Skip to main content

Genetics of Tourette Syndrome

  • Chapter
Movement Disorder Genetics

Abstract

Tourette syndrome (TS) is a developmental neuropsychiatric disorder that is characterized by vocal and motor tics and is estimated to affect 0.2–1 % of the population. Despite evidence for a substantial genetic contribution toward disease risk, identification and replication of associations between genetic variants and TS have been challenging. Rare mutations in several genes have been identified, yet it is unclear whether these genes or their biological pathways play a role in the majority of TS cases. Similar to other complex neuropsychiatric disorders, it is likely that multiple variations in multiple genes, both within the individual and the population, may act together with environmental factors to confer risk. Centralized consortia are collecting larger patient cohorts required to identify candidate genes and biological pathways for TS. Recent profiling of gene expression in the striatum, a brain region highly implicated in TS, indicates downregulation of GABAergic and cholinergic interneurons and shows overlap with gene networks implicated by rare structural genetic variants. Together, integrated analyses of common and rare sequence and structural variation, transcriptomic variation, and bioinformatic analyses of convergent gene networks and pathways may elucidate the genetic etiology of TS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cubo E. Review of prevalence studies of tic disorders: methodological caveats. Tremor Other Hyperkinet Mov (N Y). 2012;2: http://www.ncbi.nlm.nih.gov/pubmed/?term=23440028

  2. Bitsko RH, Holbrook JR, Visser SN, Mink JW, Zinner SH, Ghandour RM, et al. A National Profile of Tourette syndrome, 2011–2012. J Dev Behav Pediatr. 2014;35(5):317–22.

    PubMed  Google Scholar 

  3. Robertson MM. The prevalence and epidemiology of Gilles de la Tourette syndrome. Part 1: the epidemiological and prevalence studies. J Psychosom Res. 2008;65(5):461–72.

    PubMed  Google Scholar 

  4. Bloch MH, Peterson BS, Scahill L, Otka J, Katsovich L, Zhang HP, et al. Adulthood outcome of tic and obsessive-compulsive symptom severity in children with Tourette syndrome. Arch Pediatr Adolesc Med. 2006;160(1):63–9.

    Google Scholar 

  5. Leckman JF, Zhang HP, Vitale A, Lahnin F, Lynch K, Bondi C, et al. Course of tic severity in Tourette syndrome: the first two decades. Pediatrics. 1998;102(1):14–9.

    CAS  PubMed  Google Scholar 

  6. Lin HQ, Yeh CB, Peterson BS, Scahill L, Grantz H, Findley DB, et al. Assessment of symptom exacerbations in a longitudinal study of children with Tourette’s syndrome or obsessive-compulsive disorder. J Am Acad Child Adolesc Psychiatry. 2002;41(9):1070–7.

    PubMed  Google Scholar 

  7. Hyde TM, Aaronson BA, Randolph C, Rickler KC, Weinberger DR. Relationship of birth weight to the phenotypic expression of Gilles de la Tourette’s syndrome in monozygotic twins. Neurology. 1992;42(3 Pt 1):652–8.

    CAS  PubMed  Google Scholar 

  8. Price RA, Kidd KK, Cohen DJ, Pauls DL, Leckman JF. A twin study of Tourette syndrome. Arch Gen Psychiatry. 1985;42(8):815–20.

    CAS  PubMed  Google Scholar 

  9. Walkup JT, LaBuda MC, Singer HS, Brown J, Riddle MA, Hurko O. Family study and segregation analysis of Tourette syndrome: evidence for a mixed model of inheritance. Am J Hum Genet. 1996;59(3):684–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Pauls DL, Raymond CL, Stevenson JM, Leckman JF. A family study of Gilles de la Tourette syndrome. Am J Hum Genet. 1991;48(1):154–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Centers for Disease Control and Prevention. Prevalence of diagnosed Tourette syndrome in persons aged 6-17 years – United States, 2007. MMWR Morb Mortal Wkly Rep. 2009;58(21):581–5.

    Google Scholar 

  12. Robertson MM, Eapen V, Cavanna AE. The international prevalence, epidemiology, and clinical phenomenology of Tourette syndrome: a cross-cultural perspective. J Psychosom Res. 2009;67(6):475–83.

    PubMed  Google Scholar 

  13. Baron M, Shapiro E, Shapiro A, Rainer JD. Genetic-analysis of Tourette syndrome suggesting major gene effect. Am J Hum Genet. 1981;33(5):767–75.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Curtis D, Robertson MM, Gurling HMD. Autosomal dominant gene Transmission in a large Kindred with Gilles-De-La-Tourette syndrome. Brit J Psychiat. 1992;160:845–9.

    CAS  PubMed  Google Scholar 

  15. Kidd KK, Pauls DL. Genetic hypotheses for Tourette syndrome. Adv Neurol. 1982;35:243–9.

    CAS  PubMed  Google Scholar 

  16. Pauls DL, Leckman JF. The inheritance of Gilles de la Tourette’s syndrome and associated behaviors. Evidence for autosomal dominant transmission. N Engl J Med. 1986;315(16):993–7.

    CAS  PubMed  Google Scholar 

  17. Barr CL, Wigg KG, Kurlan R, Pakstis AJ, Kidd KK, Pauls D, et al. Genome scan for linkage to Gilles de la Tourette syndrome. Am J Hum Genet. 1999;65(4):A242-A.

    Google Scholar 

  18. Curtis D, Brett P, Dearlove AM, McQuillin A, Kalsi G, Robertson MM, et al. Genome scan of Tourette syndrome in a single large pedigree shows some support for linkage to regions of chromosomes 5, 10 and 13. Psychiatr Genet. 2004;14(2):83–7.

    CAS  PubMed  Google Scholar 

  19. Heutink P, Vandewetering BJM, Breedveld GJ, Oostra BA. Genetic-study on Tourette syndrome in the Netherlands. Adv Neurol. 1992;58:167–72.

    CAS  PubMed  Google Scholar 

  20. Mcmahon WM, Leppert M, Filloux F, Vandewetering BJM, Hasstedt S. Tourette symptoms in 161 related family members. Adv Neurol. 1992;58:159–65.

    CAS  PubMed  Google Scholar 

  21. Pakstis AJ, Heutink P, Pauls DL, Kurlan R, Vandewetering BJM, Leckman JF, et al. Progress in the search for genetic-linkage with Tourette syndrome – an exclusion map covering more than 50-percent of the autosomal genome. Am J Hum Genet. 1991;48(2):281–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Pauls DL, Pakstis AJ, Kurlan R, Kidd KK, Leckman JF, Cohen DJ, et al. Segregation and linkage analyses of Tourette’s syndrome and related disorders. J Am Acad Child Adolesc Psychiatry. 1990;29(2):195–203.

    CAS  PubMed  Google Scholar 

  23. Verkerk AJMH, Cath DC, van der Linde HC, Both J, Heutink P, Breedveld G, et al. Genetic and clinical analysis of a large Dutch Gilles de la Tourette family. Mol Psychiatr. 2006;11(10):954–64.

    CAS  Google Scholar 

  24. Hanna PA, Janjua FN, Contant CF, Jankovic J. Bilineal transmission in Tourette syndrome. Neurology. 1999;53(4):813–8.

    CAS  PubMed  Google Scholar 

  25. Kurlan R, Eapen V, Stern J, McDermott MP, Robertson MM. Bilineal transmission in Tourette’s syndrome families. Neurology. 1994;44(12):2336–42.

    CAS  PubMed  Google Scholar 

  26. McMahon WM, van de Wetering BJM, Filloux F, Betit K, Coon H, Leppert M. Bilineal transmission and phenotypic variation of Tourette’s disorder in a large pedigree. J Am Acad Child Adolesc Psychiatry. 1996;35(5):672–80.

    CAS  PubMed  Google Scholar 

  27. Hasstedt SJ, Leppert M, Filloux F, Vandewetering BJM, Mcmahon WM. Intermediate inheritance of Tourette syndrome, assuming assortative mating. Am J Hum Genet. 1995;57(3):682–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Seuchter SA, Hebebrand J, Klug B, Knapp M, Lehmkuhl G, Poustka F, et al. Complex segregation analysis of families ascertained through Gilles de la Tourette syndrome. Genet Epidemiol. 2000;18(1):33–47.

    CAS  PubMed  Google Scholar 

  29. Tourette Syndrome Association International Consortium for Genetics. Genome scan for Tourette disorder in affected-sibling-pair and multigenerational families. Am J Hum Genet. 2007;80(2):265–72.

    Google Scholar 

  30. Tourette Syndrome Association International Consortium for Genetics. A complete genome screen in sib pairs affected by Gilles de la Tourette syndrome. Am J Hum Genet. 1999;65(5):1428–36.

    Google Scholar 

  31. Zhang HP, Leckman JF, Pauls DL, Tsai CP, Kidd KK, Campos MR, et al. Genomewide scan of hoarding in sib pairs in which both sibs have Gilles de la Tourette syndrome. Am J Hum Genet. 2002;70(4):896–904.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Kroisel PM, Petek E, Emberger W, Windpassinger C, Wladika W, Wagner K. Candidate region for Gilles de la Tourette syndrome at 7q31. Am J Med Genet. 2001;101(3):259–61.

    CAS  PubMed  Google Scholar 

  33. Miranda DM, Wigg K, Feng Y, Sandor P, Barr CL. Association study between Gilles de la Tourette Syndrome and two genes in the Robo-Slit pathway located in the chromosome 11q24 linked/associated region. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2008;147B(1):68–72.

    CAS  Google Scholar 

  34. Paschou P, Feng Y, Pakstis AJ, Speed WC, DeMille MM, Kidd JR, et al. Indications of linkage and association of Gilles de la Tourette syndrome in two independent family samples: 17q25 is a putative susceptibility region. Am J Hum Genet. 2004;75(4):545–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science. 2008;322(5903):881–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Verkerk AJMH, Mathews CA, Joosse M, Eussen BHJ, Heutink P, Oostra BA, et al. CNTNAP2 is disrupted in a family with Gilles de la Tourette syndrome and obsessive compulsive disorder. Genomics. 2003;82(1):1–9.

    CAS  PubMed  Google Scholar 

  37. Cruz C, Camarena B, King N, Páez F, Sidenberg D, de la Fuente JR, et al. Increased prevalence of the seven-repeat variant of the dopamine D4 receptor gene in patients with obsessive-compulsive disorder with tics. Neurosci Lett. 1997;231(1):1–4.

    CAS  PubMed  Google Scholar 

  38. Díaz-Anzaldúa A, Joober R, Rivière JB, Dion Y, Lespérance P, Richer F, et al. Tourette syndrome and dopaminergic genes: a family-based association study in the French Canadian founder population. Mol Psychiatry. 2004;9(3):272–7.

    PubMed  Google Scholar 

  39. Grice D, Leckman J, Pauls D, Kurlan R, Kidd K, Pakstis A, et al. Linkage disequilibrium between an allele at the dopamine D4 receptor locus and Tourette syndrome, by the transmission-disequilibrium test. Am J Hum Genet. 1996;59(3):644–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Herzberg I, Valencia-Duarte AV, Kay VA, White DJ, Müller H, Rivas IC, et al. Association of DRD2 variants and Gilles de la Tourette syndrome in a family-based sample from a South American population isolate. Psychiatr Genet. 2010;20(4):179–83.

    PubMed  Google Scholar 

  41. Tarnok Z, Ronai Z, Gervai J, Kereszturi E, Gadoros J, Sasvari-Szekely M, et al. Dopaminergic candidate genes in Tourette syndrome: association between tic severity and 3’ UTR polymorphism of the dopamine transporter gene. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(7):900–5.

    CAS  PubMed  Google Scholar 

  42. Barr CL, Wigg KG, Zovko E, Sandor P, Tsui LC. No evidence for a major gene effect of the dopamine D4 receptor gene in the susceptibility to Gilles de la Tourette syndrome in five Canadian families. Am J Med Genet. 1996;67(3):301–5.

    CAS  PubMed  Google Scholar 

  43. Chou IC, Tsai CH, Lee CC, Kuo HT, Hsu YA, Li CI, et al. Association analysis between Tourette’s syndrome and dopamine D1 receptor gene in Taiwanese children. Psychiat Genet. 2004;14(4):219–21.

    Google Scholar 

  44. Cavallini MC, Di Bella D, Catalano M, Bellodi L. An association study between 5-HTTLPR polymorphism, COMT polymorphism, and Tourette’s syndrome. Psychiatry Res. 2000;97(2–3):93–100.

    CAS  PubMed  Google Scholar 

  45. Yoon D, Rippel C, Kobets A, Morris C, Lee J, Williams P, et al. Dopaminergic polymorphisms in Tourette syndrome: association with the DAT gene (SLC6A3). Am J Med Genet B Neuropsychiatr Genet. 2007;144B(5):605–10.

    CAS  PubMed  Google Scholar 

  46. Chou IC, Tsai CH, Wan L, Hsu YA, Tsai FJ. Association study between Tourette’s syndrome and polymorphisms of noradrenergic genes (ADRA2A, ADRA2C). Psychiat Genet. 2007;17(6):359.

    Google Scholar 

  47. Xu C, Ozbay F, Wigg K, Shulman R, Tahir E, Yazgan Y, et al. Evaluation of the genes for the adrenergic receptors alpha 2A and alpha 1C and Gilles de la Tourette Syndrome. Am J Med Genet B Neuropsychiatr Genet. 2003;119B(1):54–9.

    PubMed  Google Scholar 

  48. Comings DE, Gade R, Muhleman D, Sverd J. No association of a tyrosine hydroxylase gene tetranucleotide repeat polymorphism in autism, Tourette syndrome, or ADHD. Biol Psychiatry. 1995;37(7):484–6.

    CAS  PubMed  Google Scholar 

  49. Brett P, Curtis D, Robertson M, Gurling H. Exclusion of the 5-HT1A serotonin neuroreceptor and tryptophan oxygenase genes in a large British kindred multiply affected with Tourette’s syndrome, chronic motor tics, and obsessive-compulsive behavior. Am J Psychiatry. 1995;152(3):437–40.

    CAS  PubMed  Google Scholar 

  50. Mössner R, Müller-Vahl KR, Döring N, Stuhrmann M. Role of the novel tryptophan hydroxylase-2 gene in Tourette syndrome. Mol Psychiatry. 2007;12(7):617–9.

    PubMed  Google Scholar 

  51. Moya PR, Wendland JR, Rubenstein LM, Timpano KR, Heiman GA, Tischfield JA, et al. Common and rare alleles of the serotonin transporter gene, SLC6A4, associated with Tourette’s disorder. Mov Disord Off J Mov Disord Soc. 2013;28(9):1263–70.

    CAS  Google Scholar 

  52. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Lee SH, Wray NR, Goddard ME, Visscher PM. Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet. 2011;88(3):294–305.

    PubMed Central  PubMed  Google Scholar 

  54. Hindorff L, MacArthur J, Morales J, Junkins H, Hall P, Klemm A, et al. A catalog of published genome-wide association studies [August 1, 2014]. Available from: http://www.genome.gov/gwastudies.

  55. Manolio TA. Genomewide association studies and assessment of the risk of disease. New Engl J Med. 2010;363(2):166–76.

    CAS  PubMed  Google Scholar 

  56. Scharf JM, Yu D, Mathews CA, Neale BM, Stewart SE, Fagerness JA, et al. Genome-wide association study of Tourette’s syndrome. Mol Psychiatr. 2013;18(6):721–8.

    CAS  Google Scholar 

  57. Davis LK, Yu D, Keenan CL, Gamazon ER, Konkashbaev AI, Derks EM, et al. Partitioning the heritability of Tourette syndrome and obsessive compulsive disorder reveals differences in genetic architecture. PLoS Genet. 2013;9(10):e1003864.

    PubMed Central  PubMed  Google Scholar 

  58. Paschou P, Yu D, Gerber G, Evans P, Tsetsos F, Davis LK, et al. Genetic association signal near NTN4 in Tourette syndrome. Ann Neurol. 2014;76(2):310–5.

    CAS  PubMed  Google Scholar 

  59. Abelson JF, Kwan KY, O’Roak BJ, Baek DY, Stillman AA, Morgan TM, et al. Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science. 2005;310(5746):317–20.

    CAS  PubMed  Google Scholar 

  60. Boghosian-Sell L, Comings DE, Overhauser J. Tourette syndrome in a pedigree with a 7;18 translocation: identification of a YAC spanning the translocation breakpoint at 18q22.3. Am J Hum Genet. 1996;59(5):999–1005.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Cuker A, State MW, King RA, Davis N, Ward DC. Candidate locus for Gilles de la Tourette syndrome/obsessive compulsive disorder/chronic tic disorder at 18q22. Am J Med Genet A. 2004;130A(1):37–9.

    PubMed  Google Scholar 

  62. Petek E, Windpassinger C, Vincent JB, Cheung J, Boright AP, Scherer SW, et al. Disruption of a novel gene (IMMP2L) by a breakpoint in 7q31 associated with Tourette syndrome. Am J Hum Genet. 2001;68(4):848–58.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. State MW, Greally JM, Cuker A, Bowers PN, Henegariu O, Morgan TM, et al. Epigenetic abnormalities associated with a chromosome 18(q21-q22) inversion and a Gilles de la Tourette syndrome phenotype. Proc Natl Acad Sci U S A. 2003;100(8):4684–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Hooper SD, Johansson AC, Tellgren-Roth C, Stattin EL, Dahl N, Cavelier L, et al. Genome-wide sequencing for the identification of rearrangements associated with Tourette syndrome and obsessive-compulsive disorder. BMC Med Genet. 2012;13:123.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Shelley BP, Robertson MM, Turk J. An individual with Gilles de la Tourette syndrome and Smith-Magenis microdeletion syndrome: is chromosome 17p11.2 a candidate region for Tourette syndrome putative susceptibility genes? J Intellect Disabil Res JIDR. 2007;51(Pt 8):620–4.

    CAS  Google Scholar 

  66. Prontera P, Napolioni V, Ottaviani V, Rogaia D, Fusco C, Augello B, et al. DPP6 gene disruption in a family with Gilles de la Tourette syndrome. Neurogenetics. 2014;15:237–42.

    CAS  PubMed  Google Scholar 

  67. Patel C, Cooper-Charles L, McMullan DJ, Walker JM, Davison V, Morton J. Translocation breakpoint at 7q31 associated with tics: further evidence for IMMP2L as a candidate gene for Tourette syndrome. Eur J Hum Genet. 2011;19(6):634–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Petek E, Schwarzbraun T, Noor A, Patel M, Nakabayashi K, Choufani S, et al. Molecular and genomic studies of IMMP2L and mutation screening in autism and Tourette syndrome. Mol Genet Genomics MGG. 2007;277(1):71–81.

    CAS  Google Scholar 

  69. Lawson-Yuen A, Saldivar JS, Sommer S, Picker J. Familial deletion within NLGN4 associated with autism and Tourette syndrome. Eur J Hum Genet. 2008;16(5):614–8.

    CAS  PubMed  Google Scholar 

  70. Bertelsen B, Melchior L, Jensen LR, Groth C, Glenthoj B, Rizzo R, et al. Intragenic deletions affecting two alternative transcripts of the IMMP2L gene in patients with Tourette syndrome. Eur J Hum Genet EJHG. 2014;22:1283–9.

    CAS  Google Scholar 

  71. Alarcon M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM, et al. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet. 2008;82(1):150–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Arking DE, Cutler DJ, Brune CW, Teslovich TM, West K, Ikeda M, et al. A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet. 2008;82(1):160–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Bakkaloglu B, O’Roak BJ, Louvi A, Gupta AR, Abelson JE, Morgan TM, et al. Molecular cytogenetic analysis and resequencing of Contactin Associated Protein-Like 2 in autism spectrum disorders. Am J Hum Genet. 2008;82(1):165–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Friedman JI, Vrijenhoek T, Markx S, Janssen IM, Van der Vliet WA, Faas BHW, et al. CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy. Mol Psychiatr. 2008;13(3):261–6.

    CAS  Google Scholar 

  75. Penagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H, et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell. 2011;147(1):235–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Strauss KA, Puffenberger EG, Huentelman MJ, Gottlieb S, Dobrin SE, Parod JM, et al. Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. New Engl J Med. 2006;354(13):1370–7.

    CAS  PubMed  Google Scholar 

  77. Zweier C, de Jong EK, Zweier M, Orrico A, Ousager LB, Collins AL, et al. CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. Am J Hum Genet. 2009;85(5):655–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet. 2003;34(1):27–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP, et al. X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet. 2004;74(3):552–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82(2):477–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Stillman AA, Krsnik Z, Sun JH, Rasin MR, State MW, Sestan N, et al. Developmentally regulated and evolutionarily conserved expression of SLITRK1 in brain circuits implicated in Tourette syndrome. J Comp Neurol. 2009;513(1):21–37.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Katayama K, Yamada K, Ornthanalai VG, Inoue T, Ota M, Murphy NP, et al. Slitrk1-deficient mice display elevated anxiety-like behavior and noradrenergic abnormalities. Mol Psychiatr. 2010;15(2):177–84.

    CAS  Google Scholar 

  83. Karagiannidis I, Rizzo R, Tarnok Z, Wolanczyk T, Hebebrand J, Nothen MM, et al. Replication of association between a SLITRK1 haplotype and Tourette syndrome in a large sample of families. Mol Psychiatr. 2012;17(7):665–8.

    CAS  Google Scholar 

  84. Miranda DM, Wigg K, Kabia EM, Feng Y, Sandor P, Barr CL. Association of SLITRK1 to Gilles de la Tourette syndrome. Am J Med Genet B. 2009;150B(4):483–6.

    CAS  Google Scholar 

  85. Chou IC, Wan L, Liu SC, Tsai CH, Tsai FJ. Association of the Slit and Trk-like 1 gene in Taiwanese patients with Tourette syndrome. Pediatr Neurol. 2007;37(6):404–6.

    PubMed  Google Scholar 

  86. Deng H, Le WD, Xie WJ, Jankovic J. Examination of the SLITRK1 gene in Caucasian patients with Tourette syndrome – clinical commentary. Acta Neurol Scand. 2006;114(6):400–2.

    CAS  PubMed  Google Scholar 

  87. Keen-Kim D, Mathews CA, Reus VI, Lowe TL, Herrera LD, Budman CL, et al. Overrepresentation of rare variants in a specific ethnic group may confuse interpretation of association analyses. Hum Mol Genet. 2006;15(22):3324–8.

    CAS  PubMed  Google Scholar 

  88. Scharf JM, Moorjani P, Fagerness J, Platko JV, Illmann C, Galloway B, et al. Lack of association between SLITRK1var321 and Tourette syndrome in a large family-based sample. Neurology. 2008;70(16 Pt 2):1495–6.

    CAS  PubMed  Google Scholar 

  89. Zimprich A, Hatala K, Riederer F, Stogmann E, Aschauer HN, Stamenkovic M. Sequence analysis of the complete SLITRK1 gene in Austrian patients with Tourette’s disorder. Psychiatr Genet. 2008;18(6):308–9.

    PubMed  Google Scholar 

  90. Yasmeen S, Melchior L, Bertelsen B, Skov L, Mol Debes N, Tumer Z. Sequence analysis of SLITRK1 for var321 in Danish patients with Tourette syndrome and review of the literature. Psychiatr Genet. 2013;23(3):130–3.

    CAS  PubMed  Google Scholar 

  91. Ercan-Sencicek AG, Stillman AA, Ghosh AK, Bilguvar K, O’Roak BJ, Mason CE, et al. L-histidine decarboxylase and Tourette’s syndrome. New Engl J Med. 2010;362(20):1901–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Ferrada C, Ferre S, Casado V, Cortes A, Justinova Z, Barnes C, et al. Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function. Neuropharmacology. 2008;55(2):190–7.

    CAS  PubMed  Google Scholar 

  93. Munzar P, Tanda G, Justinova Z, Goldberg SR. Histamine H3 receptor antagonists potentiate methamphetamine self-administration and methamphetamine-induced accumbal dopamine release. Neuropsychopharmacol. 2004;29(4):705–17.

    CAS  Google Scholar 

  94. Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system. Physiol Rev. 2008;88(3):1183–241.

    CAS  PubMed  Google Scholar 

  95. Ellender TJ, Huerta-Ocampo I, Deisseroth K, Capogna M, Bolam JP. Differential modulation of excitatory and inhibitory striatal synaptic transmission by histamine. J Neurosci. 2011;31(43):15340–51.

    CAS  PubMed  Google Scholar 

  96. Kubota Y, Ito C, Sakurai E, Sakurai E, Watanabe T, Ohtsu H. Increased methamphetamine-induced locomotor activity and behavioral sensitization in histamine-deficient mice. J Neurochem. 2002;83(4):837–45.

    CAS  PubMed  Google Scholar 

  97. Castellan Baldan L, Williams KA, Gallezot JD, Pogorelov V, Rapanelli M, Crowley M, et al. Histidine decarboxylase deficiency causes Tourette syndrome: parallel findings in humans and mice. Neuron. 2014;81(1):77–90.

    CAS  PubMed  Google Scholar 

  98. Fernandez TV, Sanders SJ, Yurkiewicz IR, Ercan-Sencicek AG, Kim YS, Fishman DO, et al. Rare copy number variants in Tourette syndrome disrupt genes in histaminergic pathways and overlap with autism. Biol Psychiatry. 2012;71(5):392–402.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Karagiannidis I, Dehning S, Sandor P, Tarnok Z, Rizzo R, Wolanczyk T, et al. Support of the histaminergic hypothesis in Tourette syndrome: association of the histamine decarboxylase gene in a large sample of families. J Med Genet. 2013;50(11):760–4.

    CAS  PubMed  Google Scholar 

  100. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, et al. Origins and functional impact of copy number variation in the human genome. Nature. 2010;464(7289):704–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36(9):949–51.

    CAS  PubMed  Google Scholar 

  102. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. Global variation in copy number in the human genome. Nature. 2006;444(7118):444–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy number polymorphism in the human genome. Science. 2004;305(5683):525–8.

    CAS  PubMed  Google Scholar 

  104. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466(7304):368–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D, et al. Multiple recurrent De Novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron. 2011;70(5):863–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, et al. Strong association of de novo copy number mutations with autism. Science. 2007;316(5823):445–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M. Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet. 2008;40(7):880–5.

    CAS  PubMed  Google Scholar 

  108. Sundaram SK, Huq AM, Wilson BJ, Chugani HT. Tourette syndrome is associated with recurrent exonic copy number variants. Neurology. 2010;74(20):1583–90.

    PubMed Central  PubMed  Google Scholar 

  109. Kalanithi PSA, Zheng W, Kataoka Y, DiFiglia M, Grantz H, Saper CB, et al. Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proc Natl Acad Sci U S A. 2005;102(37):13307–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Kataoka Y, Kalanithi PSA, Grantz H, Schwartz ML, Saper C, Leckman JF, et al. Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J Comp Neurol. 2010;518(3):277–91.

    PubMed Central  PubMed  Google Scholar 

  111. Lennington JB, Coppola G, Kataoka-Sasaki Y, Fernandez TV, Palejev D, Li Y, et al. Transcriptome analysis of the human striatum in Tourette syndrome. Biol Psychiatry. 2014:24. pii: S0006–3223(14)00551–4. doi: 10.1016/j.biopsych.2014.07.018. [Epub ahead of print]

  112. Nag A, Bochukova EG, Kremeyer B, Campbell DD, Muller H, Valencia-Duarte AV, et al. CNV analysis in Tourette syndrome implicates large genomic rearrangements in COL8A1 and NRXN1. PLoS One. 2013;8(3):e59061.

    PubMed Central  CAS  PubMed  Google Scholar 

  113. McGrath LM, Yu DM, Marshall C, Davis LK, Thiruvahindrapuram B, Li BB, et al. Copy number variation in obsessive-compulsive disorder and Tourette syndrome: a cross-disorder study. J Am Acad Child Adolesc Psychiatry. 2014;53(8):910–9.

    PubMed  Google Scholar 

  114. Sundaram SK, Huq AM, Sun Z, Yu W, Bennett L, Wilson BJ, et al. Exome sequencing of a pedigree with Tourette syndrome or chronic tic disorder. Ann Neurol. 2011;69(5):901–4.

    CAS  PubMed  Google Scholar 

  115. Lit L, Gilbert DL, Walker W, Sharp FR. A subgroup of Tourette’s patients overexpress specific natural killer cell genes in blood: a preliminary report. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2007;144B(7):958–63.

    CAS  Google Scholar 

  116. Tian Y, Gunther JR, Liao IH, Liu D, Ander BP, Stamova BS, et al. GABA- and acetylcholine-related gene expression in blood correlate with tic severity and microarray evidence for alternative splicing in Tourette syndrome: a pilot study. Brain Res. 2011;1381:228–36.

    CAS  PubMed  Google Scholar 

  117. Tian Y, Liao IH, Zhan X, Gunther JR, Ander BP, Liu D, et al. Exon expression and alternatively spliced genes in Tourette syndrome. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2011;156B(1):72–8.

    Google Scholar 

  118. Hong JJ, Loiselle CR, Yoon DY, Lee O, Becker KG, Singer HS. Microarray analysis in Tourette syndrome postmortem putamen. J Neurol Sci. 2004;225(1–2):57–64.

    CAS  PubMed  Google Scholar 

  119. Tian Y, Apperson ML, Ander BP, Liu D, Stomova BS, Jickling GC, et al. Differences in exon expression and alternatively spliced genes in blood of multiple sclerosis compared to healthy control subjects. J Neuroimmunol. 2011;230(1–2):124–9.

    CAS  PubMed  Google Scholar 

  120. Leckman JF, Katsovich L, Kawikova I, Lin H, Zhang H, Kronig H, et al. Increased serum levels of interleukin-12 and tumor necrosis factor-alpha in Tourette’s syndrome. Biol Psychiatry. 2005;57(6):667–73.

    CAS  PubMed  Google Scholar 

  121. Zhao Y, Marin O, Hermesz E, Powell A, Flames N, Palkovits M, et al. The LIM-homeobox gene Lhx8 is required for the development of many cholinergic neurons in the mouse forebrain. Proc Natl Acad Sci U S A. 2003;100(15):9005–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Mori T, Yuxing Z, Takaki H, Takeuchi M, Iseki K, Hagino S, et al. The LIM homeobox gene, L3/Lhx8, is necessary for proper development of basal forebrain cholinergic neurons. Eur J Neurosci. 2004;19(12):3129–41.

    PubMed  Google Scholar 

  123. Chen L, Chatterjee M, Li JY. The mouse homeobox gene Gbx2 is required for the development of cholinergic interneurons in the striatum. J Neurosci. 2010;30(44):14824–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Marin O. Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci. 2012;13(2):107–20.

    CAS  PubMed  Google Scholar 

  125. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics. 2008;9:559.

    PubMed Central  PubMed  Google Scholar 

  126. Morshed SA, Parveen S, Leckman JF, Mercadante MT, Bittencourt Kiss MH, Miguel EC, et al. Antibodies against neural, nuclear, cytoskeletal, and streptococcal epitopes in children and adults with Tourette’s syndrome, Sydenham’s chorea, and autoimmune disorders. Biol Psychiatry. 2001;50(8):566–77.

    CAS  PubMed  Google Scholar 

  127. Murphy TK, Storch EA, Turner A, Reid JM, Tan J, Lewin AB. Maternal history of autoimmune disease in children presenting with tics and/or obsessive-compulsive disorder. J Neuroimmunol. 2010;229(1–2):243–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Kawikova I, Leckman JF, Kronig H, Katsovich L, Bessen DE, Ghebremichael M, et al. Decreased numbers of regulatory T cells suggest impaired immune tolerance in children with Tourette syndrome: a preliminary study. Biol Psychiatry. 2007;61(3):273–8.

    CAS  PubMed  Google Scholar 

  129. Bos-Veneman NG, Olieman R, Tobiasova Z, Hoekstra PJ, Katsovich L, Bothwell AL, et al. Altered immunoglobulin profiles in children with Tourette syndrome. Brain Behav Immun. 2011;25(3):532–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Dietrich A, Fernandez TV, King RA, State MW, Tischfield JA, Hoekstra PJ, et al. The Tourette International Collaborative Genetics (TIC Genetics) study, finding the genes causing Tourette syndrome: objectives and methods. Eur Child Adolesc Psychiatry. 2015;24:141–51.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the Brain and Behavior Research Foundation (NARSAD) to GC, by the National Institute of Mental Health (NIMH) T32 Fellowship for postdoctoral training in childhood neuropsychiatric disorders, Award Number MH018268 to JBL, and by NIMH Award Number K08MH099424 to TVF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas V. Fernandez MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lennington, J.B., Coppola, G., Fernandez, T.V. (2015). Genetics of Tourette Syndrome. In: Schneider, S., Brás, J. (eds) Movement Disorder Genetics. Springer, Cham. https://doi.org/10.1007/978-3-319-17223-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17223-1_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17222-4

  • Online ISBN: 978-3-319-17223-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics