, Muskhelishvili G (2012) Gene order and chromosome dynamics coordinate gene expression during the bacterial growth cycle. Proc Nat Acad Sci USA 109(2):E42–E50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sobetzko P, Glinkowska M, Travers A, Muskhelishvili G (2013) DNA thermodynamic stability and supercoil dynamics determine the gene expression program during the bacterial growth cycle. Mol BioSyst 9(7):1643–1651

    Article  CAS  PubMed  Google Scholar 

  • Sonnenschein N, Geertz M, Muskhelishvili G, Hütt M (2011) Analog regulation of metabolic demand. BMC Syst Biol 5:40

    Article  PubMed Central  PubMed  Google Scholar 

  • Srivatsan A, Tehranichi A, MacAlpine D, Wang JD (2010) Co-orientation of replication and transcription preserves genome integrity. PLoS Genet 6(1):e1000810

    Article  PubMed Central  PubMed  Google Scholar 

  • Stuger R, Woldringh CL, van der Weijden CC et al (2002) DNA supercoiling by gyrase is linked to nucleoid compaction. Mol Biol Rep 29:79–82

    Article  CAS  PubMed  Google Scholar 

  • Timsit Y (2011) Local sensing of global DNA topology: from crossover geometry to type II topoisomerase processivity. Nucleic Acids Res 39:8665–8676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Timsit Y, Varnai P (2010) Helical chirality: a link between local interactions and global topology in DNA. PLoS ONE 5(2):e9326

    Article  PubMed Central  PubMed  Google Scholar 

  • Travers AA, Muskhelishvili G (1998) DNA microloops and microdomains—a general mechanism for transcription activation by torsional transmission. J Mol Biol 279:1027–1043

    Article  CAS  PubMed  Google Scholar 

  • Travers A, Muskhelishvili G (2005) DNA supercoiling—a global transcriptional regulator for enterobacterial growth? Nature Rev Microbiol 3:157–169

    Article  CAS  Google Scholar 

  • Travers AA, Muskhelishvili G, Thompson JMT (2012) DNA information: from digital code to analogue structure. Philos Trans A Math Phys Eng Sci 370(1969):2960–2986

    Article  CAS  PubMed  Google Scholar 

  • Travers AA, Muskhelishvili G (2013) DNA thermodynamics shape chromosome organisation and topology. Biochem Soc Trans 41(2):548–553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Travers AA, Muskhelishvili G (2015) DNA structure and function. FEBS J (in press)

    Google Scholar 

  • Valens M, Penaud S, Rossignol M et al (2004) Macrodomain organization of the Escherichia coli chromosome. EMBO J 23:4330–4341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Workum M, van Dooren SJ, Oldenburg N et al (1996) DNA supercoiling depends on the phosphorylation potential in Escherichia coli. Mol Microbiol 20:351–360

    Article  PubMed  Google Scholar 

  • Wei J, Czapla L, Grosner MA, Swigon D, Olson WK (2014) DNA topology confers sequence specificity to nonspecific architectural proteins. Proc Natl Acad Sci USA 111:16742–16747

    Article  CAS  PubMed  Google Scholar 

  • Wellen KE, Hatzivassiliou G, Sachdeva UM et al (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324(5930):1076–1080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zechiedrich EL, Osheroff N (1990) Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers. EMBO J 13:4555–4562

    Google Scholar 

  • Zechiedrich EL, Khodursky AB, Bachellier S et al (2000) Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli. J Biol Chem 275:8103–8113

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgi Muskhelishvili .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Muskhelishvili, G. (2015). Organization of the Genetic System: Proteins as Vehicles of Distinction. In: DNA Information: Laws of Perception. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-17425-9_4

Download citation

Publish with us

Policies and ethics